Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2014

Supporting Information

For

Direct Cleavage of N=N Bond of Azobenzenes by MeOTf Leading to *N*-Arylbenzimidazoles

Xiaoyu Yan^a, Xiangli Yi^a, Chanjuan Xi^{a,b*}

^aKey Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry

of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China

^bState Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin

300071, China

Email: cjxi@tsinghua.edu.cn

Contents

General Considerations	S2
Experimental Procedures	S2
References	S8
Copies of ¹ H and ¹³ C NMR Spectra	S9

General Considerations

All manipulations were conducted in sealed tubes under an atmosphere of dinitrogen. Unless otherwise noted, all starting materials were commercially available and were used without further purification. Substituted azobenzenes were prepared according to literature (**1b**¹, **1j**³, **1l**⁴, and others²). DCE was dried by 4Å molecule sieves. ¹H NMR and ¹³C NMR spectra were recorded on 400M and 600M NMR spectrometer with TMS as internal standard. GC-MS spectra were recorded on Hewlett Packard GC-MS system.

Experimental Procedures

Typical procedure for reaction of azobenzenes with MeOTf. To a 25 mL tube charged with nitrogen, was added azobenzene **1a** (0.2 mmol), TCQ (0.24 mmol), MeOTf (0.3 mmol), DCE 1 mL. The tube was sealed and stirred for 4 h at 140°C. Removing the solvent of reaction mixture and subsequent purification by column chromatography on silica gel (petroleum ether/ethyl acetate/triethylamine: 1/1/0.05) afforded **2a** (39 mg, 87% isolated yield) as a colorless oil.

87% yield. Rf = 0.35. ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.99 (s, 1H), 7.73 (d, J = 8.2 Hz, 1H), 7.38 – 7.31 (m, 4H), 7.28 (s, 1H), 7.13 (d, J = 8.2 Hz, 1H), 2.46 (s, 3H), 2.43 (s, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 142.2, 142.1, 138.1, 134.2, 134.0, 133.7, 130.6, 124.4, 124.2, 120.1, 110.4, 21.9, 21.3. HRMS (ESI mode) calcd for C₁₅H₁₄N₂+H⁺ 223.1230, found 223.1232.

Colorless oil, 35 mg (70% yield). Rf = 0.21 (PE/EA/TEA: 1/1/0.05). ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.94 (s, 1H), 7.73 (d, *J* = 8.8 Hz, 1H), 7.43 – 7.37 (m, 2H), 7.10 – 7.05 (m, 2H), 6.96 (dd, *J* = 8.8, 2.2 Hz, 1H), 6.88 (d, *J* = 2.2 Hz, 1H), 3.89 (s, 3H), 3.82 (s, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 159.5, 157.4, 142.0, 138.4, 135.1, 129.3, 125.9, 121.1, 115.3, 112.2, 93.8, 56.0, 55.8. HRMS (ESI mode) calcd for C₁₅H₁₄O₂N₂+H⁺ 255.1128, found 255.1133.

Colorless oil, 36 mg (78% yield). Rf = 0.33 (PE/EA/TEA: 1/1/0.05). ¹H NMR (400 MHz, CHLOROFORM-D) δ 8.05 (s, 1H), 7.80 (dd, J = 8.8, 4.8 Hz, 1H), 7.50 – 7.44 (m, 2H), 7.32 – 7.25 (m, 2H), 7.16 – 7.06 (m, 2H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 162.2 (d, J = 249.2 Hz), 160.4 (d, J = 240.9 Hz), 142.92, 140.34, 134.1 (d, J = 13.3 Hz), 132.1, 126.1 (d, J = 8.6 Hz), 121.6 (d, J = 10.1 Hz), 117.3 (d, J = 23.0 Hz), 111.5 (d, J = 25.2 Hz), 97.0 (d, J = 28.2 Hz). HRMS (ESI mode) calcd for C₁₃H₈F₂N₂+H⁺ 231.0728, found 231.0729.

Colorless oil, 38 mg (73% yield). Rf = 0.36 (PE/EA/TEA: 1/1/0.05). ¹H NMR (400 MHz, CHLOROFORM-D) δ 8.06 (s, 1H), 7.77 (d, *J* = 8.6 Hz, 1H), 7.57 – 7.54 (m, 2H), 7.48 – 7.40 (m, 3H), 7.30 (dd, *J* = 8.6, 1.9 Hz, 1H). ¹³C NMR (101 MHz,

CHLOROFORM-D) δ 142.8, 142.7, 134.4, 134.2, 130.5, 129.9, 125.4, 123.8, 121.7, 110.5. HRMS (ESI mode) calcd for C₁₃H₈Cl₂N₂+H⁺ 263.0137, found 263.0135.

