Supporting Information

Supporting Information

Selective Monofluorination of Active Methylene Compounds: the Important Role of ZnCl₂ in Inhibiting

Overfluorination

Fanzhou Jiang, Yanchuan Zhao, and Jinbo Hu*

Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Ling-Ling Road, Shanghai, 200032 (China) Fax: (+86) 21-64166128 E-mail: jinbohu@sioc.ac.cn

General Methods:

Unless otherwise mentioned, solvents and reagents were purchased from commercial sources and used without further purification. The solvent THF was refluxed with sodium and distilled. CH₃CN was distilled from CaH₂. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on a 300MHz (Bruker AV300) or 400MHz (Agilent MR400) NMR spectrometer. ¹H NMR chemical shifts were determined relative to internal (CH₃)₄Si (TMS) at δ 0.0 or to the signal of a residual protonated solvent: CDCl₃ δ 7.26 or (CD₃)₂SO δ 2.50. ¹³C NMR chemical shifts were determined relative to internal TMS at δ 0.0. ¹⁹F NMR chemical shifts were determined relative to CFCl₃ at δ 0.0. Data for ¹H, ¹³C and ¹⁹F NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet, br = broad). Mass spectra were obtained on a mass spectrometer in the EI or ESI mode.

Preparation of various methylene compounds:

Unless otherwise mentioned, starting materials were purchased from commercial sources and used as received (1a-1i, 4e, 4g). 1j, 4c, 4f, 4h, 4k were prepared in Procedure A.¹ 4a, 4b, 4d, 4i, 4j were prepared in Procedure B.²

Procedure A

Preparation of 1-(4-methoxyphenyl)-2-(phenylsulfonyl)ethanone (1j):

Sodium benzenesulfinate (98%, wt%, 1.1 equiv, 3.6850 g, 22 mmol) and 2-bromo-1-(4-methoxyphenyl)ethanone (**7j**) (98%, wt%, 1.0 equiv, 4.6751 g, 20 mmol) were dissolved in 34 mL DMF. The reaction mixture was stirred at 75 °C for 6 h under N₂ atmosphere until the almost completion of reaction monitored by TLC. The reaction was quenched by water. After extraction with EtOAc, the organic layer was washed with brine, and then dried over anhydrous Na₂SO₄, filtered and removed under vacuum. The crude product was purified by flash column chromatography on silica gel with EtOAc/hexane to provide white solid (4.9196 g) in 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.6 Hz, 2H), 7.87 (d, *J* = 7.5 Hz, 2H), 7.65 (t, *J* = 7.1 Hz, 1H), 7.53 (t, *J* = 7.8 Hz, 2H), 6.93 (d, *J* = 8.7 Hz, 2H), 4.66 (s, 2H), 3.87 (s, 3H). MS (ESI, m/z): 291.1 (M + H⁺), 313.1 (M + Na⁺).

Preparation of (benzylsulfonyl)benzene (4c)

Sodium benzenesulfinate (98%, wt%, 1.05 equiv, 5.039 g, 30.7 mmol) and (bromomethyl)benzene (**8c**) (98%, wt%, 1.0 equiv, 5.0 g, 29.2 mmol) were dissolved in 50 mL DMF. The reaction mixture was stirred at 85 °C for 5 h under N₂ atmosphere until the almost completion of reaction monitored by TLC. The reaction was quenched by water. After extraction with EtOAc, the organic layer was washed with brine, and then dried over anhydrous Na₂SO₄, filtered and removed under vacuum. The crude product was recrystallization with EtOAc/hexane to provide white solid (5.89 g) in 87% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.67 – 7.56 (m, 3H), 7.50 – 7.41 (m, 2H), 7.36 – 7.22 (m, 3H), 7.08 (d, *J* = 6.7 Hz, 2H), 4.31 (s, 2H). MS (ESI, m/z): 233.1 (M + H⁺), 250.1 (M + NH₄⁺), 255.1 (M + Na⁺).

Preparation of 1-methoxy-3-((phenylsulfonyl)methyl)benzene (4f)

Sodium benzenesulfinate (98%, wt%, 1.1 equiv, 4.4957 g, 26.8 mmol) and 1-(bromomethyl)-3-methoxybenzene (**8f**) (98%, wt%, 1.0 equiv, 5.0 g, 24.4 mmol) were dissolved in 42 mL DMF. The reaction mixture was stirred at 80 °C for 6 h under N₂ atmosphere until the almost completion of reaction monitored by TLC. The reaction was quenched by water. After extraction with EtOAc, the organic layer was washed with brine, and then dried over anhydrous Na₂SO₄, filtered and removed under vacuum. The crude product was purified by flash column chromatography on silica gel with EtOAc/hexane to provide white solid (5.5714 g) in 95% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.67 – 7.56 (m, 3H), 7.44 (t, *J* = 7.9 Hz, 2H), 7.14 (t, *J* = 7.9 Hz, 1H), 6.83 (dd, *J* = 8.2, 2.1 Hz, 1H), 6.68 – 6.54 (m, 2H), 4.26 (s, 2H), 3.69 (s, 3H). MS (ESI, m/z): 263.1 (M + H⁺), 280.0 (M + NH₄⁺), 285.1 (M + Na⁺).

Preparation of 1-nitro-3-((phenylsulfonyl)methyl)benzene (4h)

Sodium benzenesulfinate (98%, wt%, 1.05 equiv, 1.7588 g, 10.5 mmol) and 1-(bromomethyl)-3-nitrobenzene (**8h**) (97%, wt%, 1.0 equiv, 2.2271 g, 10 mmol) were dissolved in 17 mL DMF. The reaction mixture was stirred at 80 °C for 10 h under N₂ atmosphere until the almost completion of reaction monitored by TLC. The reaction was quenched by water. After extraction with EtOAc, the organic layer was washed with brine, and then dried over anhydrous Na₂SO₄, filtered and removed under vacuum. The crude product was purified by flash column chromatography on silica gel with EtOAc/hexane to provide white solid (1.6502 g) in 60% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, *J* = 8.1 Hz, 1H), 7.86 (s, 1H), 7.72 – 7.58 (m, 3H), 7.57 – 7.45 (m, 4H), 4.38 (s, 2H). MS (ESI, m/z): 278.1 (M + H⁺), 295.1 (M + NH₄⁺), 300.1 (M + Na⁺).

Preparation of 1-((methylsulfonyl)methyl)-2-nitrobenzene (4k)

Sodium methanesulfinate (85%, wt%, 1.0 equiv, 2.4021 g, 20 mmol) and 1-(bromomethyl)-2-nitrobenzene (**8k**) (97%, wt%, 1.0 equiv, 4.4542 g, 20 mmol) were dissolved in 34 mL DMF. The reaction mixture was stirred at 75 °C for 6 h under N₂ atmosphere until the almost completion of reaction monitored by TLC. The reaction was quenched by water. After extraction with EtOAc, the organic layer was washed with brine, and then dried over anhydrous Na₂SO₄, filtered and removed under vacuum. The crude product was purified by flash column chromatography on silica gel with EtOAc/hexane to provide light green solid (4.1871 g) in 97% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, *J* = 8.2 Hz, 1H), 7.76 – 7.62 (m, 2H), 7.62 – 7.53 (m, 1H), 4.78 (s, 2H), 2.89 (s, 3H). MS (ESI, m/z): 216.0 (M + H⁺), 233.1 (M + NH₄⁺), 238.0 (M + Na⁺).

Procedure B

Preparation of 2-(benzylsulfonyl)benzothiazole (4a)

To a mixture of NaH (60%, wt%, 1.3 equiv, 1.0396 g, 26 mmol) and DMF (34 mL), benzothiazole-2-thiol (95%, 1.0 equiv, 3.5208 g, 20 mmol) was dissolved in under N₂ atmosphere. 10 minutes later, (bromomethyl)benzene (98%, wt%, 1.1 equiv, 3.8397 g, 22mmol) was added dropwise. The reaction was stirred at room temperature for 10 h until the almost completion of reaction monitored by TLC. The reaction was

quenched by water. After extraction with EtOAc, the organic layer was washed with brine, and then dried over anhydrous Na₂SO₄, filtered and removed under vacuum. The crude product was then dissolved in the mixture of CCl₄ (30 mL), CH₃CN (30 mL) and H₂O (75 mL) without purification. NaIO₄ (8.5556 g, 40 mmol) and ruthenium trichloride hydrate (ca. 15 mg) was added and the mixture was stirred at room temperature for 5 h until the almost completion of reaction monitored by TLC. The reaction was filtered on diatomite and washed with CH₂Cl₂. The filtrate was evaporated under vacuum to remove CCl₄ and CH₃CN, then extraction with CH₂Cl₂. The organic layer was dried over anhydrous Na₂SO₄, filtered and removed under vacuum. The crude product was purified by flash column chromatography on silica gel with EtOAc/hexane to provide white solid (3.4798g) in 60% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, *J* = 8.3 Hz, 1H), 7.93 (d, *J* = 8.1 Hz, 1H), 7.68 – 7.61 (m, 1H), 7.61 – 7.54 (m, 1H), 7.34 – 7.21 (m, 5H), 4.74 (s, 2H). MS (ESI, m/z): 290.0 (M + H⁺), 312.0 (M + Na⁺).

