Electronic Supporting Information

The kinetics of alkyl radical ring closures at selenium: formation of selenane.

Amber N. Hancock,^{*a,b*} Yvonne Kavanagh^{*a,b*} and Carl H. Schiesser*^{*a,b*}

^a ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, Australia

^b School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia.

carlhs@unimelb.edu.au

General procedures for the preparation of **5**, **7** and **10** (R \neq Bn). Table S1. Gaussian Archive Entries for all transition structures **11** calculated in this work. ¹H, ¹³C and ⁷⁷Se NMR spectra of **5**, **7** and **10** (R \neq Bn). (35 pages).

General procedures for the preparation of 5, 7 and 10 ($R \neq Bn$).

Materials and Instrumentation: Chemicals and HPLC grade solvents were used as received and reactions were performed under argon unless otherwise stated. Dry ethanol was attained by distillation over magnesium. Dichloromethane, diethyl ether and tetrahydrofuran were dried using Glass Contour[®] solvent system. ¹H NMR spectra were collected using a Varian INOVA 400 or 500 MHz NMR.¹³C and ⁷⁷Se NMR spectra were recorded on a Varian INOVA 500 mHz NMR. ¹H and ¹³C NMR chemical shifts are given in ppm relative to internally referenced CHCl₃. ⁷⁷Se NMR chemical shifts are given in ppm relative to externally referenced diphenyl diselenide (δ 464). High resolution mass spectra were collected on a Finnigan LTQ FT by Thermo Electron Corporation. Infrared spectra were obtained using a Perkin Elmer Spectrum One FTIR spectrometer. Gas chromatography analysis was performed using Schimadzu GC-17A (column: CYDEX-B, 50m × 0.22mm, film thickness 0.25µm.

General procedure for the preparation of ethyl 5-(alkylseleno)hexanoates 7 and alkyl hexyl selenides 10.

Sodium borohydride was added portion wise to a solution of the dialkyl diselenide^{S1-S3} (0.55 equiv) in anhydrous ethanol (5 mL per mmol diselenide) at 0° until the yellow colour has disappeared. Ethyl 5bromohexanoate or 1-bromohexane (1.0 equiv) was added and the solution was stirred at RT overnight. The solvent was removed *in vacuo* and residue taken up in water. The resultant mixture was extracted with ether (3 x), the combined organic phases were dried (MgSO₄ or Na₂SO₄) and concentrated *in vacuo*. The residue was separated by flash chromatography (petroleum spirts : ethyl acetate) to yield the required product as a yellow oil.

General procedure for the hydrolysis of esters 7.

Aqueous sodium hydroxide (ca. 1.0 equiv) was added to a solution of the required ester 7 (1.0 equiv) in ethanol (3.0 mL per mmol ester) and the resultant solution heated as reflux for 1 h. After cooling to RT, the ethanol was removed *in vacuo*, the residue dissolved in water and the aqueous solution washed with ether (3 x). After acidification with 10% hydrochloric acid, the solution was extracted with ether (3 x), the combined organic phases dried (Na₂SO₄) and the solvent removed *in vacuo* to afford the required 6-(alkylseleno)hexanoic acid as a pale solid which was converted to the corresponding Kim ester **5** without further purification.

General procedure for the preparation of Kim esters 5.

A solution of *N*,*S*-dimethyl-*N*-hydroxydithiocarbamate (1.5 equiv) in dichloromethane (1.0 mL per 1.5 mmol carbamate) was added drop wise to a solution of *N*,*N*'-dicyclohexylcarbodiimide (1.0 equiv) and the required 6-(alkylseleno)hexanoic acid (1.0 equiv) in dichloromethane (2.0 mL per mmol acid). The reaction mixture was stirred at RT overnight and then filtered through celite. The filtrate was washed with NaHCO₃ and satd NaCl. The organic phase was dried (Na₂SO₄) and concentrated *in vacuo* to afford a grey-green oil that was separated by flash chromatography (petroleum spirts : ethyl acetate) to yield the required product as a yellow/green oil.

