Palladium-Catalyzed Direct C-H Allylation of Arenes without

Directing Groups

Cheng-Hao Ying and Wei-Liang Duan*

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic

Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032,

China

E-mail: wlduan@mail.sioc.ac.cn

Supporting Information

Table of Contents

General Methods	S2
Experimental Details and Characterization Data	S2–S18
Reference	S19
NMR Spectra	S20-S54

General Methods

All air- and moisture-sensitive manipulations were carried out with standard Schlenk techniques under nitrogen or in a glove box under nitrogen. ¹H, ¹³C, and ¹⁹F NMR spectra were recorded on a Varian instrument (400 MHz, 100 MHz and 376 MHz, respectively). ¹H, ¹³C NMR chemical shifts are reported vs tetramethylsilane signal or residual protio solvent signals.

Arenes were distilled over sodium benzophenone ketyl or CaH₂ under nitrogen.

Ligands $(4, {}^{1a} 5, {}^{1b} 6, {}^{1a} 7, {}^{1a} 8, {}^{1c} and 10^{1d})$ were synthesized following the literature procedures. All other chemicals and solvents were purchased from commercial company and used as received.

Experimental Details and Characterization Data

I. General Experimental Procedure for Table 1.

 $Pd(OAc)_2$ (4.5 mg, 0.02 mmol), additive (0.1-0.2 mmol), ligand (0.02 mmol), allylic acetate (0.20 mmol), 4Å molecular sieve (20 mg) and benzene (1 mL) were added to a solution tube and the resulting solution was heated to 120 °C and reacted for 15 hours. After cooling to room temperature, the mixture was filtrated through a pad of silica gel with ethyl acetate and concentrated under vacuum. The yield was detected by ¹H NMR with CH₂Br₂ as the internal standard.

II. General Experimental Procedure for Table 2.

 $Pd(OAc)_2$ (4.5 mg, 0.02 mmol), Ag_2CO_3 (0.0275 mg, 0.10 mmol), ligand 4 (3.9 mg, 0.02 mmol), allylic acetate (0.20 mmol), 4Å molecular sieve (20 mg) and benzene (1 mL) were added to a solution tube and the resulting solution was heated to 120 °C and reacted for 15 hours. After cooling to room temperature, the mixture was filtrated through a pad of silica gel and washed with ethyl acetate. The filtrate was

concentrated under vacuum, and the residue was purified by silica gel flash column chromatography to afford the Z/E-products.

III. General Expermential Procedure for Table 3.

 $Pd(OAc)_2$ (4.5 mg, 0.02 mmol), Ag_2CO_3 (0.0275 mg, 0.10 mmol), ligand 4 (3.9 mg, 0.02 mmol), allylic acetate (0.20 mmol), 4Å molecular sieve (20 mg) and arene (1 mL) were added to a solution tube and the resulting solution was heated to 120 °C and reacted for 15 hours. After cooling to room temperature, the mixture was filtrated through a pad of silica gel and washed with ethyl acetate. The filtrate was concentrated under vacuum, and the residue was purified by silica gel flash column chromatography to afford the Z/E-products.

¹H NMR spectral data of the isolated products matched the spectral data of known compounds reported in the literatures.^{2,3}

(E)-1,3-diphenylpropene (CAS: 3412-44-0)²

(Z)-1,3-diphenylpropene (CAS: 1138-83-6)³

¹H NMR spectral data of the isolated products matched the spectral data of known compounds reported in the literatures. ^{4,5}

(E)-1-(3-chlorophenyl)-3-phenylpropene (CAS: 132931-76-1)⁴

(Z)-1-(3-chlorophenyl)-3-phenylpropene (CAS: 132931-77-2)⁵

¹H NMR spectral data of the isolated products matched the spectral data of known compounds reported in the literatures.⁶

(E)-1-(3-methoxyphenyl)-3-phenylpropene (CAS: 870620-86-3)⁶

(Z)-1-(3-methoxyphenyl)-3-phenylpropene (CAS: 1392095-73-6)⁶

¹H NMR spectral data of the isolated products matched the spectral data of known compounds reported in the literatures.⁷