Preparation of 2-(benzylsulfonyl)pyridine (4b)

To a mixture of NaH (60%, wt%, 1.3 equiv, 1.0396 g, 26 mmol) and DMF (34 mL), pyridine-2-thiol (98%, wt%, 1.0 equiv, 2.2687 g, 20 mmol) was dissolved in under N₂ atmosphere. 10 minutes later, (bromomethyl)benzene (98%, wt%, 1.1 equiv, 3.8397 g, 22mmol) was added dropwise. The reaction was stirred at room temperature for 10 h until the almost completion of reaction monitored by TLC. The reaction was quenched by water. After extraction with EtOAc, the organic layer was washed with brine, and then dried over anhydrous Na₂SO₄, filtered and removed under vacuum. The crude product was then dissolved in the mixture of CCl₄ (30 mL), CH₃CN (30 mL) and H₂O (75 mL) without purification. NaIO₄ (8.5556 g, 40 mmol) and ruthenium trichloride hydrate (ca. 15 mg) was added and the mixture was stirred at room temperature for 5 h until the almost completion of reaction monitored by TLC. The reaction was filtered on diatomite and washed with CH₂Cl₂. The filtrate was evaporated under vacuum to remove CCl₄ and CH₃CN, then extraction with CH₂Cl₂. The organic layer was dried over anhydrous Na₂SO₄, filtered and removed under vacuum. The crude product was purified by flash column chromatography on silica gel with CH₂Cl₂/hexane to provide white solid (4.1111 g) in 88% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.80 (d, J = 4.6 Hz, 1H), 8.07 – 7.72 (m, 2H), 7.64 – 7.43 (m, 1H), 7.30 - 7.20 (m, 3H), 7.20 - 7.14 (m, 2H), 4.64 (s, 2H). MS (ESI, m/z): 234.1 (M + H^+), 256.1 (M + Na⁺).

Preparation of 2-((2-methylbenzyl)sulfonyl)benzothiazole (4c)

To a mixture of NaH (60%, wt%, 1.3 equiv, 1.0396 g, 26 mmol) and DMF (34 mL), benzothiazole-2-thiol (95%, wt%, 1.0 equiv, 3.5208 g, 20 mmol) was dissolved in under N₂ atmosphere. 10 minutes later, 1-(bromomethyl)-2-methylbenzene (98%, wt%, 1.1 equiv, 4.1544 g, 22mmol) was added dropwise. The reaction was stirred at room temperature for 10 h until the almost completion of reaction monitored by TLC. The reaction was quenched by water. After extraction with EtOAc, the organic layer was washed with brine, and then dried over anhydrous Na₂SO₄, filtered and removed under vacuum. The crude product was then dissolved in the mixture of CCl₄ (30 mL), CH₃CN (30 mL) and H₂O (75 mL) without purification. NaIO₄ (8.5556 g, 40 mmol) and ruthenium trichloride hydrate (ca. 15 mg) was added and the mixture was stirred at room temperature for 5 h until the almost completion of reaction monitored by TLC. The reaction was filtered on diatomite and washed with CH₂Cl₂. The filtrate was evaporated under vacuum to remove CCl₄ and CH₃CN, then extraction with CH₂Cl₂. The organic layer was dried over anhydrous Na₂SO₄, filtered and removed under vacuum. The crude product was purified by flash column chromatography on silica gel with EtOAc/hexane to provide white solid (5.3698 g) in 89% yield. m.p.: 125-126 °C. IR (KBr): 3093, 3063, 3025, 2997, 2943, 2262, 2153, 1932, 1815, 1722, 1552, 1492, 1469, 1455, 1410, 1328, 1316, 1302, 1256, 1237, 1182, 1152, 1138, 1127, 1079, 1047, 1023, 854, 781, 767, 754, 735, 729, 711, 704, 691, 642, 586, 562, 534, 515, 491, 480, 433. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, J = 8.1 Hz, 1H), 7.97 (d, J = 8.2 Hz, 1H), 7.71 - 7.63 (m, 1H), 7.63 - 7.56 (m, 1H), 7.26 - 7.13 (m, 3H), 7.08 (t, J = 7.0 Hz, 1H), 4.83 (s, 2H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.60, 152.59, 138.88, 137.10, 132.04, 131.03, 129.48, 128.06, 127.70, 126.31, 125.46, 124.70, 122.34, 58.39, 19.80. MS (ESI, m/z): 304.0 (M + H⁺), 326.0 (M + Na⁺). HRMS (ESI): calcd. For $C_{15}H_{13}N_1Na_1O_2S_2$ (M + H⁺) 326.02799, found 326.02821.

Preparation of 2-((4-methylbenzyl)sulfonyl)pyridine (4i)

To a mixture of NaH (60%, wt%, 1.3 equiv, 1.0396 g, 26 mmol) and DMF (34 mL), pyridine-2-thiol (98%, wt%, 1.0 equiv, 2.2687 g, 20 mmol) was dissolved in under N_2 atmosphere. 10 minutes later, 1-(bromomethyl)-4-methylbenzene (98%, wt%, 1.1 equiv, 4.1544 g, 22 mmol) was added. The reaction was stirred at room temperature for 10 h until the almost completion of reaction monitored by TLC. The reaction was

quenched by water. After extraction with EtOAc, the organic layer was washed with brine, and then dried over anhydrous Na₂SO₄, filtered and removed under vacuum. The crude product was then dissolved in the mixture of CCl₄ (30 mL), CH₃CN (30 mL) and H₂O (75 mL) without purification. NaIO₄ (8.5556 g, 40 mmol) and ruthenium trichloride hydrate (ca. 15 mg) was added and the mixture was stirred at room temperature for 5 h until the almost completion of reaction monitored by TLC. The reaction was filtered on diatomite and washed with CH₂Cl₂. The filtrate was evaporated under vacuum to remove CCl₄ and CH₃CN, then extraction with CH₂Cl₂. The organic layer was dried over anhydrous Na₂SO₄, filtered and removed under vacuum. The crude product was purified by flash column chromatography on silica gel with CH₂Cl₂/hexane to provide white solid (4.4664 g) in 90% yield. m.p.: 98-99 °C. IR (KBr): 3060, 2999, 2928, 2260, 2188, 1611, 1575, 1561, 1513, 1456, 1425, 1386, 1300, 1289, 1248, 1161, 1149, 1125, 1113, 1104, 1082, 1046, 1025, 990, 977, 818, 782, 766, 741, 728, 698, 622, 603, 526, 505, 483. ¹H NMR (400 MHz, cdcl₃) δ 8.81 (d, J = 4.6 Hz, 1H), 7.94 – 7.70 (m, 2H), 7.59 – 7.46 (m, 1H), 7.05 (s, 4H), 4.60 (s, 2H), 2.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 156.29, 150.15, 138.66, 137.90, 130.80, 129.37, 127.39, 124.17, 123.15, 58.01, 21.19. MS (EI, m/z): 247 (M⁺, 8.09), 105 (100.00), 182 (61.74), 77 (16.69), 78 (15.01), 79 (13.28), 103 (11.18), 51 (10.78), 167 (10.68). HRMS (EI): calcd. For C₁₃H₁₃NO₂S (M⁺) 247.0667, found 247.0668.

Preparation of 1-(benzylsulfonyl)-4-nitrobenzene (4j)

To a mixture of NaH (60%, wt%, 1.3 equiv, 1.0396 g, 26 mmol) and DMF (34 mL), 4-nitrobenzenethiol (98%, wt%, 1.0 equiv, 3.1668 g, 20 mmol) was dissolved in under N₂ atmosphere. 10 minutes later, (bromomethyl)benzene (98%, wt%, 1.1 equiv, 3.8397 g, 22mmol) was added dropwise. The reaction was stirred at room temperature for 10 h until the almost completion of reaction monitored by TLC. The reaction was quenched by water. After extraction with EtOAc, the organic layer was washed with brine, and then dried over anhydrous Na₂SO₄, filtered and removed under vacuum. The crude product was then dissolved in the mixture of CCl₄ (30 mL), CH₃CN (30 mL) and H₂O (75 mL) without purification. NaIO₄ (8.5556 g, 40 mmol) and ruthenium trichloride hydrate (ca. 15 mg) was added and the mixture was stirred at room temperature for 5 h until the almost completion of reaction monitored by TLC. The reaction was filtered on diatomite and washed with CH₂Cl₂. The filtrate was evaporated under vacuum to remove CCl₄ and CH₃CN, then extraction with CH₂Cl₂. The organic layer was dried over anhydrous Na₂SO₄, filtered and removed under vacuum. The crude product was purified by flash column chromatography on silica gel with CH₂Cl₂/hexane to provide gray solid (3.2333 g) in 58% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, J = 8.8 Hz, 2H), 7.78 (d, J = 8.8 Hz, 2H), 7.35 (t, J = 7.4 Hz, 1H), 7.28 (t, J = 7.7 Hz, 2H), 7.08 (d, J = 7.2 Hz, 2H), 4.37 (s, 2H). MS (ESI, m/z): 300.0 (M + Na⁺).