References.

- S1 M.-D. Ruan, H.-R. Zhao, W.-Q. Fan and Z.-J. Zhou, J. Organometal. Chem., 1995, 485, 19 24.
- S2 A. Krief, C. Delmotte and W. Dumont, *Tetrahedron*, 1997, **53**, 12147 12158.
- S3 E. Block, M. Birringer, W. Jiang, T. Nakahodo, H. J. Thompson, P. J. Tuscanp, H. Uzar, X. Zhang and Z. Zhu, J. Agric, Food Chem., 2001, 49, 458 470.
- S4 H. J. Reich and C. P. Jasperse, J. Org. Chem., 1986, 51, 2981 2988.

Ta	ble	S1 .

Alkyl group (R)	Temp. (°C)	[9] / [10] ^a	<i>k_H</i> ^b (M⁻¹s⁻¹)	<i>k_c</i> (s ⁻¹)
2-octyl	23	8.6 x 10 ⁻³	7.8 x 10 ⁶	6.7 x 10 ³
	35	1.06 x 10 ⁻²	8.9 x 10 ⁶	9.5 x 10 ³
	45	1.06 x 10 ⁻²	9.9 x 10 ⁶	1.2 x 10 ⁴
	55	1.77 x 10 ⁻²	1.09 x 10 ⁷	1.9 x 10 ⁴
	65	2.79 x 10 ⁻²	1.19 x 10 ⁶	3.3 x 10 ⁴
	70	2.79 x 10 ⁻²	1.24 x 10 ⁷	3.5 x 10 ⁴
	75	2.75 x 10 ⁻²	1.30 x 10 ⁷	3.6 x 10 ⁴
<i>tert-</i> butyl	25	2.19 x 10 ⁻²	8.0 x 10 ⁶	1.8 x 10 ⁴
	38	3.53 x 10 ⁻³	9.2 x 10 ⁶	3.3 x 10 ⁴
	45	3.95 x 10 ⁻²	9.9 x 10 ⁶	3.9 x 10 ⁴
	58	4.52 x 10 ⁻³	1.12 x 10 ⁶	5.1 x 10 ⁴
	63	5.46 x 10 ⁻²	1.17 x 10 ⁶	6.4 x 10 ⁴
	72	7.25 x 10 ⁻²	1.27 x 10 ⁷	9.2 x 10 ⁴
benzyl	70	1.39 x 10 ⁻¹	1.24 x 10 ⁷	1.7 x 10 ⁵
	75	1.61 x 10 ⁻¹	1.30 x 10 ⁷	2.1 x 10 ⁵
	80	1.89 x 10 ⁻¹	1.35 x 10 ⁷	2.6 x 10 ⁵
	90	1.54 x 10 ⁻¹	1.49 x 10 ⁷	2.3 x 10 ⁵
	100	1.87 x 10 ⁻¹	1.58 x 10 ⁷	3.0 x 10 ⁵
	105	1.90 x 10 ⁻¹	1.63 x 10 ⁷	3.1 x 10 ⁵
	110	2.21 x 10 ⁻¹	1.69 x 10 ⁷	3.7 x 10 ⁵
	116	2.52 x 10 ⁻²	1.76 x 10 ⁷	4.4 x 10 ⁵

^aAverage of three experiments. ^bTaken from ref. 36.

Table S1. Rate data for the ring closure of the 5-(alkylseleno)pentyl radical 4 ($R \neq n$ -octyl). Reaction performed under pseudo-first-order conditions in 0.1M *tert*-dodecanethiol.

B3LYP/6-31G(d) Gaussian Archive Entries for the transition states 11 involved in the cyclization of radicals 4, and single-point energies.

