Cationic Gold(I)-Catalyzed Enantioselective Hydroalkylation of Unactivated Alkenes: Influence of the Chloride Scavenger on the Stereoselectivity

Weizhen Fang, Marc Presset, Amandine Guérinot, Christophe Bour, Sophie Bezzenine-Lafollée and Vincent Gandon

Supporting Information

Table of Contents

S2
S 3
S 3
S6
S7
S9
S12
S30
S63

General information

Unless otherwise stated, commercially available reagents were used as received without further purification. (*R*)-DTBM-SEGPHOS was purchased from Aldrich, Cu(OTf)₂ was purchased from Alfa Aesar. JohnPhosAuCl was either purchased from Strem Chemicals or prepared from Me₂S•AuCl (Aldrich) and JohnPhos (Aldrich).¹ Compounds A1,² A1',² A2,³ B1,⁴ B2,⁵ C1,⁶ C2,⁷ D,⁸ E,^{2,9} G,¹⁰ H,¹¹ I,¹² and K¹³ have been previously described. Complexes $F^{12,14}$ and J^{15} are new but structurally close to other previously reported gold catalyst. Bis-oxazoline and Salen copper complexes were either generated in situ from Cu(OTf)₂ and L1-L5, or isolated prior to use in the catalytic reaction in the case of L1Cu(SbF₆)₂.¹⁶ Toluene was distilled over calcium hydride. Tetrahydrofuran (THF) was distilled over sodium. Dioxane and MeNO₂ were used without purification. Products were purified by flash column chromatography on 40-63 µm silica gel. Analytical thin-layer chromatography (TLC) was performed on TLC silica gel plates (0.25 mm) precoated with a fluorescent indicator. Visualization was made with ultraviolet light and/or *p*-anisaldehyde stain.

NMR spectra were recorded on AM250, AV300, AV360, DRX400 MHz Bruker spectrometers. Chemical shifts are given in ppm. The spectra were calibrated to the residual ¹H and ¹³C signals of the solvent. Data are represented as follows: chemical shift δ (ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constant *J* (Hz) and integration. High-resolution mass spectra were obtained by electrospray ionization on a TOF instrument (MicrOTOFq Bruker spectrometer).

Compounds 1a, 1b, 2a, 2a', and 2b were already described.¹⁷

Preparation of the gold complex J

(3aS,8aS)-2,2-Dimethyl-4,4,8,8-tetraphenyl-6-(p-tolyloxy)tetrahydro-[1,3]dioxolo[4,5e][1,3,2]dioxaphosphepine-(AuCl) (J)¹⁵

To a solution of Me₂S•AuCl (1 equiv) in CH₂Cl₂ (0.315 M) was added a solution of (–)TAD-P-cresol¹⁸ in CH₂Cl₂ (0.0315 M). The mixture was stirred for 1.5 h at room temperature and then evaporated under reduced pressure to give the gold complex as a white solid, which was used without purification. ¹H NMR (360 MHz / CDCl₃): δ 7.60–7.51 (m, 4H), 7.49–7.28 (m, 16H), 7.02 (d, *J*= 8.6 Hz, 2H), 6.65 (d, *J*= 8.6 Hz, 2H), 5.48 (d, *J*= 8.0 Hz, 1H), 5.42 (d, *J*= 8.0 Hz, 1H), 2.29 (s, 3H), 0.68 (s, 3H), 0.63 (s, 3H); ³¹P NMR (101 MHz / CDCl₃): 105.9; ¹³C NMR (90 MHz / CDCl₃): 147.4, 143.1, 142.7, 139.22, 139.16, 138.9, 138.8, 135.5, 130.3, 129.1, 128.9, 128.8, 128.6, 128.3, 128.0, 127.6, 127.5, 127.24, 127.20, 120.4, 120.3, 114.8, 92.6, 92.4, 89.3, 89.2, 80.51, 80.45, 79.21, 79.20, 29.7, 26.5, 26.4, 20.7.

Preparation of the substrates

N-Benzyl-2-oxo-*N*-(prop-2-en-1-yl)cyclopentane-1-carboxamide (1b)

According a published procedure,¹⁷ a solution of *N*-benzylprop-2-en-1-amine (2.9 g, Ω 20.00 mmol, 1 equiv), ethyl 2-oxocyclopentane carboxylate (4.5 g, 28.80 mmol, 1.44 NBn equiv) and DMAP (0.3 equiv) in toluene (15 mL) was refluxed for 22 h. The solvent was then removed under reduced pressure and the residue was purified by flash 1h chromatography on silica gel (cyclohexane/EtOAc: 5/1) to give the desired product (3.5 g, 68%) and as mixture of tautomers and rotamers. ¹H NMR (360 MHz / CDCl₃): δ 7.34–7.13 (m, 5H), 5.80–5.68 (m, 1H), 5.18–5.09 (m, 2H), 4.96 (t, J=20.4 Hz, 1H), 4.44–4.17 (m, 2H), 3.77–3.56 (m, 1H), 3.44–3.36 (m, 1H), 2.56–2.44 (m, 1H), 2.31–2.23 (m, 2H), 2.20–2.04 (m, 2H), 1.86–1.70 (m, 1H); ¹³C NMR (90 MHz / CDCl₃): 2 rotamers δ 214.6 (2 C), 169.5 (C), 169.3 (C), 137.1 (C), 136.8 (C), 133.0 (CH), 132.4 (CH), 128.9 (CH), 128.6 (2 CH), 127.7 (2 CH), 127.5 (CH), 127.2 (2 CH), 126.2 (2 CH), 117.1 (CH₂), 116.6 (CH₂), 52.1 (CH), 52.0 (CH), 50.2 (CH₂), 49.2 (CH₂), 48.6 (CH₂), 48.3 (CH₂), 38.6 (2 CH₂), 27.6 (CH₂), 27.5 (CH₂), 21.0 (2 CH₂); **HRMS** (ESI): m/z calcd. for C₁₆H₁₉NO₂Na (M + Na)⁺ 280.1308, found 280.1296.

N-Allyl-*N*-benzyl-1-oxo-1,2,3,4-tetrahydronaphthalene-2-carboxamide (1c)

According a published procedure,¹⁷ the reaction was performed with methyl 1oxo-1,2,3,4-tetrahydronaphthalene-2-carboxylate (1.57 g, 7.69 mmol) to afford **1c** (1.54 g, 63%) as an orange oil and as mixture of tautomers and rotamers. ¹**H NMR** (250 MHz / CDCl₃): δ 8.06–8.00 (m, 1H), 7.51–7.19 (m, 8H), 5.86–5.75 (m, 1H), 5.40–5.15 (m, 2H), 4.81–4.04 (m, 3H), 3.83–3.72 (m, 2H), 3.09–2.88 (m,

2H), 2.68–2.58 (m, 1H), 2.30–2.18 (m, 1H); ¹³C NMR (63 MHz / CDCl₃): 2 rotamers δ 194.6 (2 C), 170.7 (C), 170.5 (C), 144.1 (2 C), 137.2 (C), 136.9 (C), 133.8 (2 CH), 133.3 (2 CH), 132.4 (C), 132.0 (C), 128.9 (2 CH), 128.8 (2 CH), 128.6 (2 CH), 127.8 (2 CH), 127.5 (2 CH), 127.2 (2 CH), 126.7 (2 CH), 126.2 (2 CH), 117.2 (CH₂), 116.4 (CH₂), 51.8 (2 CH), 50.3 (CH₂), 49.2 (CH₂), 48.5 (CH₂), 48.2 (CH₂), 28.4 (CH₂), 28.2 (CH₂), 26.7 (CH₂), 26.6 (CH₂); **HRMS (ESI**): *m*/*z* calcd. for C₂₁H₂₁NO₂Na (M + Na)⁺ 342.1465, found 342.1458.