Monofluorination of various methylene compounds:

1a-1j were monofluorinated in Condition A, and **4a-4k** were monofluorinated in Condition B. The equivalents of base (NaO^tBu or LiHMDS) and ZnCl₂ were based on those of the starting methylene compounds.

Condition A

Monofluorination of bis(phenylsulfonyl)methane (1a)

^{*t*}BuONa (2.5 equiv, 360.4 mg, 3.75 mmol) and anhydrous ZnCl₂ (2.5 equiv, 511.1 mg, 3.75 mmol) were dissolved in 12 mL THF. 5 minutes later, bis(phenylsulfonyl)methane (**1a**) (1.0 equiv, 444.0 mg, 1.5 mmol) was added into the mixture under N₂ atomosphere. The reaction was stirred for half an hour. Then SelectFluor (2.0 equiv, 1.0628g, 3.0 mmol) was added into the mixture in a flash. The reaction was allowed at room temperature for 2 h and quenched by 2M HCl until it became clear. After extraction with EtOAc, the organic layer was dried over anhydrous Na₂SO₄, filtered and removed under vacuum. The crude product was purified by flash column chromatography on silica gel with EtOAc/hexane to provide white solid **2a** (377.0 mg) in 80% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 7.7 Hz, 4H), 7.77 (t, *J* = 7.1 Hz, 2H), 7.61 (t, *J* = 7.6 Hz, 4H), 5.73 (d, *J* = 45.8 Hz, 1H). ¹⁹F NMR (282 MHz, CDCl₃) δ -168.19 (d, *J* = 45.9 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 135.70, 135.25, 130.14, 129.47, 105.65 (d, *J* = 266.1 Hz). MS (ESI, m/z): 314.9 (M + H⁺), 332.0 (M + NH₄⁺), 337.0 (M + Na⁺).

Monofluorination of 1-phenyl-2-(phenylsulfonyl)ethanone (1b)

^tBuONa (2.2 equiv, 317.1 mg, 3.3 mmol) and anhydrous $ZnCl_2$ (2.5 equiv, 511.1 mg, 3.75 mmol) were dissolved in 12 mL THF. 5 minutes later,

1-phenyl-2-(phenylsulfonyl)ethanone (**1b**) (1.0 equiv, 394.4 mg, 1.5 mmol) was added into the mixture under N₂ atomosphere. The reaction was stirred for half an hour. Then SelectFluor (2.0 equiv, 1.0628g, 3.0 mmol) was added into the mixture in a flash. The reaction was allowed at room temperature for 2 h and quenched by 2M HCl until it became clear. After extraction with EtOAc, the organic layer was dried over anhydrous Na₂SO₄, filtered and removed under vacuum. The crude product was purified by flash column chromatography on silica gel with EtOAc/hexane to provide white solid **2b** (381.3 mg) in 91% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 7.7 Hz, 2H), 7.88 (d, *J* = 7.8 Hz, 2H), 7.74 (t, *J* = 7.1 Hz, 1H), 7.68 (t, *J* = 7.0 Hz, 1H), 7.58 (t, *J* = 7.7 Hz, 2H), 7.52 (t, *J* = 7.7 Hz, 2H), 6.35 (d, *J* = 48.0 Hz, 1H). ¹⁹F NMR (282 MHz, CDCl₃) δ -179.60 (d, *J* = 48.0 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 186.43 (d, *J* = 17.6 Hz), 135.29, 135.03, 134.52, 133.88, 129.86, 129.76 (d, *J* = 2.7 Hz), 129.35, 128.84, 100.19 (d, *J* = 232.0 Hz). MS (EI, m/z): 278 (M⁺, 1.36), 105 (100.00), 77 (65.92), 51 (18.08), 109 (14.77), 141 (8.50), 106 (7.91), 78 (5.67), 50 (5.64).

Monofluorination of 2-(methylsulfonyl)-1-phenylethanone (1c)

^tBuONa (1.8 equiv, 259.5 mg, 2.7 mmol) and anhydrous ZnCl₂ (2.5 equiv, 511.1 mg, 3.75 mmol) were dissolved in 12 mL THF. 5 minutes later, 2-(methylsulfonyl)-1-phenylethanone (1c) (1.0 equiv, 304.4 mg, 1.5 mmol) was added to the mixture under N₂ atomosphere. The reaction was stirred for half an hour. Then SelectFluor (2.0 equiv, 1.0628g, 3.0 mmol) was added into the mixture in a flash. The reaction was allowed at room temperature for 2 h and quenched by 2M HCl until it became clear. After extraction with EtOAc, the organic layer was dried over anhydrous Na₂SO₄, filtered and removed under vacuum. The crude product was purified by flash column chromatography on silica gel with EtOAc/hexane to provide white solid 2c (282.7 mg) in 87% yield. m.p.: 86-87 °C. IR (KBr): 3356, 3032, 3007, 2976, 2926, 1694, 1596, 1581, 1449, 1417, 1358, 1317, 1257, 1174, 1144, 1096, 1075, 1001, 983, 953, 847, 811, 768, 737, 684, 671, 631, 523, 487, 465, 420. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 7.8 Hz, 2H), 7.69 (t, J = 7.4 Hz, 1H), 7.54 (t, J = 7.7 Hz, 2H), 6.34 (d, J = 47.3 Hz, 1H), 3.05 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ -182.53 (d, J = 47.4 Hz). MS (EI, m/z): 216 (M⁺, 1.42), 105 (100.00), 77 (43.99), 109 (17.93), 51 (11.56), 106 (8.03), 50 (4.77), 78 (4.36), 83 (3.94). HRMS (EI): calcd. For C₉H₉O₃FS (M⁺) 216.0256, found 216.0257.

Monofluorination of diethyl malonate (1d)

¹BuONa (1.5 equiv, 216.2 mg, 2.25 mmol) and anhydrous ZnCl₂ (2.5 equiv, 511.1 mg, 3.75 mmol) were dissolved in 12 mL THF. 5 minutes later, diethyl malonate (**1d**) (1.0 equiv, 240.3 mg, 1.5 mmol) was added into the mixture under N₂ atmosphere. The reaction was stirred for half an hour. Then SelectFluor (2.0 equiv, 1.0628g, 3.0 mmol) was added into the mixture in a flash. The reaction was allowed at room temperature for 2 h and quenched by 2M HCl until it became clear. After extraction with EtOAc, the organic layer was dried over anhydrous Na₂SO₄, filtered and removed under vacuum. The crude product was purified by flash column chromatography on silica gel with EtOAc/hexane to provide colourless liquid **2d** (186.7 mg) in 70% yield. ¹H NMR (400 MHz, CDCl₃) δ 5.26 (d, *J* = 48.2 Hz, 1H), 4.32 (qd, *J* = 7.1, 2.6 Hz, 4H), 1.32 (t, *J* = 7.1 Hz, 6H). ¹⁹F NMR (282 MHz, CDCl₃) δ -195.08 (d, *J* = 48.3 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 163.94 (d, *J* = 24.0 Hz), 85.27 (d, *J* = 196.4 Hz), 62.72, 13.96. MS (EI, m/z): 178 (M⁺, 0.52), 78 (100.00), 105 (27.99), 106 (24.38), 60 (23.97), 133 (22.25), 77 (10.70), 45 (7.12), 49 (5.84).