Transition state 11, R = Me.

```
1\1\GINC-MERRI014\FTS\UB3LYP\6-31G(d)\C6H13Se1(2)\ROOT\21-Feb-2014\0\\
# B3LYP/6-31G(d) opt=(noeigentest,calcfc,ts) freq=noraman maxdisk=100q
b\\freq\\0,2\Se,0.,0.,0.\C,0.,0.,1.98270465\C,1.4122175438,0.,2.571369
0351\C,2.2229471276,-1.2763499189,2.2959219327\C,-1.9004574472,1.18476
95847,-0.0639350375\H,-1.631342966,2.1651495805,0.3301207009\H,-2.1565
646961,1.2122388297,-1.1219486641\H,-2.6427025377,0.6589168763,0.53452
98853\H,-0.573299327,-0.8737341068,2.3097602992\H,-0.5437249826,0.9000
 742625,2.277873533\H,1.3286651964,0.1371701737,3.6595235764\H,1.955181
2575,0.8720173037,2.1834206733\H,1.697384086,-2.1377221368,2.735016130
8\H,3.1843319827,-1.2037178776,2.8205525827\C,2.4819821634,-1.55401227
37,0.806647539\H,3.0417205798,-0.7165533656,0.367679742\H,3.1363293638
 ,-2.4382174794,0.7222512179\C,1.2149614395,-1.7908264398,0.0033430833\
H,0.5763503844,-2.5801234581,0.4079771733\H,1.3946220819,-1.956202865,
-1.0607675057\\Version=AM64L-G09RevC.01\State=2-A\HF=-2635.7756654\S2=
0.762292\S2-1=0.\S2A=0.750056\RMSD=2.870e-09\RMSF=9.143e-06\Dipole=0.1
022371,-0.1761625,0.4682977\Polar=0.,0.,0.,0.,0.,0.\Quadrupole=-0.1934
109,-0.2714404,0.4648512,-0.7171195,-0.3260569,0.5953485\PG=C01 [X(C6H
13Se1)]\\@
```

ROMP2/GTMP2large//B3LYP/6-31G(d)=-2636.0158068

ROCCSDT/GT1Bas//B3LYP/6-31G(d)=-2635.3807755

Transition state 11, R = Et.

1\1\GINC-R2530\FTS\UB3LYP\6-31G(d)\C7H15Se1(2)\ROOT\23-Feb-2014\1\\# B 3LYP/6-31G(d) opt=(grad, noeigentest, ts, calcfc) freg=noraman\\ts\\0,2\S e\C,1,B1\C,2,B2,1,A1\C,3,B3,2,A2,1,D1,0\C,1,B4,2,A3,3,D2,0\H,5,B5,1,A4 ,2,D3,0\H,5,B6,1,A5,2,D4,0\H,2,B7,1,A6,5,D5,0\H,2,B8,1,A7,5,D6,0\H,3,B 9,2,A8,1,D7,0\H,3,B10,2,A9,1,D8,0\H,4,B11,3,A10,2,D9,0\H,4,B12,3,A11,2 ,D10,0\C,4,B13,3,A12,2,D11,0\H,14,B14,4,A13,3,D12,0\H,14,B15,4,A14,3,D 13,0\C,14,B16,4,A15,3,D14,0\H,17,B17,14,A16,4,D15,0\H,17,B18,14,A17,4, D16,0\C,5,B19,1,A18,2,D17,0\H,20,B20,5,A19,1,D18,0\H,20,B21,5,A20,1,D1 9,0\H,20,B22,5,A21,1,D20,0\\B1=1.98357611\B2=1.53053957\B3=1.53711985\ B4=2.19528759\B5=1.09293372\B6=1.09188704\B7=1.0946688\B8=1.09274811\B 9=1.10013758\B10=1.09782104\B11=1.10048987\B12=1.09773829\B13=1.537287 37\B14=1.09886743\B15=1.1040403\B16=1.51459663\B17=1.0921212\B18=1.090 74542\B19=1.51200429\B20=1.09562789\B21=1.09638499\B22=1.10072844\A1=1 12.45790499\A2=114.72038387\A3=93.81350229\A4=103.41862558\A5=100.8761 004\A6=107.83371235\A7=105.94138377\A8=108.12502536\A9=108.66963671\A1 0=108.98808052\A11=108.68381511\A12=114.61612826\A13=109.60694024\A14= 108.4458586\A15=113.74626058\A16=114.86702608\A17=114.49780827\A18=111 .86310319\A19=110.89117432\A20=111.64638015\A21=111.6006087\D1=-67.788 03687\D2=-142.13428337\D3=50.90445126\D4=-194.80127705\D5=94.77499162\