(Z)-1-(3-nitrophenyl)-3-phenylpropene(CAS:1372720-59-6)⁷

1-(3-fluorophenyl)-3-phenylpropene

¹H NMR (400 MHz, CDCl₃): δ 7.34-7.29 (m, 2H), 7.25-7.20 (m, 3H), 7.11-7.01 (m, 1H), 6.97-6.87 (m, 1H), 6.54 (d, *J* = 11.6 Hz, 0.36H), 6.44-6.33 (m, 1.2H), 5.90 (dt, *J* = 11.6 Hz, *J*₂ = 7.2 Hz, 0.36H), 3.66-3.62 (m, 1H), 3.66 (d, *J* = 7.6 Hz, 0.74H), 3.55 (d, *J* = 5.6 Hz, 1.2H).

HRMS (EI) calcd for $C_{15}H_{13}F(M)^+$: 212.1001, found: 212.1003.

GC-MS: m/z: 212 (M)⁺; E isomer: 75.01% (area), Z isomer: 24.99% (area).

¹H NMR spectral data of the isolated products matched the spectral data of known compounds reported in the literatures. ^{2,8}

(E)-1-(4-methylphenyl)-3-phenylpropene (CAS: 134539-87-0)²

(Z)-1-(4-methylphenyl)-3-phenylpropene (CAS: 227187-00-0)⁸

¹H NMR spectral data of the isolated products matched the spectral data of known compounds reported in the literatures.⁹

(E)-1-(4-nitrophenyl)-3-phenylpropene (CAS: 156904-24-4)⁹

(Z)-1-(4-nitrophenyl)-3-phenylpropene (CAS: 183621-36-5)⁹

¹H NMR spectral data of the isolated products matched the spectral data of known compounds reported in the literatures.^{3,9}

(E)-1-(4-methoxylphenyl)-3-phenylpropene (CAS: 35856-81-6)³

(E)-1-(4-methoxylphenyl)-3-phenylpropene (CAS: 183621-24-1)⁹

¹H NMR (400 MHz, CDCl₃): δ 7.50 (d, *J* = 7.6 Hz, 0.65H), 7.42-7.13 (m, 8H), 6.86 (d, *J* = 15.6 Hz, 0.52H), 6.67 (d, *J* = 11.6 Hz, 0.36H), 6.32 (dt, *J*₁ = 15.6 Hz, *J*₂ = 7.2 Hz, 0.55H), 5.99 (dt, *J*₁ = 11.6 Hz, *J*₂ = 7.2 Hz, 0.38H), 3.59 (d, *J* = 7.2 Hz, 1.15H), 3.54 (d, *J* = 7.2 Hz, 0.84H).

HRMS (EI) calc. for C₁₅H₁₃Cl (M)⁺: 228.0706, found: 228.0704.

GC-MS: m/z: 228 (M)⁺; E isomer: 53.13% (area), Z isomer: 46.87% (area).

¹H NMR spectral data of the E-product matched the spectral data of the known compound reported in the literatures.⁴

(Z)-**3ka** (Z)-1-phenyl-2-octene (CAS: 372193-70-9)^{11a}

(E)-1,3-Diphenyl-1-octene (CAS: 157670-40-1)^{11b}

¹H NMR (400 MHz, CDCl₃): δ 7.36-7.11 (m, 10H), 6.40 (d, J = 16.0 Hz, 1H), 6.33 (d, J_1 = 16.0 Hz, J_2 = 7.2 Hz, 1H), 3.40 (q, J_1 = 7.2 Hz, 1H), 1.79 (q, J_2 = 7.6 Hz, 2H), 1.42-1.19 (m, 6H), 0.87 (t, J = 6.4 Hz, 3H).

¹H NMR (400 MHz, CDCl₃): δ 7.38-7.17 (m, 10H), 6.48 (d, J = 16.0 Hz, 0.15H), 6.40-6.39 (m, 1.7H), 5.83 (t, J = 10.4 Hz, 0.17H), 4.04-3.98 (m, 0.18H), 3.66-3.62 (m, 0.85H), 1.46 (d, J = 9.2 Hz, 2.55H), 1.39 (d, J = 9.2 Hz, 0.45H).