Colorless oil, 49 mg (69% yield). Rf = 0.33 (PE/EA/TEA: 1/1/0.05). ¹H NMR (400 MHz, CHLOROFORM-D) δ 8.05 (s, 1H), 7.77 – 7.69 (m, 3H), 7.63 (d, *J* = 1.8 Hz, 1H), 7.45 (dd, *J* = 8.6, 1.8 Hz, 1H), 7.41 – 7.35 (m, 2H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 143.1, 142.7, 134.9, 134.7, 133.6, 126.6, 125.8, 122.3, 122.1, 117.5, 113.5. HRMS (ESI, positive mode) calcd for C₁₃H₈Br₂N₂+H⁺ 352.9112, found 352.9109.

Colorless oil, 16 mg (24% yield). Rf = 0.39 (PE/EA/TEA: 1/1/0.05). ¹H NMR (600 MHz, CHLOROFORM-D) δ 8.26 (s, 1H), 7.98 (d, *J* = 8.5 Hz, 1H), 7.90 (d, *J* = 8.3 Hz, 2H), 7.80 (s, 1H), 7.67 (d, *J* = 8.2 Hz, 2H), 7.63 (d, *J* = 8.5 Hz, 1H). ¹³C NMR (151 MHz, CHLOROFORM-D) δ 146.4, 144.2, 138.7, 132.9, 130.9 (q, *J* = 33.5 Hz), 127.8 (q, *J* = 2.9 Hz), 126.7 (q, *J* = 32.7 Hz), 124.5 (q, *J* = 272.6 Hz), 124.4, 123.6 (q, *J* = 272.1 Hz), 121.6, 120.4 (q, *J* = 3.4 Hz), 108.17 (q, *J* = 4.1 Hz). HRMS (ESI mode) calcd for C₁₅H₈F₆N₂+H⁺ 331.0664, found 331.0669.

Colorless oil, 26 mg (53% yield). Rf = 0.44 (PE/EA/TEA: 1/1/0.05). ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.85 (s, 1H), 7.22 (s, 1H), 7.19 – 7.12 (m, 2H), 6.95 (s, 1H), 6.74 (s, 1H), 2.70 (s, 3H), 2.43 (s, 3H), 2.39 (s, 3H), 2.05 (s, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 141.9, 140.8, 139.3, 135.2, 134.8, 133.5, 132.5, 132.1, 129.7, 127.8, 127.6, 124.6, 107.9, 21.8, 21.2, 17.6, 16.7. HRMS (ESI mode) calcd for C₁₇H₁₈N₂+H⁺ 251.1543, found 251.1549.

Colorless oil, 42 mg (85% yield) in 4:1 ratio. Rf = 0.39 (PE/EA/TEA: 1/1/0.05). ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.96 (s), 7.79 (s), 7.61 (s), 7.58 (s), 7.37 – 7.08 (m), 2.39 – 2.33 (m). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 142.7, 141.8, 138.6, 137.7, 136.6, 134.5, 132.8, 132.5, 131.6, 131.0, 130.2, 125.2, 125.0, 121.4, 120.5, 117.4, 110.7, 20.7, 20.4, 20.1, 20.0, 19.7, 19.6. HRMS (ESI mode) calcd for C₁₇H₁₈N₂+H⁺ 251.1543, found 251.1544.

Colorless oil, 6 mg (12% yield). Rf = 0.40 (PE/EA/TEA: 1/1/0.05). ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.84 (s, 1H), 7.49 (s, 1H), 7.13 (s, 1H), 7.01 (s, 2H), 6.86 (s, 1H), 2.45 (s, 3H), 2.39 (s, 6H), 2.05 (s, 3H). ¹³C NMR (101 MHz,

CHLOROFORM-D) δ 144.2, 143.9, 139.0, 137.3, 132.4, 131.6, 130.6, 127.3, 125.4, 121.6, 117.9, 21.5, 21.3, 18.7. HRMS (ESI mode) calcd for C₁₇H₁₈N₂+H⁺ 251.1543, found 251.1545.

Colorless oil, 34 mg (71% yield). Rf = 0.33 (PE/EA/TEA: 1/1/0.05). ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.98 (s, 1H), 7.74 (d, *J* = 8.6 Hz, 1H), 7.38 (s, 4H), 7.00 – 6.92 (m, 2H), 3.82 (s, 3H), 2.46 (s, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 157.4, 141.8, 138.2, 134.7, 134.0, 130.7, 124.2, 121.1, 112.2, 94.0, 56.0, 21.3. HRMS (ESI mode) calcd for C₁₅H₁₄ON₂+H⁺ 239.1179, found 239.1178.