Monofluorination of ethyl 3-oxo-3-phenylpropanoate (1e)

^tBuONa (1.5 equiv, 216.2 mg, 2.25 mmol) and anhydrous ZnCl₂ (3.0 equiv, 613.4 mg, 4.5 mmol) were dissolved in 12 mL THF. 5 minutes later, ethyl 3-oxo-3-phenylpropanoate (1e) (1.0 equiv, 303.5 mg, 1.5 mmol) was added into the mixture under N₂ atmosphere. The reaction was stirred for half an hour. Then SelectFluor (2.0 equiv, 1.0628g, 3.0 mmol) was added into the mixture in a flash. The reaction was allowed at room temperature for 2 h and quenched by 2M HCl until it became clear. After extraction with EtOAc, the organic layer was dried over anhydrous Na₂SO₄, filtered and removed under vacuum. The crude product was purified by flash column chromatography on silica gel with EtOAc/hexane to provide colourless liquid **2e** (213.6 mg) in 68% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 8.1 Hz, 2H), 7.64 (t, J = 7.4 Hz, 1H), 7.50 (t, J = 7.8 Hz, 2H), 5.87 (d, J = 48.8 Hz, 1H), 4.30 (qd, J = 7.1, 1.4 Hz, 2H), 1.26 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ -190.34 (d, J = 48.8 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 189.51 (d, J = 20.3 Hz), 164.89 (d, J = 24.2 Hz), 134.52 (s), 133.33 (s), 129.51 (d, J = 3.4 Hz), 128.81 (s), 90.05 (d, J = 197.6 Hz), 62.70 (s), 13.94 (s). MS (EI, m/z): 210 (M⁺, 0.63), 105 (100.00), 77 (38.81), 51 (9.81), 106 (7.44), 109 (4.80), 78 (4.24), 50 (3.35), 118 (3.13).

Monofluorination of 2-(phenylsulfonyl)acetonitrile (1f)

^tBuONa (2.2 equiv, 317.1 mg, 3.3 mmol) and anhydrous ZnCl₂ (2.2 equiv, 449.8 12 THF. dissolved mL 5 minutes mg. 3.3 mmol) were in later. 2-(phenylsulfonyl)acetonitrile (1f) (1.0 equiv, 277.4 mg, 1.5 mmol) was added into the mixture under N₂ atmosphere. The reaction was stirred for half an hour. Then SelectFluor (2.0 equiv, 1.0628g, 3.0 mmol) was added into the mixture in a flash. The reaction was allowed at room temperature for 2 h and quenched by 2M HCl until it became clear. After extraction with EtOAc, the organic layer was dried over anhydrous Na₂SO₄, filtered and removed under vacuum. The crude product was purified by flash column chromatography on silica gel with EtOAc/hexane to provide colourless liquid **2f** (275.5 mg) in 92% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 7.7 Hz, 2H), 7.85 (t, J = 7.3 Hz, 1H), 7.69 (t, J = 7.6 Hz, 2H), 5.75 (d, J = 46.7 Hz, 1H). ¹⁹F NMR (282 MHz, CDCl₃) δ -178.95 (d, J = 46.6 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 136.50, 132.16, 130.51, 129.90, 109.81 (d, J = 28.9 Hz), 88.03 (d, J = 230.9Hz). MS (EI, m/z): 199 (M⁺, 0.80), 77 (100.00), 141 (34.26), 51 (25.39), 50 (8.91), 78 (7.16), 74 (3.82), 58 (3.21), 142 (2.53)

Monofluorination of ethyl 2-(phenylsulfonyl)acetate (1g)

^{*t*}BuONa (2.5 equiv, 360.4 mg, 3.75 mmol) and anhydrous ZnCl₂ (2.2 equiv, 449.8 mg, 3.3 mmol) were dissolved in 12 mL THF. 5 minutes later, ethyl 2-(phenylsulfonyl)acetate (**1g**) (1.0 equiv, 349.4 mg, 1.5 mmol) was added into the mixture under N₂ atmosphere. The reaction was stirred for half an hour. Then SelectFluor (2.0 equiv, 1.0628g, 3.0 mmol) was added into the mixture in a flash. The reaction was allowed at room temperature for 2 h and quenched by 2M HCl until it became clear. After extraction with EtOAc, the organic layer was dried over anhydrous Na₂SO₄, filtered and removed under vacuum. The crude product was purified by flash column chromatography on silica gel with EtOAc/hexane to provide colourless liquid **2g** (320.0 mg) in 87% yield. IR (film): 3069, 2984, 1760, 1584, 1476, 1449, 1396, 1372, 1343, 1313, 1275, 1244, 1201, 1159, 1111, 1081, 1022, 954, 856, 838, 763, 713, 687, 631, 597, 567, 543, 524. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 7.7 Hz, 2H), 7.75 (t, *J* = 7.5 Hz, 1H), 7.61 (t, *J* = 7.8 Hz, 2H), 5.57 (d, *J* = 48.0 Hz,

1H), 4.29 (q, J = 7.1 Hz, 2H), 1.28 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ -180.39 (d, J = 48.1 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 160.98 (d, J = 23.4 Hz), 135.32, 134.52, 129.79, 129.40, 97.26 (d, J = 232.4 Hz), 63.51, 13.89. MS (EI, m/z): 246 (M⁺, 1.37), 77 (100.00), 141 (62.49), 51 (21.81), 109 (13.71), 78 (13.56), 125 (6.75), 50 (5.98), 182 (5.62). HRMS (EI): m/z calcd. For C₁₀H₁₁O₄FS (M⁺) 246.0362, found 246.0365.

Monofluorination of ethyl 2-cyanoacetate (1h)

¹BuONa (2.2 equiv, 317.1 mg, 3.3 mmol) and anhydrous ZnCl₂ (3.5 equiv, 715.6 mg, 5.25 mmol) were dissolved in 12 mL THF. 5 minutes later, ethyl 2-cyanoacetate (**1h**) (1.0 equiv, 178.6 mg, 1.5 mmol) was added into the mixture under N₂ atmosphere. The reaction was stirred for half an hour. Then SelectFluor (2.0 equiv, 1.0628g, 3.0 mmol) was added into the mixture in a flash. The reaction was allowed at room temperature for 2 h and quenched by 2M HCl until it became clear. After extraction with EtOAc, the organic layer was dried over anhydrous Na₂SO₄, filtered and removed under vacuum. The crude product was purified by flash column chromatography on silica gel with EtOAc/hexane to provide colourless liquid **2h** (118.2 mg) in 60% yield. ¹H NMR (400 MHz, CDCl₃) δ 5.51 (d, *J* = 46.1 Hz, 1H), 4.40 (q, *J* = 7.1 Hz, 2H), 1.37 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ -194.17 (d, *J* = 46.3 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 160.68 (d, *J* = 24.8 Hz), 111.69 (d, *J* = 29.7 Hz), 74.33 (d, *J* = 196.5 Hz), 64.31, 13.86. MS (ESI, m/z): 131.9 (M + H⁺).

Monofluorination of 3-oxo-3-(pyrrolidin-1-yl)propanenitrile (1i)

^tBuONa (2.2 equiv, 317.1 mg, 3.3 mmol) and anhydrous ZnCl₂ (2.2 equiv, 449.8 dissolved in 12 mL THF. 5 minutes mg, 3.3 mmol) were later, 3-oxo-3-(pyrrolidin-1-yl)propanenitrile (1i) (1.0 equiv, 211.5 mg, 1.5 mmol) was added into the mixture under N₂ atmosphere. The reaction was stirred for half an hour. Then SelectFluor (2.0 equiv, 1.0628g, 3.0 mmol) was added into the mixture in a flash. The reaction was allowed at room temperature for 2 h and quenched by 2M HCl until it became clear. After extraction with EtOAc, the organic layer was dried over anhydrous Na₂SO₄, filtered and removed under vacuum. The crude product was

purified by flash column chromatography on silica gel with EtOAc/hexane to provide colourless liquid **2i** (221.2 mg) in 94% yield. IR (film): 3508, 2979, 2886, 1682, 1444, 1342, 1259, 1231, 1191, 1163, 1098, 1041, 1021, 995, 972, 932, 906, 827, 729, 518. ¹H NMR (400 MHz, CDCl₃) δ 5.62 (d, J = 46.8 Hz, 1H), 3.62 – 3.51 (m, 4H), 2.08 – 1.97 (m, 2H), 1.97 – 1.85 (m, 2H). ¹⁹F NMR (282 MHz, CDCl₃) δ -190.86 (d, J = 46.8 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 157.97 (d, J = 21.4 Hz), 112.33 (d, J = 30.3 Hz), 76.93 (d, J = 196.0 Hz), 47.36, 46.15 (d, J = 4.9 Hz), 26.18 (d, J = 1.3 Hz), 23.49. MS (EI, m/z): 156 (M⁺, 43.27), 55 (100.00), 98 (91.95), 56 (39.57), 70 (28.57), 41 (26.73), 42 (23.53), 58 (18.95). HRMS (EI): m/z calcd. For C₇H₉N₂OF (M⁺) 156.0699, found 156.0700.