¹H NMR spectral data of the isolated products matched the spectral data of known compounds reported in the literatures.^{12, 13}

(E)-1,3-diphenyl-1-butene (CAS: 7302-01-4)¹²

(Z)-1,3-diphenyl-1-butene (CAS: 7302-00-3)¹³

1,3-diphenyl-1-hexene

¹H NMR (400 MHz, CDCl₃): δ 7.37-7.20 (m, 10H), 6.52 (d, J = 11.6 Hz, 0.45H), 6.43-6.31 (m, 2H), 5.86 (t, J = 11.2 Hz, 0.46H), 3.85-3.76 (m, 0.48H), 3.46-3.92 (m, 1H), 1.83-1.64 (m, 2H), 1.40-1.29 (m, 2H), 0.934 (t, J = 7.2 Hz, 2H), 0.835 (t, J = 6.8 Hz, 1H).

HRMS (EI) calc. for $C_{18}H_{20}$ (M)⁺: 236.1565, found: 236.1570.

GC-MS: m/z: 236 (M)⁺; E-isomer: 65.98% (area), Z-isomer 34.02% (area).

Two isomers were separated by silica gel column chromatography.

(E)-1-phenyl-3-(2,5-difluorophenyl)propene ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.35 (m, 2H), 7.28 (t, *J* = 8.0 Hz, 2H), 7.22 (t, *J* = 7.2 Hz, 1H), 7.01-6.93 (m, 2H), 6.90-6.85 (m, 1H), 6.47 (d, *J* = 15.6 Hz, 1H), 6.29 (dt, *J*₁ = 16.0 Hz, *J*₂ = 6.8 Hz, 1H), 3.54 (d, *J* = 6.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 158.8 (dd, *J*_{CF} = 241.3 and 2.3 Hz), 157.0 (dd, *J*_{CF} = 241.2 and 3.0 Hz), 137.2, 132.3, 129.0 (dd, *J*_{CF} = 19.1 and 7.6 Hz), 128.7, 127.5, 126.7, 126.3, 117.0 (dd, *J*_{CF} = 23.7 and 5.3 Hz), 116.3 (dd, *J*_{CF} = 25.2 and 9.1 Hz), 114.3 (dd, *J*_{CF} = 24.4 and 8.4 Hz), 32.3 (d, *J*_{CF} = 3.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -119.4, -124.6. HRMS calc. for C₁₅H₁₂F₂ (M)⁺: 230.0907, found: 230.0911.

(Z)-1-phenyl-3-(2,5-difluorophenyl)propene

¹H NMR (400 MHz, CDCl₃): δ 7.38-7.34 (m, 2H), 7.30-7.25 (m, 3H), 7.00-6.84 (m, 3H), 6.66 (d, J = 11.2 Hz, 1H), 5.78 (dt, $J_1 = 11.2$ Hz, $J_2 = 7.6$ Hz, 1H), 3.65 (d, J = 7.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 158.9 (dd, $J_{CF} = 241.9$ and 2.6 Hz), 157.0 (dd, $J_{CF} = 241.6$ and 3.3 Hz), 136.9, 131.5, 129.5 (dd, $J_{CF} = 18.3$ and 7.4 Hz), 128.8, 128.5, 128.2 (d, $J_{CF} = 1.2$ Hz), 127.2, 116.6 (dd, $J_{CF} = 23.9$ and 4.9 Hz), 116.2 (dd, $J_{CF} = 25.0$ and 8.6 Hz), 114.1 (dd, $J_{CF} = 24.3$ and 8.6 Hz), 27.7 (dd, $J_{CF} = 2.6$ and 1.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -129.3, -124.2.

HRMS calc. for $C_{15}H_{12}F_2(M)^+$: 230.0907, found: 230.0906.

Two isomers were separated by silica gel column chromatography.