N-Allyl-N-benzyl-2-methyl-3-oxobutanamide (1d)

According a published procedure,¹⁷ the reaction was performed with methyl 2-methyl-3oxobutanoate (1.121 g, 8.62 mmol) to afford **1d** (813 mg, 38%) as a yellow oil and as mixture of tautomers and rotamers. ¹**H NMR** (360 MHz / CDCl₃): 2 rotamers δ 7.37– 7.15 (m, 10H), 5.79–5.69 (m, 2H), 5.19–5.14 (m, 4H), 4.76–4.43 (m, 2H), 4.47–4.43 (m, 2H), 4.19–3.57 (m, 6H), 2.16 (s, 3H), 2.12 (s, 3H), 1.38 (d, *J* = 7 Hz, 3H), 1.34 (d, *J* = 7 Hz, 3H); ¹³**C NMR** (90 MHz / CDCl₃): 2 rotamers δ 204.8 (C), 204.7 (C), 170.9 (C), 170.8 (C), 137.1 (C), 136.4 (C), 132.6 (CH), 132.3 (CH), 128.9 (2 CH), 128.5 (2 CH), 128.0 (2 CH), 127.7 (2 CH), 127.4 (CH), 126.2 (CH), 117.6 (CH₂), 117.0 (CH₂), 51.4 (CH), 51.3 (CH), 50.3 (CH₂), 49.2 (CH₂), 48.4 (CH₂), 48.3 (CH₂), 27.2 (2 CH₃), 13.9 (2 CH₃); **HRMS (ESI**): *m/z* calcd. for C₁₅H₂₀NO₂ (M + H)⁺ 246.1489, found 246.1492.

N-Allyl-N-benzyl-2-ethyl-3-oxobutanamide (1e)

To a solution of *N*-allyl-*N*-benzyl-3-oxobutanamide¹⁷ (500 mg, 2.16 mmol, 1 equiv) in dry DMF (8 mL) at 0 °C was added K₂CO₃ (1.804 g, 13.05 mmol, 6 equiv). The mixture was stirred for 20 min and iodoethane (677 μ L, 8.47 mmol, 3.9 equiv) was then added

1e dropwise. The mixture was stirred at room temperature for 16 h. Water was then added at 0 °C and the mixture was extracted with EtOAc. The combined organic phases were washed with brine, dried over MgSO₄ and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel (cyclohexane/EtOAc: 5/1) to give **1e** in 89% yield (500 mg) as an orange oil and as mixture of tautomers and rotamers. ¹H NMR (360 MHz / CDCl₃): 2 rotamers δ 7.35–7.14 (m, 10H), 5.76–5.68 (m, 2H), 5.24–5.06 (m, 4H), 4.85–4.69 (m, 2H), 4.42–4.35 (m, 2H), 4.30–3.96 (m, 2H), 3.78–3.72 (m, 2H), 3.48–3.44 (m, 2H), 2.14 (d, *J*= 9.6 Hz, 6H), 2.20–1.97 (m, 2H), 1.94–1.86 (m, 2H), 0.90 (dt, *J* =21.8, 7.3 Hz, 6H); ¹³C NMR (90 MHz / CDCl₃): 2 rotamers δ 205.3 (2C), 169.6 (C), 169.4 (C), 137.4 (C), 136.6

(C), 132.7 (CH), 132.6 (CH), 129.0 (CH), 128.7 (2 CH), 128.2 (2 CH), 127.8 (CH), 127.6 (2 CH), 126.5 (2 CH), 117.8 (CH₂), 117.2 (CH₂), 60.1 (CH), 60.0 (CH), 50.2 (CH₂), 49.2 (CH₂), 48.8 (CH₂), 48.6 (CH₂), 27.0 (2 CH₃), 23.0 (2 CH₃), 12.3 (2 CH₃); **HRMS (ESI**): m/z calcd. for C₁₆H₂₁NO₂Na (M + Na)⁺ 282.1465, found 282.1465

N-Allyl-N,2-dibenzyl-3-oxobutanamide (1f)

This compound was prepared according to the procedure described for **1e** with *N*-allyl-*N*-benzyl-3-oxobutanamide¹⁷ (0.5 g, 2.16 mmol, 1 equiv) and benzylbromide (1.0 mL, 8.64 mmol, 4 equiv). The crude product was purified by flash chromatography on silica gel (cyclohexane/EtOAc: 5/1) to afford **1f** in 86% yield (600 mg) as a colorless oil and as mixture of tautomers and rotamers. ¹H NMR (360 MHz / CDCl₃): 2 rotamers δ 7.36–6.83 (m, 20H), 5.75–5.42 (m, 2H), 5.15–4.87 (m, 4H), 4.69–4.06 (m, 5H), 3.89–3.69 (m, 4H), 3.53 (dd, *J*= 17.7, 4.9 Hz, 1H), 3.36–3.27 (m, 2H), 3.21–3.09 (m, 2H), 2.18 (d, *J*=20.7 Hz, 6H); ¹³C NMR (90 MHz / CDCl₃): 2 rotamers δ 204.0 (2C), 169.3 (C), 169.0 (C), 138.6 (C), 138.5 (C), 137.1 (C), 136.4 (C),132.4 (2 CH), 129.2 (4 CH), 129.0 (2 CH), 128.7 (6 CH), 128.3 (2 CH), 127.7 (CH), 127.6 (CH), 126.8 (2 CH), 126.5 (2 CH),118.0 (CH₂), 117.3 (CH₂), 60.0 (CH), 59.7 (CH), 50.2 (CH₂), 49.3 (CH₂), 48.9 (CH₂), 48.9 (CH₂), 35.6 (2 CH₂), 27.7 (CH₃), 27.6 (CH₃); **MS (CI**): *m/z* calcd. for C₂₁H₂₄NO₂ (M + H)⁺ 322.18, found 322.2.

N-Allyl-N-benzyl-2-methyl-3-oxopentanamide (1g)

This compound was prepared according to the procedure described for **1e** with *N*-allyl-*N*-benzyl-3-oxopentanamide (1.0 g, 4.08 mmol, 1 equiv) and iodomethane (1.0 mL, 16.31 mmol, 4 equiv). The crude product was purified by flash chromatography on silica gel (cyclohexane/EtOAc: 5/1) to afford **1g** in 94% yield (1.0 g) as a yellow oil and as mixture of tautomers and rotamers. ¹H NMR (250 MHz / CDCl₃): δ 7.39–7.23 (m, 5H), 5.82–5.67 (m, 1H), 5.26–5.08 (m, 2H), 4.79–4.40 (m, 2H), 4.21–3.73 (m, 2H), 3.69–3.59 (m, 1H), 2.63–2.39 (m, 2H), 1.38 (dd, *J*=9.8, 6.9 Hz, 3H), 1.02 (dd, *J*=14.2, 7.3 Hz, 3H); ¹³C NMR (90 MHz / CDCl₃): 2 rotamers δ 207.6 (2C), 171.2 (C), 171.1 (C), 137.3 (C), 136.6 (C), 132.8 (CH), 132.6 (CH), 129.1 (CH), 128.7 (2 CH), 128.2 (2 CH), 127.9 (CH), 127.6 (2 CH), 126.4 (2 CH), 117.8 (CH₂), 117.2 (CH₂), 51.0 (CH₂), 50.9 (CH₂), 50.5 (CH), 49.4 (CH), 48.7 (CH₂), 48.5 (CH₂), 33.0 (2 CH₂), 14.1 (2 CH₃), 7.8 (2 CH₃); **HRMS (ESI)**: *m/z* calcd. for C₁₆H₂₁NO₂Na (M + Na)⁺ 282.1465, found 282.1463.