D6=-21.1604428\D7=170.9422902\D8=55.38749993\D9=-60.43532198\D10=-175. 7462527\D11=61.94475639\D12=59.4362328\D13=174.79367446\D14=-63.357106 61\D15=-52.26316106\D16=177.14296257\D17=-73.49982397\D18=-56.72517854 \D19=63.23803913\D20=-176.81787217\\Version=ES64L-G09RevD.01\State=2-A \HF=-2675.0933554\S2=0.764113\S2-1=0.\S2A=0.750066\RMSD=4.780e-09\RMSF =4.198e-05\Dipole=-0.0280221,-0.0735532,0.4313791\Quadrupole=0.011633, -0.3074555,0.2958225,-1.3155403,0.2864416,0.2994241\PG=C01 [X(C7H15Se1)]\\@

ROMP2/GTMP2large//B3LYP/6-31G(d)=-2675.2368084

ROCCSDT/GT1Bas//B3LYP/6-31G(d)=-2674.5645816

Transition state 11, R = iso-Propyl.

1\1\GINC-R2506\FTS\UB3LYP\6-31G(d)\C8H17Se1(2)\ROOT\23-Feb-2014\1\\# B 3LYP/6-31G(d) opt=(ts,noeigentest,calcfc,grad) freq=noraman\\ts ipr\\0 ,2\Se\C,1,B1\C,2,B2,1,A1\C,3,B3,2,A2,1,D1,0\C,1,B4,2,A3,3,D2,0\H,5,B5, 1,A4,2,D3,0\H,2,B6,1,A5,5,D4,0\H,2,B7,1,A6,5,D5,0\H,3,B8,2,A7,1,D6,0\H ,3,B9,2,A8,1,D7,0\H,4,B10,3,A9,2,D8,0\H,4,B11,3,A10,2,D9,0\C,4,B12,3,A 11,2,D10,0\H,13,B13,4,A12,3,D11,0\H,13,B14,4,A13,3,D12,0\C,13,B15,4,A1 4,3,D13,0\H,16,B16,13,A15,4,D14,0\H,16,B17,13,A16,4,D15,0\C,5,B18,1,A1 7,2,D16,0\H,19,B19,5,A18,1,D17,0\H,19,B20,5,A19,1,D18,0\H,19,B21,5,A20 ,1,D19,0\C,5,B22,1,A21,2,D20,0\H,23,B23,5,A22,1,D21,0\H,23,B24,5,A23,1 ,D22,0\H,23,B25,5,A24,1,D23,0\\B1=1.98535655\B2=1.5308979\B3=1.5374112 5\B4=2.16069228\B5=1.09477737\B6=1.09438927\B7=1.09313237\B8=1.1003002 4\B9=1.09768072\B10=1.10054563\B11=1.09778302\B12=1.53791246\B13=1.098 88642\B14=1.10498247\B15=1.50954493\B16=1.09101785\B17=1.08949136\B18= 1.5166175\B19=1.09621864\B20=1.09556182\B21=1.1013778\B22=1.51789433\B 23=1.09503483\B24=1.09748984\B25=1.0999485\A1=112.38249669\A2=114.7745 6392\A3=95.20215496\A4=101.92452237\A5=107.87239574\A6=106.12986059\A7 =108.18763414\A8=108.5939865\A9=108.90765314\A10=108.60506754\A11=114. 98270104\A12=109.67265594\A13=108.21400151\A14=114.04107658\A15=115.98 125503\A16=115.59011698\A17=109.88212878\A18=110.77764004\A19=111.9455 0717\A20=111.10769854\A21=105.36991605\A22=111.4986793\A23=111.01486\A 24=110.90766363\D1=-69.52708457\D2=-136.25683387\D3=46.4141551\D4=100. 63211235\D5=-15.29753775\D6=169.37959625\D7=53.78270563\D8=-60.3192304 1\D9=-175.50496891\D10=62.17239327\D11=59.04573801\D12=174.09028951\D1 3=-64.11031577\D14=-49.9120787\D15=175.41793965\D16=-73.18210081\D17=-60.46427055\D18=59.76622114\D19=-180.15786421\D20=-196.8939123\D21=-58 .30932748\D22=62.0834251\D23=181.26864461\\Version=ES64L-G09RevD.01\St ate=2-A\HF=-2714.411387\S2=0.765225\S2-1=0.\S2A=0.750072\RMSD=3.374e-0 9\RMSF=5.312e-05\Dipole=-0.0517568,0.0301837,0.3962697\Quadrupole=-0.2 642028,-0.0201529,0.2843556,-1.5437718,0.4416697,-0.1658028\PG=C01 [X(C8H17Se1)]\\@