Monofluorination of 1-(4-methoxyphenyl)-2-(phenylsulfonyl)ethanone (1j)

^tBuONa (2.2 equiv, 317.1 mg, 3.3 mmol) and anhydrous ZnCl₂ (3.0 equiv, 613.4 dissolved 12 mL THF. 5 minutes 4.5 mmol) were in later. mg, 1-(4-methoxyphenyl)-2-(phenylsulfonyl)ethanone (1j) (1.0 equiv, 435.5 mg, 1.5 mmol) was added into the mixture under N₂ atmosphere. The reaction was stirred for half an hour. Then SelectFluor (2.0 equiv, 1.0628g, 3.0 mmol) was added into the mixture in a flash. The reaction was allowed at room temperature for 2 h and quenched by 2M HCl until it became clear. After extraction with EtOAc, the organic layer was dried over anhydrous Na₂SO₄, filtered and removed under vacuum. The crude product was purified by flash column chromatography on silica gel with EtOAc/hexane to provide white solid **2j** (414.9 mg) in 90% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 8.6 Hz, 2H), 7.87 (d, J = 7.9 Hz, 2H), 7.73 (t, J = 7.5 Hz, 1H), 7.58 (t, J = 7.5 Hz, 2H), 6.98 (d, J = 8.9 Hz, 2H), 6.30 (d, J = 48.0 Hz, 1H), 3.91 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ -179.34 (d, J = 48.1 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 184.28 (d, J = 17.3 Hz), 165.07, 135.19, 134.62, 132.39 (d, J = 2.8 Hz), 129.82, 129.30, 126.92, 114.14, 100.20 (d, J = 231.6 Hz), 55.67. MS (EI, m/z): 308 (M⁺, 5.84), 135 (100.00), 77 (22.91), 139 (15.48), 136 (9.43), 92 (6.84), 107 (6.36), 51 (6.33).

Condition B

Monofluorination of 2-(benzylsulfonyl)benzothiazole (4a)

LiHMDS (2.2 equiv, 552.2 mg, 3.3 mmol) and anhydrous ZnCl₂ (3.5 equiv, 715.6 5.25 mmol) were dissolved in 12 mL THF. mg, 5 minutes later, 2-(benzylsulfonyl)benzothiazole (4a) (1.0 equiv, 434.1 mg, 1.5 mmol) was added into the mixture under N₂ atmosphere. The reaction was stirred for half an hour. Then NFSI (2.0 equiv, 947.5 mg, 3.0 mmol) was added into the mixture in a flash. The reaction was allowed at room temperature for 0.5 h and quenched by 20mL 2M HCl. After extraction with EtOAc, the organic layer was dried over anhydrous Na₂SO₄, filtered and removed under vacuum. The crude product was purified by flash column chromatography on silica gel with CH₂Cl₂/hexane to provide white solid 5a (305.4 mg) in 66% yield. ¹H NMR (400 MHz,CDCl₃) δ 8.37 – 8.24 (m, 1H), 8.12 – 7.90 (m, 1H), 7.76 - 7.59 (m, 4H), 7.59 - 7.45 (m, 3H), 6.63 (d, J = 45.9 Hz, 1H). ¹⁹F NMR $(282 \text{ MHz}, \text{CDCl}_3) \delta -172.48 \text{ (d, } J = 45.9 \text{ Hz}\text{)}$. ¹³C NMR (100 MHz, CDCl₃) $\delta 162.72$, 152.80, 137.53, 131.60 (d, J = 1.4 Hz), 128.87, 128.41 (d, J = 0.8 Hz), 128.34, 127.88, 126.23 (d, J = 19.4 Hz), 125.74, 122.34, 101.94 (d, J = 223.1 Hz). MS (ESI, m/z): 308.0 (M + H⁺), 329.9 (M + Na⁺). HRMS (ESI): m/z calcd. For $C_{14}H_{10}F_1N_1Na_1O_2S_2$ $(M + Na^{+})$ 330.00205, found 330.00308.

Monofluorination of 2-(benzylsulfonyl)pyridine (4b)

LiHMDS (2.5 equiv, 627.5 mg, 3.75 mmol) and anhydrous ZnCl₂ (2.2 equiv, 449.8 were dissolved in 12 mL THF. 5 minutes mg, 3.3 mmol) later, 2-(benzylsulfonyl)pyridine (4d) (1.0 equiv, 349.6 mg, 1.5 mmol) was added into the mixture under N₂ atmosphere. The reaction was stirred for half an hour. Then NFSI (2.0 equiv, 947.5 mg, 3.0 mmol) was added into the mixture in a flash. The reaction was allowed at room temperature for 0.5 h and quenched by 20mL 2M HCl. After extraction with EtOAc, the organic layer was dried over anhydrous Na_2SO_4 , filtered and removed under vacuum. The crude product was purified by flash column chromatography on silica gel with CH₂Cl₂/hexane to provide white solid 5d (298.8 mg) in 79% yield. m.p.: 146-147 °C. IR (KBr): 3448, 3068, 2969, 1578, 1492, 1456, 1430, 1410, 1332, 1291, 1257, 1239, 1197, 1170, 1156, 1113, 1083, 1038, 1026, 990, 929, 850, 798, 777, 749, 733, 722, 695, 646, 616, 580, 557, 503, 444, 416, 403. ¹H NMR (400 MHz, CDCl₃) δ 8.84 (d, J = 3.8 Hz, 1H), 8.16 (d, J = 7.8 Hz, 1H), 8.00 (t, J = 7.8 Hz, 1H), 7.62 (d, J = 7.4 Hz, 3H), 7.56 – 7.40 (m, 3H), 6.70 (d, J = 46.0 Hz,

1H). ¹⁹F NMR (282 MHz, CDCl₃) δ -175.32 (d, J = 46.1 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 154.87, 150.60, 138.23, 131.13 (d, J = 1.4 Hz), 128.66, 128.30 (d, J = 6.3 Hz), 127.98, 99.49 (d, J = 219.3 Hz). MS (ESI, m/z): 251.9 (M + H⁺), 274.0 (M + Na⁺). HRMS (ESI): calcd. For C₁₂H₁₁F₁N₁O₂S (M + H⁺) 252.04890, found 252.04934.

Monofluorination of 2-((2-methylbenzyl)sulfonyl)benzothiazole (4c)

LiHMDS (3.0 equiv, 753.0 mg, 4.5 mmol) and anhydrous ZnCl₂ (3.5 equiv, 715.6 5.25 mmol) were dissolved in 12 mL THF. 5 minutes later, mg. 2-((2-methylbenzyl)sulfonyl)benzothiazole (4c) (1.0 equiv, 455.1 mg, 1.5 mmol) was added into the mixture under N₂ atmosphere. The reaction was stirred for half an hour. Then NFSI (2.0 equiv, 947.5 mg, 3.0 mmol) was added into the mixture in a flash. The reaction was allowed at room temperature for 0.5 h and quenched by 20mL 2M HCl. After extraction with EtOAc, the organic layer was dried over anhydrous Na₂SO₄, filtered and removed under vacuum. The crude product was purified by flash column chromatography on silica gel with CH₂Cl₂/hexane to provide white solid 5c (370.8 mg) in 77% yield. m.p.: 148-150 °C. IR (KBr): 3029, 2987, 1464, 1348, 1317, 1154, 1125, 1113,1045, 1022, 761, 737, 716, 697, 652, 612, 594, 562, 544, 513, 485, 464. ¹H NMR (400 MHz, CDCl₃) δ 8.43 – 8.17 (m, 1H), 8.16 – 7.95 (m, 1H), 7.73 – 7.58 (m, 3H), 7.43 (t, J = 7.5 Hz, 1H), 7.32 (t, J = 7.6 Hz, 2H), 6.92 (d, J = 45.7 Hz, 1H), 2.60 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ -170.51 (d, J = 45.6 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 163.16, 152.84, 138.36 (d, J = 4.7 Hz), 137.53, 131.45 (d, J =1.7 Hz), 131.08, 128.57 (d, J = 7.8 Hz), 128.36, 127.84, 126.39, 125.74, 124.86 (d, J = 18.5 Hz), 122.35, 99.10 (d, J = 220.8 Hz), 19.64. MS (EI, m/z): 321 (M⁺, 0.97), 123 (100.00), 103 (12.96), 77 (12.29), 256 (12.10), 124 (9.32), 236 (9.14), 242 (8.18), 257 (7.41). HRMS (EI): m/z calcd. For $C_{15}H_{12}NO_2FS_2$ (M⁺) 321.0294, found 321.0290.