(E)-1-phenyl-3-(2,5-dichlorophenyl)propene

¹H NMR (400 MHz, CDCl₃): δ 7.38-7.36 (m, 2H), 7.32-7.31 (m, 2H), 7.29 (s, 1H), 7.27-7.20 (m, 2H), 7.16-7.140 (m, 1H), 6.47 (d, J = 16.0 Hz, 1H), 6.30 (dt, $J_1 = 16.0$ Hz, $J_2 = 6.8$ Hz, 1H), 3.62 (d, J = 6.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 139.6, 137.0, 132.4, 132.3, 130.5, 10.3, 128.6, 127.7, 127.4, 126.2, 126.1, 36.9. HRMS (EI) calc. for C₁₅H₁₂Cl₂ (M)⁺: 262. 0316, found: 262. 0318.

CI (Z)-3ac

(E)-1-phenyl-3-(2,5-dichlorophenyl)propene

¹H NMR (400 MHz, CDCl₃): δ 7.38-7.34 (m, 2H), 7.30-7.24 (m, 5H), 7.16-7.13 (m, 1H), 6.68 (d, J = 11.2 Hz, 1H), 5.77 (dt, $J_1 = 11.6$ Hz, $J_2 = 7.2$ Hz, 1H), 3.72 (d, J =

6.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 136.8, 132.6, 132.3, 131.6, 130.4, 129.7,

128.6, 128.3, 127.8, 127.6, 127.1, 32.2.

HRMS (EI) calc. for C₁₅H₁₂Cl₂ (M)⁺: 262. 0316, found: 262. 0313.

Two isomers were separated by silica gel column chromatography.

(E)-1-phenyl-3-(2-chloro-5-trifluoromethylphenyl)propene

¹H NMR (400 MHz, CDCl₃): δ 7.53 (s, 1H), 7.51-7.49 (m, 1H), 7.45-7.42 (m, 2H), 7.38-7.36 (m, 2H), 7.32-7.29 (t, J = 7.2 Hz, 2H), 7.26-7.23 (m, 2H), 6.50 (d, J = 16.0 Hz, 1H), 6.32 (dt, $J_1 = 15.6$ Hz, $J_2 = 6.8$ Hz, 1H), 3.71 (d, J = 6.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 139.1, 138.0, 137.1, 132.7, 130.1, 129.5 (q, $J_{CF} = 36.8$ Hz), 128.7, 127.6, 127.4 (q, $J_{CF} = 3.8$ Hz), 126.4, 126.0, 124.7 (q, $J_{CF} = 3.8$ Hz), 123.9 (q, $J_{CF} = 271.6$ Hz), 37.0; ¹⁹F NMR (376 MHz, CDCl₃): δ -62.4. HRMS (EI) calc. for C₁₆H₁₂F₃Cl (M)⁺: 296. 0580, found: 296. 0582.

(Z)-1-phenyl-3-(2-chloro-5-trifluoromethylphenyl)propene

¹H NMR (300 MHz, CDCl₃): δ 7.51-7.37 (m, 5H), 7.30-7.26 (m, 3H), 6.71 (d, J = 11.4 Hz, 1H), 5.80 (dt, $J_1 = 11.7$ Hz, $J_2 = 7.2$ Hz, 1H), 3.80 (d, J = 7.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 139.6, 138.0 (q, $J_{CF} = 1.5$ Hz), 136.9, 132.0, 130.0, 129.5 (q, $J_{CF} = 32.9$ Hz), 128.8, 128.5, 127.7, 127.3, 126.8 (q, $J_{CF} = 3.8$ Hz), 124.5 (q, $J_{CF} = 3.7$ Hz), 123.9 (q, $J_{CF} = 272.3$ Hz), 32.5; ¹⁹F NMR (282 MHz, CDCl₃): δ -62.8. HRMS (EI) calc. for C₁₆H₁₂F₃Cl (M)⁺: 296. 0580, found: 296. 0585.

¹H NMR (400 MHz, CDCl₃): δ 7.38-7.22 (m, 5H), 6.86-6.70 (m, 1H), 6.78 (d, J = 11.2 Hz, 0.56H), 6.47 (d, J = 14.6 Hz, 0.46H), 6.22 (dt, $J_1 = 15.6$ Hz, $J_2 = 7.2$ Hz, 0.45H), 5.70 (dt, $J_1 = 11.6$ Hz, $J_2 = 7.2$ Hz, 0.53H), 3.63 (d, J = 7.2 Hz, 1.11H), 3.53 (d, J = 7.2 Hz, 0.90H).