ROMP2/GTMP2large//B3LYP/6-31G(d)=-2714.4534379

ROCCSDT/GT1Bas//B3LYP/6-31G(d)=-2713.7510934

Transition state 11, R = tert-Bu

1\1\GINC-MERRI012\FTS\UB3LYP\6-31G(d)\C9H19Se1(2)\ROOT\21-Feb-2014\0\\ # B3LYP/6-31G(d) opt=(noeigentest,calcfc,ts) freq=noraman maxdisk=100g b\\freq\\0,2\Se,-0.2560672172,-0.1608077907,0.1115494833\C,-0.06670059 6,-0.2156321444,2.0862849518\C,1.3823245558,-0.0231281761,2.5445388441 \C,2.3250529437,-1.1986729589,2.2377280562\C,-1.9349453464,1.184292020 4,-0.0386001105\H,-0.4685960247,-1.1736394213,2.4294268666\H,-0.698938 2362,0.5807606539,2.4847023208\H,1.3785642691,0.1378907689,3.633089603 3\H,1.7749800039,0.8951210282,2.089149572\H,1.9486684257,-2.0998719195 ,2.7449604896\H,3.3045336763,-0.9840198269,2.6846891223\C,2.5179755787 ,-1.5134288224,0.7444255735\H,2.9053694282,-0.6259081629,0.2248910597\ H,3.3070841496,-2.2826415812,0.6548465402\C,1.2711903023,-1.9953541031 ,0.0525353765\H,0.6971772897,-2.774293377,0.5546153866\H,1.3348563542, -2.1337018351,-1.0251519601\C,-3.1168101397,0.5699199115,0.6982940592\ H,-3.3520120656,-0.424614086,0.3056674562\H,-2.926091146,0.4718125909, 1.7728646464\H,-4.0133982786,1.200248619,0.5855672624\C,-2.1644155806, 1.237117659,-1.5456004026\H,-1.2798808167,1.6133424908,-2.0724888288\H ,-2.4039037095,0.2461435925,-1.9475003654\H,-3.004303443,1.9071952994, -1.7819107703\C,-1.5072686968,2.53570644,0.5184833286\H,-1.2765643281, 2.4898349817,1.5889402946\H,-0.6230898438,2.9183213413,-0.001631634\H, -2.3159964565,3.2749335885,0.3981271064\\Version=AM64L-G09RevC.01\Stat e=2-A\HF=-2753.7286966\S2=0.765612\S2-1=0.\S2A=0.750076\RMSD=7.419e-09 \RMSF=3.575e-06\Dipole=-0.0340621,0.0619467,0.3598661\Quadrupole=0.288 1205,-0.518867,0.2307466,-1.5501902,0.5919959,-0.4108696\PG=C01 [X(C9H 19Se1)]\\@

ROMP2/GTMP2large//B3LYP/6-31G(d)=-2753.6763773

ROCCSDT/GT1Bas//B3LYP/6-31G(d)=-2752.9377168

Transition state 11, R = Bn.