Monofluorination of (benzylsulfonyl)benzene (4d)

LiHMDS (2.5 equiv, 627.5 mg, 3.75 mmol) and anhydrous $ZnCl_2$ (1.0 equiv, 204.5 mg, 1.5 mmol) were dissolved in 12 mL THF. 5 minutes later, (benzylsulfonyl)benzene (**4d**) (1.0 equiv, 348.5 mg, 1.5 mmol) was added into the

mixture under N₂ atmosphere. The reaction was stirred for half an hour. Then NFSI (2.0 equiv, 947.5 mg, 3.0 mmol) was added into the mixture in a flash. The reaction was allowed at room temperature for 0.5 h and quenched by 20mL 2M HCl. After extraction with EtOAc, the organic layer was dried over anhydrous Na₂SO₄, filtered and removed under vacuum. The crude product was purified by flash column chromatography on silica gel with EtOAc/hexane to provide white solid **5c** (282.2 mg) in 75% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 7.7 Hz, 2H), 7.69 (t, *J* = 7.4 Hz, 1H), 7.53 (t, *J* = 7.7 Hz, 2H), 7.49 – 7.42 (m, 1H), 7.42 – 7.33 (m, 4H), 6.07 (d, *J* = 45.8 Hz, 1H). ¹⁹F NMR (282 MHz, CDCl₃) δ -175.77 (d, *J* = 45.7 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 134.59, 134.53, 130.73, 129.92, 129.01, 128.40, 128.24, 127.53 (d, *J* = 6.7 Hz), 102.87 (d, *J* = 220.8 Hz). MS (ESI, m/z): 268.0 (M + NH₄⁺), 273.0 (M + Na⁺), 288.9 (M + K⁺).

Monofluorination of 1,2-diphenylethanone (4e)

LiHMDS (2.2 equiv, 552.2 mg, 3.3 mmol) and anhydrous ZnCl₂ (2.2 equiv, 449.8 mg, 3.3 mmol) were dissolved in 12 mL THF. 5 minutes later, 1,2-diphenylethanone (4e) (1.0 equiv, 303.5 mg, 1.5 mmol) was added into the mixture under N_2 atmosphere. The reaction was stirred for half an hour. Then NFSI (2.0 equiv, 947.5 mg, 3.0 mmol) was added into the mixture in a flash. The reaction was allowed at room temperature for 0.5 h and quenched by 20mL 2M HCl. After extraction with EtOAc, the organic layer was dried over anhydrous Na₂SO₄, filtered and removed under vacuum. The crude product was purified by flash column chromatography on silica gel with EtOAc/hexane to remove remaining NFSI and purified again with acetone/pentane to provide white solid **5e** (265.4 mg) in 83% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 7.8 Hz, 2H), 7.65 - 7.45 (m, 3H), 7.45 - 7.34 (m, 4H), 6.52 (d, J = 48.6 Hz,1H). ¹⁹F NMR (282 MHz, CDCl₃) δ -175.79 (d, J = 48.7 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 194.24 (d, J = 21.3 Hz), 134.20 (d, J = 19.9 Hz), 133.97, 133.75, 129.61 (d, J = 2.6 Hz), 129.07, 129.04, 128.66, 127.36 (d, J = 5.5 Hz), 93.92 (d, J = 185.7 Hz). MS (EI, m/z): 214 (M⁺, 0.75), 105 (100.00), 77 (39.18), 109 (10.70), 51 (10.46), 106 (7.94), 83 (5.48), 50 (3.27), 78 (2.74).

Monofluorination of 1-methoxy-3-((phenylsulfonyl)methyl)benzene (4f)

LiHMDS (2.5 equiv, 627.5 mg, 3.75 mmol) and anhydrous ZnCl₂ (2.2 equiv, 449.8 mL 3.3 mmol) were dissolved in 12 THF. 5 minutes later, mg, 1-methoxy-3-((phenylsulfonyl)methyl)benzene (4f) (1.0 equiv, 393.5 mg, 1.5 mmol) was added into the mixture under N₂ atmosphere. The reaction was stirred for half an hour. Then NFSI (2.0 equiv, 947.5 mg, 3.0 mmol) was added into the mixture in a flash. The reaction was allowed at room temperature for 0.5 h and quenched by 20mL 2M HCl. After extraction with EtOAc, the organic layer was dried over anhydrous Na₂SO₄, filtered and removed under vacuum. The crude product was purified by flash column chromatography on silica gel with EtOAc/hexane to provide white solid 5f (281.5 mg) in 67% yield. m.p.: 122-123 °C. IR (KBr): 3064, 3017, 2962, 2933, 2833, 1610, 1588, 1488, 1458, 1448, 1435, 1323, 1291, 1272, 1234, 1151, 1085, 1071, 1060, 1036, 998, 905, 883, 768, 781, 719, 690, 650, 617, 572, 555, 543. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, 2H), 7.69 (t, *J* = 7.3 Hz, 1H), 7.53 (t, *J* = 7.7 Hz, 2H), 7.28 (t, 1H), 7.04 - 6.90 (m, 2H), 6.83 (s, 1H), 6.04 (d, J = 45.8 Hz, 1H), 3.74 (s, 3H). ¹⁹F NMR $(282 \text{ MHz}, \text{CDCl}_3) \delta -175.17 \text{ (d}, J = 45.8 \text{ Hz}).$ ¹³C NMR (100 MHz, CDCl₃) $\delta 159.44$, 134.57, 129.96, 129.68 (d, J = 19.6 Hz), 129.49, 129.00, 119.97 (d, J = 6.8 Hz), 116.96, 116.95, 112.31 (d, *J* = 7.2 Hz), 102.81 (d, *J* = 221.3 Hz), 55.31. MS (EI, m/z): 280 (M⁺, 3.64), 139 (100.00), 96 (13.41), 109 (12.94), 77 (10.54), 140 (9.23), 154 (6.67), 51 (6.43), 107 (4.68). HRMS (EI): calcd. For C₁₄H₁₃O₃FS (M⁺) 280.0569, found 280.0572.

Monofluorination of (allylsulfonyl)benzene (4g)

LiHMDS (3.0 equiv, 753.0 mg, 4.5 mmol) and anhydrous ZnCl₂ (2.2 equiv, 449.8 mg, 3.3 mmol) were dissolved in 12 mL THF. 5 minutes later, (allylsulfonyl)benzene (4g) (1.0 equiv, 278.9 mg, 1.5 mmol) was added into the mixture under N_2 atmosphere. The reaction was stirred for half an hour. Then NFSI (2.0 equiv, 947.5 mg, 3.0 mmol) was added into the mixture in a flash. The reaction was allowed at room temperature for 0.5 h and quenched by 20mL 2M HCl. After extraction with EtOAc, the organic layer was dried over anhydrous Na₂SO₄, filtered and removed under vacuum. The crude product was purified by flash column chromatography on silica gel with EtOAc/hexane to provide colourless liquid 4g (198.9 mg) in 66% yield. IR (film): 3648, 3069, 1585, 1479, 1449, 1425, 1329, 1312, 1294, 1232, 1156, 1123, 1085, 1046, 1001, 984, 948, 823, 796, 756, 723, 701, 688, 651, 597, 548, 528, 509. ¹H NMR (400 MHz,CDCl₃) δ 7.93 (d, J = 7.9 Hz, 2H), 7.78 – 7.67 (m, 1H), 7.64 – 7.54 (m, 2H), 6.11 – 5.88 (m, 1H), 5.68 – 5.46 (m, 3H). 19 F NMR (282 MHz, CDCl₃) δ -178.13 (dd, J = 47.2, 17.3 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 134.68, 129.89, 129.13, 125.09 (d, J = 18.8 Hz), 124.87, 124.76, 101.82 (d, J = 219.7 Hz). MS (ESI, m/z):218.0 (M + NH₄⁺), 222.9 (M + Na⁺). HRMS (ESI): calcd. For C₉H₉F₁Na₁O₂S₁

 $(M + Na^{+})$ 223.01995, found 223.02029.