HRMS (EI) calc. for $C_{15}H_{10}F_4$ (M)⁺: 266.0719, found: 266.0723.

GC-MS: m/z: 228 (M)⁺; E-isomer: 44.15% (area), Z-isomer: 55.85% (area)

¹H NMR spectral data of the (E)-product matched the spectral data of the known compound reported in the literatures.¹⁴

(E)-1-cinnamyl-2,3,4,5-tetrafluorobenzene (CAS: 1433415-33-8)¹⁴

¹H NMR (400 MHz, CDCl₃): δ 7.38-7.20 (m, 5H), 6.60 (d, J = 15.6 Hz, 0.5H), 6.49-6.33 (m, 4H), 5.84 (dt, $J_1 = 15.2$ Hz, $J_2 = 10$ Hz, 0.35H), 3.77 (s, 6H), 3.62 (d, J = 10.8 Hz, 0.83H), 3.48 (d, J = 9.2 Hz, 1.09H).

HRMS (EI) calc. for $C_{17}H_{18}O_2$ (M)⁺: 254.1307, found: 254.1311.

GC-MS: m/z: 254 (M)⁺; E-isomer: 56.65% (area), Z-isomer: 43.35% (area).

¹H NMR spectral data of the (E)-isomer matched the spectral data of the known compound reported in the literatures.¹⁵

(E)-1-cinnamyl-3,5-dimethoxybenzene (CAS: 1442416-32-1)¹⁵

1-Phenyl-3-(2,5-difluorophenyl) butene

¹H NMR (400 MHz, CDCl₃): δ 7.38-7.20 (m, 5H), 7.03-6.95 (m, 2H), 6.90-6.84 (m, 1H), 6.52 (d, *J* = 11.6 Hz, 0.55H), 6.45 (d, *J* = 16.0 Hz, 0.45H), 6.37-6.31 (m, 0.45H), 5.82 (t, *J* = 10.4 Hz, 0.55H), 4.29-4.20 (m, 0.55H), 3.99-3.92 (m, 0.45H), 1.45 (d, *J* = 6.8 Hz, 1.5H), 1.36 (d, *J* = 6.8 Hz, 1.5H).

HRMS (EI) calc. for $C_{16}H_{14}F_2$ (M)⁺: 244.1064, found: 244.1068.

GC-MS: m/z: 244 (M)⁺; E-isomer: 49.39% (area), Z-isomer: 50.61% (area).

¹H NMR (400 MHz, CDCl₃): δ 7.32-7.09 (m, 3H), 5.62-5.46 (m, 2H), 3.45 (d, J = 9.6 Hz, 1.24H), 3.39 (d, J = 6.0 Hz, 0.75H), 2.16-2.00 (m, 2H), 1.42-1.26 (m, 6H), 0.94-0.87 (m, 3H).

HRMS (EI) calc. for $C_{14}H_{18}Cl_2$ (M)⁺: 256.0786, found: 256.0784.

GC-MS: m/z: 256 (M)⁺; E-isomer: 55.46% (area), Z-isomer: 44.54% (area).

¹H NMR (400 MHz, CDCl₃): δ 7.94-7.77 (m, 8H), 7.47-7.20 (m, 21H), 6.65 (d, J = 15.2 Hz, 1H), 6.53-6.37 (m, 2.7H), 5.94 (dt, $J_1 = 15.2$ Hz, $J_2 = 10.0$ Hz, 1H), 4.10 (d, J = 8.8 Hz, 0.29H), 3.98 (d, J = 6.0 Hz, 1H), 3.83 (d, J = 10.0 Hz, 2H), 3.70 (d, J = 8.0 Hz, 2.6H).

GC-MS: m/z: 244 (M)⁺; **3ah** E-isomer: 44.25% (area), Z-isomer: 32.41% (area), **3ah'** E-isomer: 14.54% (area), Z-isomer: 8.80% (area).