1\1\GINC-R2800\FTS\UB3LYP\6-31G(d)\C12H17Se1(2)\ROOT\11-Mar-2014\1\\# B3LYP/6-31G(d) opt=(ts,noeigentest,calcfc,grad) freq=noraman\\ts bn\\0 ,2\Se\C,1,B1\C,2,B2,1,A1\C,3,B3,2,A2,1,D1,0\C,1,B4,2,A3,3,D2,0\H,2,B5, 1,A4,5,D3,0\H,2,B6,1,A5,5,D4,0\H,3,B7,2,A6,1,D5,0\H,3,B8,2,A7,1,D6,0\H ,4,B9,3,A8,2,D7,0\H,4,B10,3,A9,2,D8,0\C,4,B11,3,A10,2,D9,0\H,12,B12,4, A11,3,D10,0\H,12,B13,4,A12,3,D11,0\C,12,B14,4,A13,3,D12,0\H,15,B15,12, A14,4,D13,0\H,15,B16,12,A15,4,D14,0\C,5,B17,1,A16,2,D15,0\C,18,B18,5,A 17,1,D16,0\C,18,B19,5,A18,1,D17,0\C,19,B20,18,A19,5,D18,0\H,19,B21,18, A20,5,D19,0\C,20,B22,18,A21,5,D20,0\H,20,B23,18,A22,5,D21,0\C,23,B24,2 0,A23,18,D22,0\H,21,B25,19,A24,18,D23,0\H,23,B26,20,A25,18,D24,0\H,25, B27,23,A26,20,D25,0\H,5,B28,1,A27,2,D26,0\H,5,B29,1,A28,2,D27,0\\B1=1. 98845666\B2=1.5310481\B3=1.53740422\B4=2.12160862\B5=1.09429415\B6=1.0 9344259\B7=1.10031302\B8=1.09788376\B9=1.10040677\B10=1.0977744\B11=1. 53828084\B12=1.09903899\B13=1.10588495\B14=1.50372305\B15=1.08956668\B 16=1.08802576\B17=1.48229223\B18=1.4041659\B19=1.40554405\B20=1.394305 39\B21=1.08763863\B22=1.39295084\B23=1.08755035\B24=1.39753506\B25=1.0 8707795\B26=1.08706774\B27=1.08672985\B28=1.09010842\B29=1.09155771\A1 =112.98926298\A2=115.29596911\A3=95.03642837\A4=107.74492494\A5=105.85 148529\A6=107.95861521\A7=108.68255045\A8=109.04446107\A9=108.38080192 \A10=115.19483747\A11=109.76793965\A12=108.15230959\A13=114.2036131\A1 4=117.24153062\A15=117.00501771\A16=107.9247394\A17=121.05993372\A18=1 20.55309533\A19=120.85161411\A20=119.24070811\A21=120.86407102\A22=119 .10148407\A23=120.19152791\A24=119.7387706\A25=119.7610697\A26=120.223 45412\A27=105.99790939\A28=103.40043184\D1=-69.92732134\D2=-136.751410 35\D3=99.69082162\D4=-15.87285919\D5=169.04670775\D6=53.70340256\D7=-5 9.91420531\D8=-175.00523438\D9=62.8467998\D10=56.69646054\D11=171.5499 4541\D12=-66.77668857\D13=-46.44849842\D14=173.27800062\D15=-185.86324 418\D16=96.78499584\D17=-80.53794102\D18=-178.47232672\D19=1.82341013\ D20=-181.40552904\D21=-1.29696156\D22=-0.61357393\D23=180.47446895\D24 =179.45905535\D25=-180.03980707\D26=-63.66928291\D27=53.5529728\Versi on=ES64L-G09RevD.01\State=2-A\HF=-2866.8344166\S2=0.764549\S2-1=0.\S2A =0.750093\RMSD=6.301e-09\RMSF=2.292e-05\Dipole=0.0898083,-0.0952522,0. 5184119\Quadrupole=-0.8798374,-1.7134914,2.5933289,0.9179507,1.0537099 ,-1.1826249\PG=C01 [X(C12H17Se1)]\\@