Procedures for enantioselective hydroalkylation of ene-β-ketoamides

Enantioselective hydroalkylation of ene- β -ketoamide **1a** using an achiral gold complex and a chiral copper complex (Table S1)

In air, a 10 mL oven-dried tube equipped with a Teflon-coated magnetic stir bar was charged with copper (II) triflate (3.6 mg, 0.010 mmol, 0.1 equiv), ligand L1-L5 (0.010 mmol, 0.1 equiv) and toluene (0.5 mL) and the mixture was stirred at room temperature for 5 min. (JohnPhos)AuCl (10 mol% of gold) and substrate 1a (27.3 mg, 0.10 mmol, 1 equiv) in toluene (0.5 mL) were added and the tube was sealed with a plastic stopper. The reaction tube was immersed and stirred in a preheated oil bath at 110 °C (external temperature) for 24 h. Then the reaction mixture was filtered through a pad of silica gel, rinsed with diethyl ether and evaporated to afford the crude product. Conversion and diasteroselectivity were determined by ¹H NMR analysis and enantioselectivity was analyzed by SFC.

Solvent and gold catalyst screening in the enantioselective hydroalkylation of ene- β -ketoamide 1a (Table 2). A 10 mL oven-dried tube equipped with a Teflon-coated magnetic stir bar was charged with gold complex (10 mol% of gold), silver (I) triflate (2.6 mg, 0.010 mmol, 0.1 equiv) and solvent (0.5 mL) and the mixture was stirred at room temperature for 1 min. Substrate 1a (27.3 mg, 0.10 mmol, 1 equiv) in solvent (0.5 mL) was added and the tube was sealed with a plastic stopper. The reaction tube was covered by aluminum foil, immersed and stirred in a preheated oil bath at indicated temperature for 24 h. Then, the reaction mixture was filtered through a short pad of silica gel, rinsed with diethyl ether, and evaporated to afford the crude product, which was analyzed by SFC.

Screening of activators in the enantioselective hydroalkylation of ene- β -ketoamide 1a (Table 1, Table 2 entry 9, and Table 3). A 10 mL oven-dried tube equipped with a Teflon-coated magnetic stir bar was charged with C1 (8.2 mg, 0.0050 mmol, 0.05 equiv), Lewis acid (x mol%) and toluene (0.5 mL) and the mixture was stirred at room temperature for 1 min. Substrate 1a (27.3 mg, 0.10 mmol, 1 equiv) in toluene (0.5 mL) was added and the tube was sealed with a plastic stopper. The reaction tube covered by aluminum foil, immersed and stirred in a preheated oil bath at indicated temperature. Then, the reaction mixture was filtered through a short pad of silica gel, rinsed with diethyl ether and evaporated to afford the crude product, which was analyzed by SFC.

Procedure for Table 4. The above procedure was used with AgOTf (2.6 mg, 0.010 mmol) and substrate **1b-g** (0.1 mmol).

Additional experiments not described in the manuscript

The unexpected activity of copper in the reaction of **1a** encouraged us to briefly examine the case of chiral ligands located at copper instead of gold (Table S1). With the inactive achiral monogold precatalyst (JohnPhos)AuCl, a preliminary control experiment showed that addition of $Cu(OTf)_2$ eventually provided the desired product in a 75/25 ratio (entry 1). Addition of bis-oxazoline or Salen ligands L1-5 resulted in low enantioinductions (entries 2–6). Interestingly, the teamwork between gold and copper in this transformation was revealed when using Cu/L2 without gold (entry 7), leading to **2a**' as major product instead of **2a** with Au/Cu/L2 (entry 3). Besides, the enantioselectivity was greatly lowered in the absence of gold. Finally, in contrast with L1/Cu(OTf)₂, the use of L1Cu(SbF₆)₂ in the Au/Cu-catalyzed reaction led to a racemic mixture (entry 8), emphasizing a strong counterion effect in this chemistry.

Table S1 Enantioselective hydroalkylation of ene- β -ketoamide **1a** using an achiral gold complex and a chiral copper complex

Entry	[Au]	L	$\operatorname{Conv}_{(\%)^a}$	dr^a	$ee~(\%)^{a,b}$
1	(JohnPhos)AuCl	none	100	75/25	-
2	(JohnPhos)AuCl	L1	100	68/32	15/3
3	(JohnPhos)AuCl	L2	100	66/34	38/5
4	(JohnPhos)AuCl	L3	89	67/33	24/2
5	(JohnPhos)AuCl	L4	100	41/59	5/7
6	(JohnPhos)AuCl	L5	100	50/50	0/8
7	none	L2	100	36/64	3/0
8	(JohnPhos)AuCl	L1Cu(SbFe	5)94	n.d.	0/0

Having shown the existence of a partnership between gold and copper, we next checked whether a matched pair of chiral complexes could be formed (Table S2). This was not the case with **A** and **L1** (entries 1 and 2). On the other hand, **A1'** and **L1** formed a mismatched pair (entries 3 and 4).

		[Au] Cu(OTf) L (10	(5 mol%) ₂ (10 mol% 0 mol%)	6)	
1a		toluene	, 110 ℃, 2	24 h	2a + 2a'
Entry	[Au]	L	$\operatorname{Conv}_{(\%)^a}$	dr^a	$ee~(\%)^{a,b}$
1	A1	none	100	68/32	59/35
2	A1	L1	100	60/40	59/44
3	A1'	none	100	65/35	-57/-39
4	A1'	L1	100	38/62	-22/-27

Table S2 Enantioselective hydroalkylation of ene- β -ketoamide **1a** using a chiral gold and chiral copper complexes

The use of complex A1 with various activators in summarized in Table S3 below. Again, the conversion reached with these activators in the absence of gold remained insignificant, except with $Zn(OTf_2)$ (entry 1) and Ga(OTf)₃ (entry 4). Looking at the diastereoselectivity, it is noteworthy that the nature of the major product varies as a function of the Lewis acid. Focusing on triflates, which allowed to reach high conversions, while In, Si, and Bi gave rise to **2a** as major diastereomer (entries 6, 10, and 12 respectively), Zn and Ga favored the formation of **2a'** (entries 2 and 4). 19 Although reasonable enantioselectivities were obtained with In(OTf)₃, In(NTf₂)₃, and Bi(OTf)₃ (entries 6–8, 11, and 12), the results were less satisfying than with AgOTf or AgNTf₂. Nevertheless, this study clearly shows that Lewis acids of different element series should be systematically tested during the optimization process of a stereoselective gold-catalyzed reaction.