Monofluorination of 1-nitro-3-((phenylsulfonyl)methyl)benzene (4h)

LiHMDS (2.2 equiv, 552.2 mg, 3.3 mmol) and anhydrous ZnCl₂ (1.8 equiv, 368.0 mL mg. 2.7 mmol) were dissolved in 12 THF. 5 minutes later. 1-nitro-3-((phenylsulfonyl)methyl)benzene (4h) (1.0 equiv, 416.0 mg, 1.5 mmol) was added into the mixture under N₂ atmosphere. The reaction was stirred for half an hour. Then NFSI (2.0 equiv, 947.5 mg, 3.0 mmol) was added into the mixture in a flash. The reaction was allowed at room temperature for 0.5 h and quenched by 20mL 2M HCl. After extraction with EtOAc, the organic layer was dried over anhydrous Na₂SO₄, filtered and removed under vacuum. The crude product was purified by flash column chromatography on silica gel with CH₂Cl₂/hexane to provide 5h white solid (417.4 mg) in 94% yield. m.p.: 155 °C. IR(KBr): 3451, 3095, 2957, 1584, 1532, 1449, 1356, 1328, 1311, 1233, 1085, 1046, 903, 830, 781, 756, 738, 717, 688, 641, 580, 559, 510. ¹H NMR (400 MHz, DMSO-D₆) δ 8.40 (d, J = 8.1 Hz, 1H), 8.23 (s, 1H), 7.95 – 7.84 (m, 4H), 7.81 (t, J = 7.9 Hz, 1H), 7.72 (t, J = 7.8 Hz, 2H), 7.21 (d, J = 44.6 Hz, 1H). ¹⁹F NMR (282 MHz, DMSO-D₆) δ -177.23 (d, J = 44.6 Hz). ¹³C NMR (100 MHz, DMSO-D₆) δ 147.90, 135.85, 134.68, 134.51 (d, J = 6.2 Hz), 130.83, 130.67 (d, *J* = 20.1 Hz), 130.17, 129.87, 126.09, 123.04 (d, *J* = 7.2 Hz), 100.62 (d, *J* = 216.0 Hz). MS (EI, m/z): 295 (M⁺, 3.12), 154 (100.00), 108 (37.07), 107 (19.31), 77 (16.23), 51 (9.66), 155 (8.35), 109 (3.83), 50 (3.18). HRMS (EI): calcd. For C₁₃H₁₀NO₄FS (M⁺) 295.0315, found 295.0318.

Monofluorination of 2-((4-methylbenzyl)sulfonyl)pyridine (4i)

LiHMDS (2.5 equiv, 627.5 mg, 3.75 mmol) and anhydrous $ZnCl_2$ (1.5 equiv, 306.7 mg, 2.25 mmol) were dissolved in 12 mL THF. 5 minutes later, 2-((4-methylbenzyl)sulfonyl)pyridine (**4i**) (1.0 equiv, 371.0 mg, 1.5 mmol) was added into the mixture under N₂ atmosphere. The reaction was stirred for half an hour. Then NFSI (2.0 equiv, 947.5 mg, 3.0 mmol) was added into the mixture in a flash. The reaction was allowed at room temperature for 0.5 h and quenched by 20mL 2M HCl. After extraction with EtOAc, the organic layer was dried over anhydrous Na₂SO₄,

filtered and removed under vacuum. The crude product was purified by flash column chromatography on silica gel with CH₂Cl₂/hexane to provide white solid **5i** (310.8 mg) in 78% yield. m.p.: 139-140 °C. IR (KBr): 3822, 3651, 3057, 2962, 1613, 1577, 1560, 1513, 1449, 1427, 1327, 1238, 1184, 1164, 1152, 1110, 1081, 1040, 1021, 990, 831, 787, 777, 752, 735, 619, 637, 606, 562, 549, 503. ¹H NMR (400 MHz, CDCl₃) δ 8.83 (d, *J* = 3.9 Hz, 1H), 8.16 (d, *J* = 7.8 Hz, 1H), 8.00 (t, *J* = 7.7 Hz, 1H), 7.69 – 7.57 (m, 1H), 7.51 (d, *J* = 7.9 Hz, 2H), 7.35 – 7.22 (m, 2H), 6.67 (d, *J* = 45.9 Hz, 1H), 2.40 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ -174.23 (d, *J* = 46.0 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 155.03, 150.59, 141.56, 138.19, 129.44, 128.31 (d, *J* = 6.1 Hz), 127.91, 124.63, 123.77 (d, *J* = 19.5 Hz), 99.53 (d, *J* = 218.8 Hz), 21.50. MS (ESI, m/z): 287.9 (M + Na⁺), 552.9 (2M + Na⁺). HRMS (ESI): calcd. For C₁₃H₁₂F₁N₁Na₁O₂S₁ (M + H⁺) 288.04650, found 288.04662.

Monofluorination of 1-(benzylsulfonyl)-4-nitrobenzene (4j)

LiHMDS (2.5 equiv, 627.5 mg, 3.75 mmol) and anhydrous ZnCl₂ (3.0 equiv, 613.4 dissolved mL THF. 5 minutes mg, 4.5 mmol) were in 12 later, 1-(benzylsulfonyl)-4-nitrobenzene (4j) (1.0 equiv, 416.0 mg, 1.5 mmol) was added into the mixture under N₂ atomosphere. The reaction was stirred for half an hour. Then NFSI (2.0 equiv, 947.5 mg, 3.0 mmol) was added into the mixture in a flash. The reaction was allowed at room temperature for 0.5 h and quenched by 20mL 2M HCl. After extraction with EtOAc, the organic layer was dried over anhydrous Na₂SO₄, filtered and removed under vacuum. The crude product was purified by flash column chromatography on silica gel with CH₂Cl₂/hexane to provide light green solid 5h (393.2 mg) in 89% yield. m.p.: 167-168 °C. IR (KBr): 3103, 3067, 3038, 2957, 2875, 1963, 1901, 1812, 1608, 1537, 1491, 1480, 1457, 1402, 1347, 1336, 1314, 1223, 1234, 1197, 1154, 1112, 1082, 1046, 1030, 1014, 861, 844, 790, 754, 739, 719, 696, 678, 649, 585, 555, 504, 467, 442, 422. ¹H NMR (400 MHz, DMSO-D₆) δ 8.51 (d, J = 8.7 Hz, 2H), 8.16 (d, J = 8.6 Hz, 2H), 7.66 – 7.42 (m, 5H), 7.12 (d, J = 44.5 Hz, 1H). ¹⁹F NMR (282 MHz, DMSO-D₆) δ -175.41 (d, J = 44.5 Hz). ¹³C NMR (100 MHz, DMSO-D₆) δ 151.69, 140.88, 131.62, 131.56, 129.06, 128.54 (d, *J* = 6.4 Hz), 127.83 (d, J = 19.3 Hz), 125.15, 101.90 (d, J = 215.1 Hz). MS (ESI, m/z):312.9 (M + NH₄⁺), 318.0 (M + Na⁺). HRMS (ESI): calcd. For $C_{13}H_{10}F_1N_1Na_1O_4S_1$ (M + Na⁺) 318.02068, found 318.02017.

Monofluorination of 1-((methylsulfonyl)methyl)-2-nitrobenzene (4k)

LiHMDS (2.5 equiv, 627.5 mg, 3.75 mmol) and anhydrous ZnCl₂ (3.5 equiv, 715.6 5.25 mmol) were dissolved in 12 mL THF. 5 minutes later, mg, 1-((methylsulfonyl)methyl)-2-nitrobenzene (4k) (1.0 equiv, 322.8 mg, 1.5 mmol) was added into the mixture under N₂ atmosphere. The reaction was stirred for half an hour. Then NFSI (2.0 equiv, 947.5 mg, 3.0 mmol) was added into the mixture in a flash. The reaction was allowed at room temperature for 0.5 h and quenched by 20mL 2M HCl. After extraction with EtOAc, the organic layer was dried over anhydrous Na₂SO₄, filtered and removed under vacuum. The crude product was purified by flash column chromatography on silica gel with EtOAc/hexane to provide light green solid 5k (329.7 mg) in 94% yield. m.p.: 151-152 °C. IR (KBr): 3114, 3032, 3017, 2937, 2870, 1611, 1580, 1527, 1482, 1443, 1410, 1350, 1330, 1315, 1300, 1237, 1188, 1143, 1091, 1057, 1040, 962, 887, 863, 838, 789, 760, 715, 684, 625, 534, 512, 467, 422, 409. ¹H NMR (400 MHz, DMSO-D₆) δ 8.21 (d, J = 8.3 Hz, 1H), 7.94 (t, J = 7.5 Hz, 1H), 7.83 (t, J = 7.0 Hz, 2H), 7.60 (d, J = 45.9 Hz, 1H), 3.28 (s, 3H). ¹⁹F NMR (282) MHz, DMSO-D₆) δ -178.60 (d, J = 45.9 Hz). ¹³C NMR (100 MHz, DMSO-D₆) δ 148.19 (d, J = 3.6 Hz), 134.55 (d, J = 1.0 Hz), 132.41, 129.13 (d, J = 12.3 Hz), 125.90, 122.68 (d, J = 20.8 Hz), 96.92 (d, J = 215.4 Hz), 38.50. MS (ESI, m/z): 250.9 (M + NH_4^+), 255.9 (M + Na⁺). HRMS (ESI): calcd. For $C_8H_8F_1N_1Na_1O_4S_1$ (M + Na⁺) 256.00503, found 252.00490.