ROMP2/GTMP2large//B3LYP/6-31G(d)=-2866.5547094

ROCCSDT/GT1Bas//B3LYP/6-31G(d)=-2865.7533212

f1 (ppm)

f1 (ppm)

-0

-400 --350

-450

-250

-300

-150

-200

-100

																				-
																				_
																				-
noonserver for the former of t	h daartasta ta Ayaansa taaliya	ilened ^{is} tendistelen Alematistelen († 1914)	alaa dadada waaqasa qa	allankannald 1914 Augustur	hordetroppeler Norderlagtete	an falan tarah karda Karda karangan karda	la Provid Landia 1994 (Propigram	lind pole line pol generation in	ng n	r thur an traited at	alianindad Appropriation	un nilondia Agail _a ngain	Manalika disi Kajipera disi	andelen der net Replaceten peter	(lullatert)prepr	thacha a ^t hillist na fhail a ghraca	ya Kilayo Mihai Mi ⁿ Pejahu ant	ladarda utelada Magaranti kapa	ling light and start in the start in the start of the start	
640	620	600	580	560	540	520	500	480	460 f1 (440 ppm)	420	400	380	360	340	320	300	280	260	240

0	450	420	390	360	330 f1 (pj	300 om)	270	240	210	180	
				· · · · · · · · · · ·			, 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1			- I - I - I - I - I - I - I - I - I - I	ـــــــــــــــــــــــــــــــــــــ
laine da _d iseby La bin a data.	periodi dan bilahan dari di sala Periodi dan bilahan dari dari dari dari dari dari dari dari	n Lander and Splitcheds Development Alexister and Splitcheds Development	hildenslog og som dåladen kondela. Hi Veder for som den som den som det som d	and participant in the standard structure and participant in the second structure standard structure structures	na an a	la blander på forsætta det setter bander A den setter begref på setter besetter beneder	ntifalisələrində, sətərə sələsi di Dənəri dənəri sərəvə bəsərəfəri	ladalak multasi termetakan dapatat Perkenan di termetakan seberah di seberah	an a	dan dan kaling mendelik adalah Managina kaling mendelik dalah dari kaling	
											-
											-
											-
	CH ₂ CH ₂	CH ₂ CH	H_2 CH_2 CH_2	CH ₂ CH ₃							-
H ₃ C	_CH ₂	CH ₂ _CH ₂	_SeCH ₂	,⊂H ₂							-
											-
											-

f1 (ppm)

H₃C∖	CH ₃ Se CCH	_CH ₂ _CF I ₂ CH ₂	^H 2 CH3										-110
	ĊH ₃												-100
													-90
													-80
													-70
													-60
													-50
													-40
													-30
													-20
													-10
di alla competit Detropopristore	nterien han deren eine Aran der gemeinigter Der progenisjon	tellistical splipertperiod mesticessification	terister blitter et beerte by Proposition Speedingerbetere	h kanatét palay kepiku at para Maji panja ana palana p	de blev konkonstanske politiker Istor generalen se en stander politiker	dentral hyddiadau yn arwyna Ymegol a gallanau yn arwyna	a Matanina ang dina Kapatiha pan Ang akaring Kapina ang pang	ldydryg fa gydrafyn y dan y dan yn yn gan yn gan yn gan gan yn gan gan gan gan gan gan gan gan gan ga	an again an	anan an	lynni olygeriaegeri Mirolyn Yn rygeriaegeriaegeriae	alaphangal begi awan jalang kalan Mang Kanada benara di Manangata	
650	600	550	500	450	400	350 f1 (pr	300 pm)	250	200	150	100	50	

-120