Colorless oil, 17 mg (35% yield). Rf = 0.29 (PE/EA/TEA: 1/1/0.05). ¹H NMR (600 MHz, CHLOROFORM-D) δ 7.94 (s, 1H), 7.73 (d, *J* = 8.9 Hz, 1H), 7.49 – 7.44 (m, 2H), 7.29 – 7.24 (m, 2H), 6.97 (dd, *J* = 8.8, 2.4 Hz, 1H), 6.88 (d, *J* = 2.3 Hz, 1H), 3.82 (s, 3H). ¹³C NMR (151 MHz, CHLOROFORM-D) δ 162.1 (d, *J* = 248.6 Hz), 157.5, 141.6, 138.4, 134.7, 132.6, 126.2 (d, *J* = 8.6 Hz), 121.2, 117.1 (d, *J* = 22.9 Hz), 112.3, 93.7, 56.0. HRMS (ESI mode) calcd for C₁₄H₁₁OFN₂+H⁺ 243.0928, found 243.0926.

Colorless solid, 20 mg (32% yield). Rf = 0.34 (PE/EA/TEA: 1/1/0.05). ¹H NMR (400 MHz, CHLOROFORM-D) δ 8.01 (s, 1H), 7.84 (d, *J* = 8.4 Hz, 2H), 7.74 (d, *J* = 9.5 Hz, 1H), 7.64 (d, *J* = 8.4 Hz, 2H), 7.01 – 6.94 (m, 2H), 4.04 (q, *J* = 7.0 Hz, 2H), 1.42 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 157.05, 141.05, 139.58, 138.61, 133.95, 130.0 (q, *J* = 33.2 Hz), 127.5(q, *J* = 3.5 Hz), 123.95, 123.7 (q, *J* = 272.3 Hz), 121.41, 112.93, 94.78, 64.35, 14.94. HRMS (ESI mode) calcd for C₁₆H₁₃F₃ON₂+H⁺ 307.1053, found 307.1055.

Colorless oil, 30 mg (64% yield). Rf = 0.34 (PE/EA/TEA: 1/1/0.05). ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.61 (d, *J* = 8.2 Hz, 1H), 7.37 (d, *J* = 8.1 Hz, 2H), 7.23 (d, *J* = 8.2 Hz, 2H), 7.07 (d, *J* = 8.0 Hz, 1H), 6.90 (s, 1H), 2.48 (s, 3H), 2.47 (s, 3H), 2.41 (s, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 138.9, 133.7, 132.6, 130.6, 127.0, 123.8, 118.6, 110.0, 21.8, 21.4, 14.5. HRMS (ESI mode) calcd for C₁₆H₁₆N₂+H⁺ 237.1386, found 237.1389.

Colorless solid, 76 mg (99% yield). ¹H NMR (400 MHz, CHLOROFORM-D) δ 9.65 (s, 1H), 7.74 (d, *J* = 8.6 Hz, 1H), 7.55 (d, *J* = 8.2 Hz, 2H), 7.51 (d, *J* = 8.6 Hz, 1H), 7.43 (d, *J* = 7.7 Hz, 2H), 7.42 (s, 1H), 4.23 (s, 3H), 2.53 (s, 3H), 2.46 (s, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 141.2, 141.2, 138.9, 131.7, 131.2, 130.3, 129.4, 124.7, 120.6 (q, *J* = 320.4 Hz), 112.9, 112.9, 33.8, 21.8, 21.3. HRMS (ESI mode) calcd for C₁₆H₁₇N₂ 237.1386, found 237.1385.

Reference:

- (1) Lu, W.; Xi, C. Tetrahedron Lett. 2008, 49, 4011.
- (2) Zhang, C.; Jiao, N. Angew. Chem. Int. Ed. 2010, 49, 6174.
- (3) Takeda, Y.; Okumura, S.; Minakata, S. Angew. Chem. Int. Ed. 2012, 51, 7804.
- (4) Haghbeen, K.; Tan, E. W. J. Org. Chem. 1998, 63, 4503.

Copies of ¹H and ¹³C NMR Spectra

¹H NMR for compound **2a**

¹³C NMR for compound **2a**

¹H NMR for compound **2b**

¹³C NMR for compound **2b**

¹H NMR for compound **2**c

¹³C NMR for compound **2c**

¹H NMR for compound **2d**

¹³C NMR for compound **2d**

¹H NMR for compound **2e**

¹³C NMR for compound **2e**

¹H NMR for compound 2f

¹³C NMR for compound **2f**

¹H NMR for compound 2g

¹³C NMR for compound **2**g

¹H NMR for compound **2h**

¹³C NMR for compound **2h**

¹H NMR for compound **2i**

¹³C NMR for compound **2i**

¹H NMR for compound 2j

¹³C NMR for compound **2**j

¹H NMR for compound 2k

¹³C NMR for compound **2**k

¹H NMR for compound **2**I

¹³C NMR for compound **2**I

¹H NMR for compound 2m

¹³C NMR for compound **2m**

¹H NMR for compound **3a**

¹³C NMR for compound **3a**