Table	S3 Screen	ing of	other	activators	in th	he enantiose	elective	hydroalk	ylation c	of ene-	3-ketoamide	1a
		<u> </u>							-			

	נו	A1 (5) _A] (10	mol%)) mol%)			
	1a —			► 2a + 2	2a'	
		toluen	e, 24 h			
Entry	[LA]	T (°C) Conv (%) ^a	$b^{,b} dr^{a}$	$ee~(\%)^{a,c}$	
1^d	Yb(OTf) ₃	110	8	n.d.	n.d.	
2^d	Zn(OTf) ₂	110	100 (27)	36/64	8/11	
3^d	$Al(OTf)_3$	110	30 (6)	40/60	50/39	
4^d	Ga(OTf) ₃	110	100 (19)	36/64	65/21	
5^d	GaCl ₃	110	trace	n.d.	n.d.	

6	In(OTf) ₃	50	100 (0)	61/39	63/29				
7	$In(NTf_2)_3$	50	100 (0)	60/40	63/24				
8	In(OTf) ₃	110	100 (8)	57/43	65/30				
9	InCl ₃	110	trace	n.d.	n.d.				
10^d	Me ₃ SiOTf	110	100 (5)	71/29	58/51				
11	Bi(OTf) ₃	50	97 (0)	71/29	64/38				
12	Bi(OTf) ₃	110	100 (10)	53/47	63/45				
13^{d}	HOTf	110	10	n.d.	n.d.				
^{<i>a</i>} Estimated by chiral SFC; diastereomeric ratios shown are 2a/2a '. ^{<i>b</i>} Conversion without gold is indicated in parentheses. ^{<i>c</i>} Corresponding to 2a/2a '. ^{<i>d</i>} No conversion at 50 °C.									

Characterization of the products

1'-Benzyl-4'-methyl-3,4-dihydro-1*H*-spiro[naphthalene-2,3'-pyrrolidine]-1,2'-dione (2c)

The general procedure was followed using *N*-allyl-*N*-benzyl-1-oxo-1,2,3,4tetrahydronaphthalene-2-carboxamide (**1c**). The crude product was purified flash chromatography on silica gel (cyclohexane/EtOAc: 9/1) to afford **2c** (27 mg, 85%) as a yellow oil. The two diastereoisomers were separated by flash chromatography.

¹**H** NMR (300 MHz / CDCl₃): Minor diastereoisomer δ 8.03 (d, J = 7.8 Hz, 1H), 7.51–7.46 (m, 1H), 7.39–7.24 (m, 7H), 4.63 (d, J = 14.9 Hz, 1H), 4.51 (d, J = 14.9 Hz, 1H), 3.31–3.22 (m, 2H), 3.16–3.07 (m, 2H), 2.89–2.79 (m, 1H), 2.58–2.45 (m, 1H), 2.10 (dt, J = 13.6, 4.9 Hz, 1H), 0.94 (d, J = 7.1 Hz, 3H); ¹³C NMR (63 MHz / CDCl₃): Minor diastereoisomer δ 196.1 (C), 173.1 (C), 144.4 (C), 136.6 (C), 133.8 (CH), 131.9 (C), 128.9 (3 CH), 128.4 (2 CH), 127.7 (2 CH), 126.8 (CH), 58.7 (C), 51.2 (CH₂), 47.0 (CH₂), 33.1 (CH), 25.7 (CH₂), 25.5 (CH₂), 14.7 (CH₃). ¹**H** NMR (300 MHz / CDCl₃): Major diastereoisomer δ 8.04 (dd, J = 7.7, 1.3 Hz, 1H), 7.46 (td, J = 7.7, 1.3 Hz, 1H), 7.39–7.24 (m, 7H), 4.55 (d, J = 14.9 Hz, 1H), 4.45 (d, J = 14.9 Hz), 1H), 3.52–3.42 (m, 2H), 3.07 (dd, J = 13.6, 6.9 Hz, 1H); 2.97 (ddd, J = 7.0 Hz, 3H); ¹³C NMR (63 MHz / CDCl₃): Major diastereoisomer δ 196.5 (C), 174.6 (C), 143.8 (C), 136.5 (C), 133.9 (CH), 132.7 (C), 128.8 (3 CH), 128.2 (2 CH), 127.6 (2 CH), 127.0 (CH), 58.9 (C), 51.7 (CH₂), 47.0 (CH₂), 39.1 (CH), 32.0 (CH₂), 25.5 (CH₂), 14.7 (CH₃); **HRMS (ESI**): *m*/z calcd. for C₂₁H₂₁NO₂Na (M + Na)⁺ 342.1465, found 342.1462.

3-Acetyl-1-benzyl-3,4-dimethylpyrrolidin-2-one (2d)

The general procedure was followed with *N*-allyl-*N*-benzyl-2-methyl-3-oxobutanamide (**1d**). The crude product was purified flash chromatography on silica gel (cyclohexane/EtOAc: 9/1) to afford **2d** (15 mg, 60%) as a colorless oil. The two diastereoisomers were separated by flash chromatography. ¹H NMR (360 MHz / CDCl₃): Minor diastereoisomer δ 7.33–7.26 (m, 3H), 7.21–7.18 (m, 2H), 4.43 (dd, *J* = 14.5, 6.4 Hz,

2H), 3.30 (dd, *J* = 6.8, 1.8 Hz, 1H), 2.83-2.71 (m, 2H), 2.31 (s, 3H), 1.24 (s, 3H), 0.91 (d, *J* = 7 Hz, 3H);

¹³C NMR (90 MHz / CDCl₃): Minor diastereoismer δ 206.7 (C), 174.4 (C), 136.3 (C), 128.8 (2 CH), 128.1 (2 CH), 127.8 (CH), 60.7 (C), 50.9 (CH₂), 46.9 (CH₂), 32.8 (CH₃), 26.5 (CH), 14.0 (CH₃), 13.2 (CH₃); ¹H NMR (360 MHz / CDCl₃): Major diastereoisomer δ 7.31–7.25 (m, 5H), 4.56 (d, *J* = 14.5 Hz, 1H), 4.42 (d, *J* = 14.5 Hz, 1H), 3.24 (t, *J* = 9.6 Hz, 1H), 2.98 (t, *J* = 9.6 Hz, 1H), 2.21–2.15 (m, 1H), 2.08 (s, 3H), 1.41 (s, 3H), 0.96 (d, *J* = 7 Hz, 3H); ¹³C NMR (90 MHz / CDCl₃): Major diastereoisomer δ 207.1 (C), 174.7 (C), 136.0 (C), 128.7 (2 CH), 128.3 (2 CH), 127.7 (CH), 60.9 (C), 51.4 (CH₂), 47.0 (CH₂), 39.5 (CH₃), 29.3 (CH), 19.7 (CH₃), 13.1 (CH₃); HRMS (ESI): *m*/*z* calcd. for C₁₅H₁₉NO₂Na (M + Na)⁺ 268.1308, found 268.1311. The relative configuration of each diastereoisomer was determined by 1D selective NOE experiment (see pages S51 and S54).