¹H NMR spectral data of the isolated products matched the spectral data of known compounds reported in the literatures.¹⁶

(E)-1-phenyl-3-(2-naphenyl)propene (CAS: 5751-33-7)¹⁶

(E)-1-phenyl-3-(1-naphenyl)propene (CAS: 5751-29-1)¹⁶

¹H NMR (400 MHz, CDCl₃): δ 7.37-7.23 (m, 6H), 6.86 (d, *J* = 3.6 Hz, 1H), 6.63-6.57 (m, 4H), 6.33 (dt, *J*₁ = 20.8 Hz, *J*₂ = 8.8 Hz, 0.5H), 3.66-3.62 (m, 1H), 3.74 (d, *J* = 10.0 Hz, 1.2H), 3.64 (d, *J* = 8.8 Hz, 1H), 3.55 (d, *J* = 10.4 Hz, 0.14H), 3.45 (d, *J* = 9.2 Hz, 0.16H), 2.44 (s, 7.8H).

GC-MS: m/z: 214 (M)⁺; **3ai** E-isomer: 41.47% (area), Z-isomer: 41.40% (area); **3ai'** E-isomer: 9.17% (area), Z-isomer: 7.96% (area).

¹H NMR spectral data of the isolated products matched the spectral data of known compounds reported in the literatures.¹⁷

(E)-3-(5-methylthiophen-2-yl)-1-phenylpropene (CAS: 807370-02-1)¹⁷

KIE reaction

Pd(OAc)₂ (4.5 mg, 0.020 mmol), Cu(OAc)₂ (36.2 mg, 0.20 mmol), ligand 4 (3.9 mg, 0.020 mmol), **2a** (35.2 mg, 0.20 mmol), 4Å molecular sieve (20 mg), benzene (11.3 mmol) or benzene- d_6 (11.3 mmol) was added to a solution tube and the mixture was heated to 120 °C and stirred for 10 to 90 min. After immediately cooling to room temperature, the yield of product was determined with 1,3,5-trimethylbenzene as the internal standard by GC. The obtained yields were plotted as concentration [allylic arene] vs. time t (Figures 1 and 2). From these diagrams, the following initial rates were calculated:

Fig. 1: The reaction of benzene with 2a.

Fig. 2: The reaction of deuterated-benzene with 2a.

 $K_{\rm H} = 3.69 \times 10^{-4} \text{ mmol·mL}^{-1} \cdot \text{min}^{-1}; K_{\rm D} = 1.29 \times 10^{-4} \text{ mmol·mL}^{-1} \cdot \text{min}^{-1}$ $K_{\rm H}/K_{\rm D} = 2.9$

Eq. 4. Reaction of a homoallylic acetate with benzene under the optimum conditions.

The reaction was carried out under the optimum conditions.

CAS: 849590-71-2. ¹H NMR (400 MHz, CDCl₃): δ 7.38-7.21 (m, 10H), 6.43 (d, J = 15.6 Hz, 1H), 6.08 (dt, $J_1 = 16.0$ Hz, $J_2 = 8.0$ Hz, 1H), 5.88 (t, J = 7.2 Hz, 1H), 2.83-2.68 (m, 2H), 2.09 (s, 3H).

Eq. 3. Reaction of phenylboronic acid with allylic acetate 2a catalyzed by Pd/4.

$$PhB(OH)_{2} + \underbrace{Ph}_{2a} \xrightarrow{OAc} \underbrace{10 \text{ mol}\% (Pd(OAc)_{2}/4)}_{0.1 \text{ equiv } AgSbF_{6}} Ph \xrightarrow{OAc}_{62\% \text{ yield}} Ph \xrightarrow{OAc}_{62\% \text{ yield}} Ph \xrightarrow{OAc}_{62\% \text{ yield}} Ph \xrightarrow{OAc}_{62\% \text{ yield}} Ph \xrightarrow{OAc}_{10\%} Ph \xrightarrow{OAc}_$$

 $Pd(OAc)_2$ (4.5 mg, 0.02 mmol), AgSbF₆ (6.8 mg, 0.02 mmol), ligand 4 (3.9 mg, 0.02 mmol) and DCE (2 mL) were added to a solution tube and the resulting solution was stirring for 1 min, then **2a** (35.2 mg, 0.20 mmol) and phenylboronic acid (24.2 mg, 0.20 mmol) was added and the resulting solution was heated to 60 °C and reacted for 15 hours. After cooling to room temperature, the mixture was filtrated through a

pad of silica gel and washed with ethyl acetate. The filtrate was concentrated under vacuum, and the residue was purified by silica gel flash column chromatography to afford the E/Z-isomers as a mixture (24.1 mg, 62% yield).