NMR experiments to gain insight into this ZnCl₂-mediated selective

monofluorination

Experiment A Comparison of the tendency of deprontonation between $(PhSO_2)_2CH_2$ and $(PhSO_2)_2CHF$

 $(PhSO_2)_2CH_2$ (29.6 mg, 0.1 mmol) and $(PhSO_2)_2CHF$ (31.4mg, 0.1 mmol) were dissolved in 2 mL THF-D₈ in the glove box. 19.5 mg mesitylene was added to the mixture as the internal standard. After 5 minutes, 0.5 mL of the solvent was taken out and indicated by ¹H NMR as a control experiment (entry 1A). Then LiHMDS (12.5 mg, 0.075 mmol) was added with extra 0.3 mL THF-D₈ to guarantee no remaining LiHMDS attached on the schlenk tube. 20 minutes later, 0.5 mL of the solvent was taken out indicated by ¹H NMR (entry 1B). The comparison of ¹H NMR peak integral between entry A and B showed that $(PhSO_2)_2CH_2$ was almost deprotonated, while $(PhSO_2)_2CHF$ was barely deprotonated. We made the conclusion that $(PhSO_2)_2CH_2$ has a stronger tendency of deprontonation than $(PhSO_2)_2CHF$.

Experiment B Comparison of the tendency of deprontonation between $(PhSO_2)_2CH_2$ and $(PhSO_2)_2CHF$

(PhSO₂)₂CH₂ (29.6 mg, 0.1 mmol) and (PhSO₂)₂CHF (31.4mg, 0.1 mmol) were dissolved in 2 mL THF-D₈ in the glove box. 16.4 mg mesitylene was added to the mixture as the internal standard. After 5 minutes, 0.5 mL of the solvent was taken out and indicated by ¹H NMR and ¹⁹F NMR as a control experiment (entry 2A and 2D). Then NaH (5.7 mg, 0.225 mmol) was added. 20 minutes later, 0.5 mL of the solvent was taken out and indicated by ¹H NMR and ¹⁹F NMR and ¹⁹F NMR (entry 2B and 2E). NFSI (15.8mg, 0.05mmol) was added and the mixture was stirred for 30 minutes. The reaction was quenched by 36.0 μ L CF₃COOH and added in 14.2 mg CF₃Ph as the internal standard. 0.5 mL of the solvent was taken out and indicated by ¹H NMR and ¹⁹F NMR (entry 2C and 2F). The crude calculation of fluorinated capability between (PhSO₂)₂CH₂ and (PhSO₂)₂CHF were as follows:

(1) The comparison of ¹H NMR peak integral between entry 2A and 2B, ¹⁹F NMR peak integral between entry 2D and 2E showed that (PhSO₂)₂CH₂ and (PhSO₂)₂CHF were almost deprotonated.

(2) The comparison of ¹H NMR peak integral between entry 2A and 2C showed that after the reaction was quenched, the concentration of $(PhSO_2)_2CH_2$ was reduced by 15.7%, which meant 15.7% was converted into $(PhSO_2)_2CHF$. The amount was 15.7% *(1.0 ml/2.0 ml)*0.1 mmol = 0.0079 mmol.

(3) According to entry 2F of ¹⁹F NMR peak integral, the amount of generation of $(PhSO_2)_2CF_2$ was 14.2 mg/(146.11 g/mol)*0.86/2 = 0.0418 mmol

The reaction process was shown as above. We might as well compare the tendency for fluorination between $(PhSO_2)_2CH_2$ and $(PhSO_2)_2CHF$ through the average rate constants k_1 and k_2 . The scope of k_2/k_1 could be esitmated as follows:

(1) If there were no further transformation of $(PhSO_2)_2CHF$ into $(PhSO_2)_2CF^-$ until the original $(PhSO_2)_2CF^-$ had been fluorinated. We would get the maximum ratio of k_2/k_1 , which was (0.0418 mmol/ 0.0079 mmol) = 5.3

(2) If further transformation of $(PhSO_2)_2CHF$ into $(PhSO_2)_2CF$ finished before $(PhSO_2)_2CF$ had been fluorinated. We would get the minimum ratio of k_2/k_1 . Since the amount of further transformation of $(PhSO_2)_2CHF$ into $(PhSO_2)_2CF$ could not pass 0.0079 mmol, the minimum ratio of k_2/k_1 was (0.05 mmol)/(0.05 mmol + 0.0079 mmol)* (0.0418 mmol/ 0.0079 mmol) = 4.6

The result demonstrated that (PhSO₂)₂CHF showed higher tendency for fluorination.

Experiment C Adding $(PhSO_2)_2CH_2$ into THF-D₈ under the optimized conditions (2.5 equiv of ^{*t*}BuONa and 2.5 equiv of ZnCl₂)

 $(PhSO_2)_2CH_2$ (59.2 mg, 0.2 mmol) and anhydrous $ZnCl_2$ (68.2 mg, 0.5 mmol) were dissolved in 2 mL THF-D₈ in the glove box. 17.8 mg mesitylene was added to the mixture as the internal standard. After 5 minutes, 0.5 mL of the solvent was taken out and indicated by ¹H NMR as a control experiment (entry 3A). Then ^{*t*}BuONa (36.0 mg, 0.375 mmol) was added with extra 0.4 mL THF-D₈ to guarantee no remaining NaO^{*t*}Bu attached on the schlenk tube. 30 minutes later, 0.5 mL of the solvent was taken out indicated by ¹H NMR (entry 3B). The comparison of ¹H NMR peak integral between entry A and B showed that (PhSO₂)₂CH₂ was barely deprotonated.

S N 4a	O S O O S O O O O O O O O O O O O O O O	e, ZnCl ₂ , <u>30 min, r.t.</u> reagent, time	$ \begin{array}{c} S \\ S \\$	F +	$\sum_{N}^{S} \sum_{O}^{U} F^{F}$
entry	base (equiv) ^a	ZnCl ₂ (equiv) ^a	time (h)	5a (%) ^b	6a (%) ^b
1	2.5 (^t BuONa)	2.5	2	-	-
2	2.5 (^t BuONa)	2.2	2	-	-
3	2.5 (^t BuONa)	1.8	2	-	-
4	2.5 (^t BuONa)	3.0	2	-	-
5	2.5 (LiHMDS) ^c	2.5	2	-	-
6	2.5 (LiHMDS) ^c	2.5	0.5	-	-
7	2.5 (LiHMDS)	2.2	0.5	-	-
8	2.5 (LiHMDS)	3.5	0.5	56	-
9	3.0 (LiHMDS)	3.5	0.5	27	-
10	2.2 (LiHMDS)	3.5	0.5	68	-
11	1.8 (LiHMDS)	3.5	0.5	53	-

Table A. Optimized Conditions for Monofluorination of 4a $(R^1 = EWG, R^2 = Phenyl, Alkenyl)$

^aThe equivalent is relative to that of **1a**. ^bDetermined by ¹⁹F NMR analysis of the crude reaction mixture using PhCF₃ as an internal standard. ^cEntry 5 used SelectFluor as fluorination reagent, while entry 6 NFSI.

Table B. Screening of different bases.

0 0 0 1a	1) base, THF 30 min, rt 2) Selectfluor, 2 h	0 0 5 5 5 5 6 7 6 7 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7	
entry	base ^a	2a (%) ^b	3a (%) ^b
1	C ₆ H ₅ ONa	61	13
2	CH ₃ ONa	71	6
3	C ₂ H ₅ ONa	64	10
4	^t BuONa	73	2
5	NaHMDS	57	12

^{*a*}The equivalent of base is 1 equiv relative to that of 1a. ^{*b*}Determined by ¹⁹F NMR analysis of the crude reaction mixture using PhCF₃ as an internal standard.

Ś	0 0 S O O S O O S O O O O O O O O O O O O O	in, rt		S S S F F F
	1a		2a	3a
entry	base (equiv) ^a	ZnCl ₂ (equiv) ^a	2a (%) ^b	3a (%) ^b
1	^t BuONa (2.5 equiv)	2.5	91	1
2	C ₆ H ₅ ONa (2.5 equiv)	2.5	-	-
3	CH ₃ ONa (2.5 equiv)	2.5	29	-
4	C ₂ H ₅ ONa (2.5 equiv)	2.5	39	-
5	C ₂ H ₅ ONa (2.5 equiv)	2.2	53	-
6	C ₂ H ₅ ONa (2.5 equiv)	1.8	82	19
7	NaHMDS (2.5 equiv)	2.5	15	39

Table C. Screening of different bases in the presence of ZnCl₂.

^{*a*}The equivalent is relative to that of 1a. ^{*b*}Determined by ¹⁹F NMR analysis of the crude reaction mixture using PhCF₃ as an internal standard.

References

- (1) Chang, Y.-F.; Jiang, Y.-R.; Cheng, W.-C. Tetrahedron Lett. 2008, 49, 543.
- (2) Zhao, Y.; Huang, W.; Zhu, L.; Hu, J. Org. Lett. 2010, 12, 1444.

¹H NMR (400 MHz, CDCI₃)

6 11 6 12

-55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 δ (ppm)

-55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 δ (ppm)