3-Acetyl-1-benzyl-3-ethyl-4-methylpyrrolidin-2-one (2e)

The general procedure was followed with *N*-allyl-*N*-benzyl-2-ethyl-3-oxobutanamide (1e).
The crude product was purified flash chromatography on silica gel (cyclohexane/EtOAc: 9/1) to afford 2e (16 mg, 60%) as a colorless oil and as a 78/22 mixture of diastereoisomers. ¹H NMR (250 MHz / CDCl₃): Major diastereoisomer δ 7.35–7.24 (m, 5H), 4.52 (d, *J* = 4.7 Hz, 2H), 3.29 (dd, *J* = 9.5, 8.2 Hz, 1H), 2.94 (t, *J* = 9.1 Hz, 1H), 2.44–2.35 (m, 1H), 2.11 (s, 3H), 2.08–1.97 (m, 1H), 1.86–1.78 (m, 1H), 0.97–0.91 (m, 6H); ¹³C NMR (63 MHz / CDCl₃): Major diastereoisomer δ 207.6 (C), 173.9 (C), 136.3 (C), 128.9 (2 CH), 128.5 (2 CH), 127.9 (CH), 65.4 (C), 51.6 (CH₂), 47.1 (CH₂), 34.0 (CH₃), 30.0 (CH), 25.2 (CH₂), 14.0 (CH₃), 9.0 (CH₃); HRMS (ESI): *m/z* calcd. for C₁₆H₂₁NO₂Na (M + Na)⁺ 282.1465, found 282.1459.

3-Acetyl-1,3-dibenzyl-4-methylpyrrolidin-2-one (2f)

The general procedure was followed with *N*-allyl-*N*,2-dibenzyl-3-oxobutanamide (**1f**). The crude product was purified flash chromatography on silica gel (cyclohexane/EtOAc: 9/1) to afford **2f** (21 mg, 66%) as a colorless oil and as a 86/14 mixture of diastereoisomers. ¹H NMR (250 MHz / CDCl₃): Mixture of two diastereoisomers δ 7.32–7.00 (m, 20H), 4.60–4.21 (m, 4H), 3.48–2.82 (m, 8H), 2.50–2.30 (m, 2H), 2.25 (s, 2H), 2.17 (s, 4H), 1.04 (d, *J*=7 Hz, 2H), 0.94 (d, *J*=7 Hz, 4H); ¹³C NMR (63 MHz / CDCl₃): Mixture of two diastereoisomers δ 206.4 (C), 205.8 (C), 173.4 (C), 172.2 (C), 136.9 (2 C), 136.1 (C), 135.8 (C), 130.9 (3 CH), 129.4 (CH), 128.8 (CH), 128.7 (3 CH), 128.4 (4 CH), 128.2 (CH), 128.1 (3 CH), 127.8 (CH), 127.7 (CH), 126.9 (CH), 126.7 (CH), 66.6 (C), 66.3 (C), 51.6 (CH₂), 51.4 (CH₂), 47.1 (CH₂), 46.8 (CH₂), 36.5 (CH₂), 34.7 (CH₂), 33.2 (CH₃), 32.2 (CH₃), 29.8 (CH), 27.0 (CH), 14.2 (CH₃), 13.3 (CH₃); HRMS (ESI): *m*/*z* calcd. for C₂₁H₂₃NO₂Na (M + Na)⁺ 344.1621, found 344.1625.

1-Benzyl-3,4-dimethyl-3-propionylpyrrolidin-2-one (2g)

The general procedure was followed with *N*-allyl-*N*-benzyl-2-methyl-3-oxopentanamide (**1f**). The crude product was purified flash chromatography on silica gel eluting with cyclohexane/EtOAC (100/0 to 90/10) to afford **2g** (19 mg, 74%) as a colorless oil and as a 68/32 mixture of diastereoisomers. ¹H NMR (250 MHz / CDCl₃): Mixture of two diastereoisomers δ 7.37–7.18 (m, 10H), 4.60–4.43 (m, 4H), 3.31–3.21 (m, 2H), 2.99 (t,

J=9.5 Hz, 1H), 2.80–2.52 (m, 4H), 2.47–2.17 (m, 3H), 1.44 (s, 3H), 1.26 (s, 3H), 1.00 (dt, *J*=18.3, 7 Hz, 6H), 0.94–0.89 (m, 6H); ¹³C NMR (63 MHz / CDCl₃): Mixture of two diastereoisomers δ 209.6 (C), 209.4 (C), 175.1 (C), 174.6 (C), 136.3 (C), 136.2 (C), 128.9 (2 CH), 128.8 (2 CH), 128.4 (2 CH), 128.1 (2 CH), 127.8 (2 CH), 60.7 (C), 60.4 (C), 51.5 (CH₂), 51.0 (CH₂), 47.1 (CH₂), 46.9 (CH₂), 39.8 (CH), 34.7 (CH₂), 33.1 (CH), 31.7 (CH₂), 19.6 (CH₃), 14.0 (CH₃), 13.3 (CH₃), 13.2 (CH₃), 7.9 (CH₃), 7.1 (CH₃); **HRMS (ESI**): *m/z* calcd. for C₁₆H₂₁NO₂Na (M + Na)⁺ 282.1465, found 282.1464.

Chiral SFC and HPLC Traces:

FWZ gradient method-35C : Co-solvent from 3% to 10% during the first 10 min, then keep 10%

Peak #	Peak Name	Area %	Area	Ret. Time	Height
1	Peak1	28 1964	867,2895	7.17 min	106.5165
2	Peak2	5.5483	170.6587	7.78 min	21.7036
3	Peak3	54.1143	1664.4988	8.64 min	167.2622
4	Peak4	12.141	373.4451	9.58 min	39.8525

FWZ gradient method: Co-solvent from 3% to 10% during the first 10 min, then keep 10%