Eq. 4. Reaction of enantioenriched allylic acetate with benzene under the optimum conditions.

(S)-E-**3la** and (R)-Z-**3la** were obtained in 72% ee and 65% ee. The enantiomeric excess of products were determined by chiral HPLC analysis (OD column, hexane: *i*-PrOH = 99.9:0.1, $t_r[(R)$ -Z-isomer] = 12.74 min, $t_r[(S)$ -Z-isomer] = 15.92 min, $t_r[(S)$ -E-isomer] = 17.77 min, $t_r[(R)$ -E-isomer] = 19.58 min). The absolute of configuration of isomers were determined by comparison of their HPLC retention time with that reported in literature.^{16,18}

Referenes

- (a) Krapcho, P.; Sparapani, S. J. Hetero. Chem. 2008, 45, 1167. (b) Tomon, T. Koizumi, T.-A.; Tanaka, K. Eur. J. Inorg. Chem. 2005, 285. (c) Vangapandu, S., Jain, M., Jain, R., Kaur, S.; Singh, P. P. Bioorg. Med. Chem. 2004, 12, 2501. (d) Zhang, Y.-H.; Shi, B.-F.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 5072.
- 2. Sekine, M.; Ilies, L.; Nakamura, E. Org. Lett. 2013, 15, 714.
- 3. Elizabeth, F.; Cornelius, O.; David, T.; Ashok, V. Chem.-Eur. J. 2012, 18, 8774.
- 4. Maddali, R.; Debasis, B.; Somnath, G. J. Organomet. Chem. 2010, 695, 1518.
- 5. Nobujiro, S.; Makoto, S.; Yuho, T. Chem. Lett. 1990, 12, 2207.
- Yang, H.; Sun, P.; Zhu, Y.; Yan, H.; Lu, L.; Mao, J. Chem. Commun. 2012, 48, 7847.
- 7. Tiago, R.; Francisca, L.; Rui, M. Synth. Commun. 2012, 42, 747.
- 8. Naoya, F.; Yamamoto, Y. J. Org. Chem. 1999, 64, 4095.
- 9. Shen, Y.; Yao, J. J. Org. Chem. 1996, 61, 8659.
- (a) Lpez, M.; Varela, M.; Sarandeses, L.; Sestelo J. Chem. Eur. J. 2010, 16, 9905-9909.
- (a) Falck, J.; Muralidhar, B.; Sylesh K.; Dale, S. J. Org. Chem. 2001, 66, 7148.
 (b) Kobayashi, Y.; Mizojiri, R.; Ikeda, E. J. Org. Chem. 1996, 61, 5391.
- 12. Zhao, J.; Ye, J.; Zhang, Y. Adv. Synth. Catal. 2013, 355, 491.
- Riveiros, R.; Tato, R.; Pérez Sestelo, J.; Sarandeses, L. A. Eur. J. Org. Chem.
 2012, 3018.
- 14. Yu, Y.; Fan, S.; Zhang, X. Chem.-Eur. J. 2012, 18, 14643.
- 15. Robbins, Daniel W.; Hartwig, J. F. Angew. Chem. Int. Ed. 2013, 52, 933.
- 16. Man, B.; Yong, W.; Tian, S. Angew. Chem. Int. Ed. 2012, 51, 2968.
- Onodera, G. Imajima, H.; Yamanashi, M.; Nishibayashi, Y.; Hidai, M.; Uemura, S. Organometallics 2004, 23, 5841.
- 18. Lloyd-Jones, G. C.; Butts, C. P. Tetrahedron, 1998, 54, 901.