Beara Linco Rotes Log Author 12/17/2012 11:01:33 AM Seport By current User Report Date 12/17/2012 11:01:33 AM Seport Date 12/17/2012 11:01:33 AM Seport Date 12/17/2012 11:01:33 AM Trigetion Table Time Stamp 12/17/2012 11:01:33 AM Injection Volume 50 Solumn Info Solumn Emperature 30.2 Solumn Emperature 30.2 Solumn Emperature 30.2 Solumn Emperature 147 Revelength 0 Peak Info Peak Name Area % Area ET (min) Peak Info Peak Name Area % Area ET (min) Peak 10.2849 602.5706 10.74 Peak 13.9791 819.0096 12.96 Stigle Absorbance			
Lighthor 12/17/2012 11:01:33 AH Seport Date 12/17/2012 11:01:33 AH Seport Date 12/17/2012 11:01:33 AH Trigetion Date Time Stamp 12/17/2012 11:01:33 AM Trigetion Date Time Stamp 12/17/2012 11:01:33 AM Trigetion Date Time Stamp 12/17/2012 11:01:33 AM Solumn Total Solumn To	General Info		Notes
use 12/17/2012 11:01:33 AP Report Dy current_User Report Date 12/17/2012 Report Date 12/17/2012 Stick Name FW2 253 12/17/2012 Injection Date Time Stamp 12/17/2012 11:101:33 AM Injection Cate 50 Docume 50 Docume 50 Docume 50 Docume 50 Docume Docume Semple Pack Pack Colland Posseurce 10:200 4 Pressure Docume 10:2010 Pack Info Peak Name Area RT Pack Info Peak Name Area RT Pack Info Peak Name Area RT Pack 10:2035 12:21:21:21:21:21:21:21:21:21:21:21:21:2	Log Author		
Seport Date Seport Date Seport Date Seport Date Seport Date Seport Date Enhod Name FWZ gradient method.met Tajection Date Time Stamp 12/17/2012 11:01:33 RM Enjection Date Time Stamp 12/17/2012 11:01:33 RM Enjection Date Time Stamp 12/17/2012 11:01:33 RM Digettion Volume 50 Solumn No Solumn No Solumn A Pressure Drop 22 Back Name Area Pressure Drop 22 Back Name Area Pack 10.2845 Pack Name Area Pack 10.2845 Pack 10.2845 Sige Absorbance Image Stamp Image Stamp Image Stamp </th <th>Log Date 12/17/2</th> <th>JIZ 11:01:33 AM</th> <th></th>	Log Date 12/17/2	JIZ 11:01:33 AM	
Seport Date 12/17/2012 Sthe Name FW2 gradient method.met Injection Info Injection Info Injection Date Time Stamp 12/17/2012 11:01:33 AM Injection Date Time Stamp 12/17/2012 11:01:33 AM Solumn IA Served Stamp 20/17/2012 11:01:33 AM Solumn IA Served Stamperature 30.2 Solumn IA Served Stamperature 30.2 Solumn IA Pressure Drop 22 Sack Frazere 147 Reak Name Area RT (min) Pack Info - Peak1 21.0355 1232.4314 9.95 Peak2 10.2449 602.5706 10.74 Peak3 54.7005 3204.8032 11.71 Peak4 13.9791 819.0056 12.96 Single Absolutions Image: Single Absolutions Image: Single Absolutions Image: Single Absolutions Image: Single Absolutions Image: Single Absolutions Image: Single Absolutions <td< th=""><th>Report By current</th><th>User</th><th></th></td<>	Report By current	User	
File Name FVZ - 209_12-17-2012_1.tta Exhod Name FVZ gradient method.met Enjection Date Time Stamp 12/17/2012 11:01:33 AM Enjection Date Time Stamp 12/17/2012 11:01:33 AM Enjection Date Time Stamp 50 Do-Solvent MeOH Solumn TA September FVZ-259 Solumn TA September FVZ-259 Solumn TA September FVZ-259 Solumn TA September FVZ-259 Solumn TA September Solumn Total Flow 4 Presever 147 Tavalength 0 Pask Info 12.32.4314 9.95 Seak Info 12.249 602.5706 10.74 Pask 2 10.2849 602.5706 12.96 Single Absorbance Total Big Absorbance Total Big Absorbance Total Big Absorbance Total Big Absorbance Total Big Absorbance Total Big Absorbance Total Big Absorbance Total Big Absorbance Total Big Absorbance </th <th>Report Date 12/17/20</th> <th>J12</th> <th></th>	Report Date 12/17/20	J12	
Sethod Name FFZ gradient method.met injection Tono 12/17/2012 11:01:33 AM injection Date Time Stamp 12/17/2012 11:01:33 AM injection Date Time Stamp 12/17/2012 11:01:33 AM Solumn IA Simple Ever-259 Solumn Temperature 30.2 Soles Place Arcea FT (min) Peak Name Arce % Arcea FT (min) Peak 1 21.0355 1232.4314 9.95 Peak 2 50.7005 3204.6032 11.71 Peak 2 50.7005 3204.6032 11.71 Single Absolumne Immediate America FT (min) Immediate America FT (min) Immediate America FT (min) Immediate America FT (min) Immediate America FT (min) Imme	File Name Fwz-269	12-17-2012_1.tta	
Crigoticia Tafo If/17/2012 11:01:33 AM Dispection Volume 50 Scoresource N60H Simple FW2-269 Source 1 Source 1 Source 1 Source 1 Source 2 Source 1 Source 2 Source 2 Sou	Method Name FWZ grad	lient method.met	
Injection Date Time Stamp 12/17/2012 11:01:33 AM Injection Volume 50 Solumnt NeOH Solumn Temperature 30.2 Journa Temperature 30.2 JoseBurnat 4 Preseauce Drop 22 Baok Processure 147 Tavelength 0 Peak Info 20.25706 Peak 21.0.2849 602.5706 Single Absobance Trating Acm Rige Acm Trating Acm Rige Acm Trating Acm	Injection Info		
Injection Volume 50 Do-Solvent NeOH Solumn TA Sample Psz-269 Column Temporature 30.2 Soc-Solvent % 3 Soc-Solvent % 4 Pressure Droop 22 Sack Trafo	Injection Date Time S	tamp 12/17/2012 11:01:33 AM	
Co-Solvent: MeOH Solumn IA Semple PVZ-269 Solumn Transparture 30.2 Solumn Transparture 147 Seak Info	Injection Volume	50	
Dolumn IA Sample Pyz-269 Sound Temperature 30.2 So-Bolvent % 3 Social Flow 4 Pressure Drop 22 Back Pressure Drop 22 Back Maxe Area % Area BT (min) Peak I Asse Area % Area BT (min) Peak Maxe Area % Area BT (min) Peak 1 21.0355 1232.4314 9.95 Peak2 10.2849 602.5706 10.74 Peak3 56.7005 3204.602 11.71 Peak4 13.9793 819.0096 12.96 Single Absorbance	Co-Solvent	MeOH	
Sample FV2-269 Solumn Temperature 30.2 So-Bolvont & 3 Solat Flow 4 Pressure Drop 22 Back Pressure 147 Revelength 0 Peak Info Peak 121.0355 1232.4314 9.95 Peak2 10.2849 602.5706 10.74 Peak3 56.7005 3204.8032 11.71 Peak4 13.9791 819.0096 12.96 Single Absorbance Single Absorbance Single Absorbance Single Absorbance Single Absorbance	Column	IA	
Solumin Temperature 30.2 Solumin Temperature 30.2 Solumin Temperature 30.2 Stotal Flow 4 Freesure Land Taxelength 0 Peak Info Peak Info Peak 1 21.0355 1232.4314 9.95 Peak2 10.2849 602.5706 10.74 Peak3 54.7005 3204.602 11.71 Peak4 13.9791 819.0096 12.96 Single Absorbance 7 10 10 10 10 10 10 10 10 10 10	Sample	Fwz-269	
Do-Bolvent % 3 Dotal Flow 4 Pressure Drop 22 Back Pressure 147 Tavelength 0 Peak Info Peak Name Area % Area RT (min) Peak 1 21.0355 1.232.4314 9.995 Peak2 10.2849 602.5706 10.74 Peak3 54.7005 3204.8032 11.71 Peak4 13.9791 819.0096 12.96 Single Absorbance 20 -	Column Temperature	30.2	
Cotal Flow 4 Pressure Drop 22 Taxvelength 0 Peak Info 0 Peak Nexme Area % Peak Nexme Stopic Absorbance Immediate Immediate Peak 13.9791 819:0096 12.96 Single Absorbance Immediate Immediate Immediate Peak Immediate Peak <th>Co-Bolvent %</th> <th>3</th> <th></th>	Co-Bolvent %	3	
Pressure Drop 22 Back Pressure 147 Tavalangth 0 Peak Info	Total Flow	- 4	
Back Freesure 147 Revelength 0 Peak Info Peak Name Area % Peak 1 21,0355 12,0355 12,32,4314 9,95 Peak 2 Peak 3 54,7005 3204.8032 11,71 Peak 3 54,7005 3204.8032 11,71 Peak 4 13,9791 819.0096 12,96 Single Absorbance 10 10 10 10 10 10 10 10 10 10 10 10 11 11 12 13 14 15 15 16 16 17 18 10 10 10 11 11 12 13 14 14 15 15 16 16 17 16	Pressure Drop	22	
Taxwelength 0 Peak Info Area % Area RT (min) Peak 1 21,0355 1232,4314 9.95 Peak 2 10,2849 602,5706 10.74 Peak 3 54,7005 3204,8032 11.71 Peak 4 13.9791 819.0056 12.96 Single Absorbance If the factor of the	Back Pressure	147	
Peak I Info Peak I Name Area & Area RT (min) Peak 1 21.0355 1232.4314 9.95 Peak 2 10.2849 602.5706 10.74 Peak 3 56.7005 3204.8032 11.71 Peak 4 13.9791 819.0096 12.96 Single Absorbance	Wavelength	0	
Peak Name Area % Area RT (min) Peak 1 21.0355 1232.4314 9.95 Peak 2 10.2849 602.5706 10.74 Peak 3 54.7005 3204.6032 11.71 Poak 4 13.9791 819.0096 12.96 Single Absorbance	Peak Info		
Peak1 21.0355 1232.4314 9.95 Peak2 10.2849 602.5706 10.74 Peak3 54.7005 3204.8032 11.71 Peak4 13.9791 819.0096 12.96 Single Absorbance	Peak Name Area %	Area RT (min)	
Peak2 10.2849 602.5706 10.74 Peak3 54.7005 3204.8032 11.71 Peak4 13.9791 819.0096 12.96 Single Absorbance	Peak1 21.0355	1232,4314 9,95	
Peak3 54.7005 3204.8032 11.71 Poak4 13.9791 819.0096 12.96 Single Absorbance	Peak2 10.2849	602.5706 10.74	
Poak4 13.9791 819.0096 12.96 Single Absorbance Image: second secon	Peak3 54.7005	3204.8032 11.71	
Single Absorbance	Peak4 13.9791	819.0096 12.96	M
$100 - \frac{1}{100} $	Single Absorbance		RERet Time A A
100 100 0 100 $100 -$	9	0 Pi	Alix Area Perc [PN:
$C_{\text{Public constraint}} = \frac{1}{100} - \frac$		ζ.	н Ш
290 = - $200 = -$ $190 = -$ $0 = -$ $0 = -$ $100 = -$	A.	10 10 17	ñ
$100 - \frac{1}{100} $	250	ਹ ਜ	1 1
$190 - \frac{1}{100} $	200	8 8 4 4	500
$100 - \frac{1}{100} $	1	4 8 4 8	1
		10 S S S S S S S S S S S S S S S S S S S	5
$(100 - \frac{1}{100} - \frac{1}{1000} + \frac{1}{10000000000000000000000000000000000$	200	510	6
$190 - \frac{1}{100} + \frac{1}{100} $		1 S S S S S S S S S S S S S S S S S S S	1
Crypulsawapping 190		4 g	1 *
$T_{i} = \frac{1}{100} + \frac{1}{100$	5 150	6. . .	95.0
$190 - \frac{1}{10} + 1$	4	706	5
100 - -	- ultra	λ in	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	40	8	4
su =	2 100		
50	1		
50		H H	Å
0	50 ~ ~		
0			
0	1		
v = v; v =v			
τ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ	0	mana la standard	
τος ματά με το μεταγραφιατό με Η ποτό μεταγραφιατό μεταγραφιατό μεταγραφιατό μεταγραφιατό μεταγραφιατό μεταγραφιατό μεταγραφιατό μεταγραφιατό μ			1 7 1
9 10 11 12 13 14 Elapsed Taxodynim) [Pasothance al 25	₩. <u>4</u>	I I I I I I I I I I I I I I I I I I I	· · · · · · · · · · · · · · · · · · ·
Elapsed Timo(min) I/bbo/tonce st 25		9 10 11	12 13 14
		Elspeed Taxe(m	Absorbance (Absorbance)

FWZ gradient method: Co-solvent from 3% to 10% during the first 10 min, then keep 10%

Peak #	Peak Name	Area %	Area	Ret. Time	Height
1	Peak1	56.0445	4239.3975	7.18 min	444.4769
2	Peak2	1.2778	96.658	7.87 min	11.987
3	Peak3	38.8961	2942.2361	8.62 min	284.2315
4	Peak4	3.7815	286.0476	9.58 min	30.6742

FWZ gradient method: Co-solvent from 3% to 10% during the first 10 min, then keep 10%

Peak #	Peak Name	Area %	Area	Ret. Time	Height
1	Peak1	0.3744	19.37	6.82 min	1.3446
2	Peak2	47.8503	2475.9193	7.22 min	273.8272
3	Peak3	3.8392	198.6539	7.92 min	23.2399
4	Peak4	43.0636	2228.2407	8.66 min	218.6184
5	Peak5	4.8725	252.1205	9.62 min	27.1627

FWZ gradient method: Co-solvent from 3% to 10% during the first 10 min, then keep 10%

Peak #	Peak Name	Area %	Area	Ret. Time	Height
1	Peak1	54.4696	3413.1126	7.22 min	366.2136
2	Peak2	2.4249	151.9469	7.93 min	17.7955
3	Peak3	39.3137	2463.4324	8.66 min	243.6871
4	Peak4	3.7918	237.5951	9.64 min	26.1231

FWZ gradient method: Co-solvent from 3% to 10% during the first 10 min, then keep 10%

SOMME	14	71.62 100.00			
4	49,78 29	98,78 20,30	1,58	1,21	9344,66
3	43,32 43	35,89 29,62	1,99	1,09	8797,36
2	24,70 29	99,68 20,36	1,64	0,57	10472,68
1	19,47 43	37,27 29,71	1,84	0,47	9602,60

Nom	Fwz-151 B	Type d'échantillon	Echantillon
Nº Flacon	0		
Quantité	0,000000 mg	Volume d'injection	5,00 μl
Dilution	1	Diviseur	1
Informations :			

OJ-H Hex/EtOH 95/5; 1.0 ml/min, 210nm, 20 °C

Page 1/1

SOMME

Nom	Fwz-692 A-2	Type d'échantillon	Echantillon	
N° Flacon	0			
Quantité	0,00000 mg	Volume d'injection	5,00 μl	
Dilution	1	Diviseur	1	
Informations :				

O-JH hex/EtOH 95/5; 1.0 ml/min, 210nm, 10 °C

1350,69

100,00

Page 1/1

Peak #	Peak Name	Ared 76	Area	Ret. Time	neight
1	Peak1	14.64	698.4441	16.26 min	41.4126
2	Peak2	35.7889	1707.4129	20.1 min	71.8401
3	Peak3	34.2307	1633.0762	22.03 min	59.8703
4	Peak4	15.3404	731.8609	23.73 min	22.5232

FWZ gradient method: Co-solvent from 3% to 10% during the first 10 min, then keep 10%

FWZ gradient method: Co-solvent from 3% to 10% during the first 10 min, then keep 10%

1.4249

218.8061

24.47 min

7.1224

Peak4

Nom	MP0616 Racemic-2	Type d'échantillon	Echantillon
Quantité	0,000000 mg	Volume d'injection	5,00 μl
Dilution Informations :	1	Diviseur	1

AD-H Hex/EtOH 90/10; 1.0 ml/min, 210nm, 20 °C

Page 1/1

Nom	Fwz-691 C-5	Type d'échantillon	Echantillon	
N° Flacon	0			
Quantité	0,000000 mg	Volume d'injection	5,00 µl	
Dilution	1	Diviseur	1	
Informations :				
	FIGURACIUS LA VI L SUS			

AD-H hex/EtOH 90/10; 1.0 ml/min, 210nm, 20°C

Nom	Fwz-695	Type d'échantillon	Echantillon
Nº Flacon	0		
Quantité	0,000000 mg	Volume d'injection	5,00 μl
Dilution	1	Diviseur	1
Informations :			

IA Hex/EtOH 90/10; 1.0 ml/min, 210nm, 20 °C

Analyse : Fwz-691 D - UV Gauche

Nom	Fwz-691 D	Type d'échantillon	Echantillon
N° Flacon	0		
Quantité	0,000000 mg	Volume d'injection	5,00 µl
Dilution	1	Diviseur	1
Informations :			
	1 0 1/ 1 010 0000		

IA hex/EtOH 90/10; 1.0 ml/min, 210nm, 20 °C

Page 1/1

Analyse : Fwz-592 A - UV Gauche

SOMME

Informations sur l'échantillon

Nom	Fwz-592 A	Type d'échantillon	Echantillon
Nº Flacon	0		
Quantité	0,000000 mg	Volume d'injection	5,00 μl
Dilution	1	Diviseur	1
Informations :			

AD-H Hex/EtOH 90/10; 1.0 ml/min, 210nm, 20 °C

Page 1/1

Analyse : Fwz-691 E-5 - UV Gauche

#	Nom du pic	Tr.	Aire	% Aire	Asymetrie (AIA)	Largeur (50%)	Plateaux (EP)
1		12,05	473,18	27,20	1,34	0,26	12325,70
2		13,63	94,65	5,44	1,18	0,42	5922,85
3		17,08	1005,68	57,81	1,62	0,38	11011,61
4		22,88	44,11	2,54	1,23	0,48	12793,39
5		30,33	122,11	7,02	1,37	0,65	12203,52
SOMME			1739,72	100,00			

Informations sur l'échantillon

Nom	Fwz-691 E-5	Type d'échantillon	Echantillon
N° Flacon	0	Malana a diata di an	5.00.01
Quantite	0,000000 mg	Volume d'injection	5,00 µl
Dilution	1	Diviseur	1
informations :			

AD-H hex/EtOH 90/10; 1.0 ml/min, 210nm, 20 °C

FWZ gradient method 1: Co-solvent from 1% to 10% during the first 20 min, then keep 10%

Peak #	Peak Name	Area %	Area	Ret. Time	Height
1	Peak1	1.5948	97.3535	7.17 min	5.7161
2	Peak2	44.0501	2688.9253	8.92 min	247.7833
3	Peak3	2.199	134.2308	9.54 min	14.9559
4	Peak4	48.1525	2939.3442	10.09 min	249.9144
5	Peak5	4.0036	244.39	11.16 min	24.8257

FWZ gradient method 1: Co-solvent from 1% to 10% during the first 20 min, then keep 10%

Spectra (¹H, ³¹P, ¹³C NMR)

bbm

-105,924

ppm 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10

^{ppm} 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10

ppm 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10

References

- ¹ C. Nieto-Oberhuber, S. Lopez, A. M. Echavarren, J. Am. Chem. Soc., 2005, **127**, 6178.
- ² M. J. Johansson, D. J. Gorin, S. T. Staben and F. D. Toste, J. Am. Chem. Soc., 2005, **127**, 18002.
- ³ D. Vasu, R. Liu, *Chem. Eur. J.* 2012, **18**, 13638.
- ⁴ M. P. Muñoz, J. Adrio, J. C. Carretero and A. M. Echavarren, *Organometallics*, 2005, 24, 1293.
- ⁵ G. L. Lalonde, B. D. Sherry, E. J. Kang and F. D. Toste, J. Am. Chem. Soc. 2007, **129**, 2452.
- ⁶ Z. Zhang, C. F. Bender, R. A. Widenhoefer, J. Am. Chem. Soc. 2007, **129**, 14148.
- ⁷ P. García-García, A. Martínez, A. M. Sanjuán, M. A. Fernández-Rodríguez, R. Sanz, Org. Lett. 2012, 14, 4970.
- ⁸ a) A. Pradal, C.-M. Chao, M. R. Vitale, P. Y.Toullec and V. Michelet, *Tetrahedron*, 2011, **67**, 4371; b) C. Sarcher, A. Lühl, F. C. Falk, S. Lebedkin,
- M. Kühn, C. Wang, J. Paradies, M. M. Kappes, W. Klopper and P. W. Roesky, Eur. J. Inorg. Chem., 2012, 5033.
- ⁹ A. Arnanz, C. González-Arellano, A. Juan, G.Villaverde, A. Corma, M. Iglesias and F. Sánchez, *Chem. Commun.*, 2010, 46, 3001.
- ¹⁰ N. Delpont, I. Escofet, P. Pérez-Galán, D. Spiegl, M. Raducan, C. Bour, R. Sinisi and A. M. Echavarren, *Catal. Sci. Technol.*, 2013, **3**, 3007.
- ¹¹ A. Z. González and F. D. Toste, Org. Lett., 2010, **12**, 200.
- ¹² A. Z. González, D. Benitez, E. Tkatchouk, W. A. Goddard III and F. D. Toste, J. Am. Chem. Soc., 2011, 133, 5500.
- ¹³ B. W. Gung, L. N. Bailey, D. T. Craft, C. L. Barnes and K. Kirschbaum, Organometallics, 2010, 29, 3450.
- ¹⁴ I. Alonso, B. Trillo, F. López, S. Montserrat, G. Ujaque, L. Castedo, A. Lledós and J. L. Mascareñas, J. Am. Chem. Soc., 2009, 131, 13020.
- ¹⁵ H. Teller, S. Flügge, R. Goddard and A. Fürstner, Angew. Chem. Int. Ed., 2010, 49, 1949.
- ¹⁶ S. Ma, X. Han, S. Krishnan, S. C. Virgil and B. M. Stoltz, Angew. Chem. Int. Ed., 2009, 48, 8037.

¹⁷ a) C.-Y. Zhou and C.-M. Che, *J. Am. Chem. Soc.*, 2007, **129**, 5828; b) A. Guérinot, W. Fang, M. Sircoglou, C. Bour, S. Bezzenine-Lafollée and V. Gandon, *Angew. Chem. Int. Ed.*, 2013, **52**, 5848; c) W. Fang, M. Presset, A. Guérinot, C. Bour, S. Bezzenine-Lafollée and V. Gandon, *Chem. Eur. J.*, 2014, **20**, DOI: 10.1002/chem.201304831.

¹⁸ S. M. Smith, G. L. Hoang, R. Pal, M. O. B. Khaled, L. S. W. Pelter, X. C. Zenga and J. M. Takacs, *Chem. Commun.*, 2012, 48, 12180.

¹⁹ For Au/Ga-catalyzed addition of 1,3-dicarbonyls to alkynes, see: Y. Xi, D. Wang, X. Ye, N. G. Akhmedov, J. L. Petersen and X. Shi, *Org. Lett.*, 2013, **16**, 306.