Supporting Information for

Palladium–Catalyzed, Copper–Mediated Construction of Benzene Rings from the Reactions of Indoles with *in–situ* Generated Enones

Tenglong Guo, Quanbin Jiang, Fei Huang, Jiping Chen, Zhengkun Yu*

Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China; State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China zkyu@dicp.ac.cn

Experimental procedures and analytical data

Contents:	page
1. General considerations	2
2. Experimental procedures	3
3. X-Ray crystallographic studies for 3i and 8	8
4. Analytical data	11
5. Copies of NMR spectra for known compounds	30
6. Copies of NMR spectra for new compounds	40

1. General considerations

The starting compounds N-ethylindole (1b),¹ N-propylindole (1c),² N-(1d)³ N-phenylindole (1e)⁴ N-allylindole (1f)³ 1,4benzvlindole dimethylindole (1g),⁴ 1,5-dimethylindole (1h),¹ 1,6-dimethylindole (1i),⁵ 1,7dimethylindole (1j),⁴ 5-methoxy-1-methyl-1*H*-indole (1k),³ 5-fluoro-1-methyl-1*H*-indole (11),³ 5-chloro-1-methyl-1*H*-indole (1m),³ 1-methyl-5-nitro-1*H*indole (1n),¹ 1-methyl-1*H*-indole-5-ca-rbonitrile (10),¹ methyl 1-methyl-1*H*indole-7-carboxylate (10),⁶ 1-methyl-1*H*-pyrrolo[2,3-*b*]pyridine (1r),⁷ 4methoxy-1-methyl-1*H*-indole (1s),⁸ 3-chloro-1-(p-tolyl)propan-1-one (2b),⁹ 1-(2c),¹⁰ (4-(tert-butyl)phenyl)-3-chloropropan-1-on-e 3-chloro-1-(4methoxyphenyl)propan-1-one (2d),⁹ 1-([1,1'-biphenyl]4-yl)-3-chloropropan-1one (2g),¹¹ 3-chloro-1-(naphthalen-1-yl)propan-1-one (2h), 3-chlor-o-1-(2,5dimethylphenyl)propan-1-one (2i), 3-chloro-1-(2,4-dimethylphenyl)-propan-1one (2j), 3-chloro-1-(3,4-dimethylphenyl)propan-1-one (2k), 3-chloro-1-(thiophen-2-yl)pro-pan-1-one (2l), 3-chloro-1-(furan-2-yl)propan-1-one (2m), phenyl 3-chloropropanoate (2n), 3-chloro-1-(p-tolyl)butan-1-one (2o), and 1phenylprop-2-en-1-one (6),⁹ (*E*)-3-(1-methyl-1H-indol-3-yl)-1-phenylprop-2en-1-one (4a), and (E)-3-(1H-indol-3-yl)-1-phenylprop-2-en-1-one (4a')¹² were prepared as reported. They were identified by comparison of their NMR features with the reported data of the authentic samples. The spectroscopic features of the known compounds 3a and 5c-5e, ¹³ 4b, ¹⁴ 4d, ¹⁵ 4f, ¹⁶ and benzene-1,3,5-triyltris(phenylmethanone)¹⁷ are in good agreement with those reported in the literatures.

References

- 1 L. Zhang and Y. Wang, Tetrahedron, 2013, 69, 4237.
- 2 T. Qi, W. F. Qiu and D. B. Zhu, J. Org. Chem., 2008, 73, 4640.
- 3 G. L. Tolnai, S. Ganss and J. Waser, Org. Lett., 2013, 15, 114.
- 4 X. H. Xu, G. K. Liu and N. Shibata, Org. Lett., 2011, 13, 4856.
- 5 H. Zhang, D. Liu and A. W. Lei, Chem. Eur. J., 2011, 17, 9582.
- 6 M. Kitano and A. Kofima, Chem. Pharm. Bull., 1999, 47, 1539.
- 7 H. Zhang, D. Liu and A. W. Lei, Chem. Eur. J., 2011, 17, 9582.
- 8 V. J. Gray and J. D. Wilden, Tetrahedron Lett., 2012, 53, 42.

- 9 Q. B. Jiang, T. L. Guo and Z. K. Yu, Adv. Synth. Catal., 2013, 355, 1874.
- 10 J. Nishida and Y. Yamashita, J. Mater. Chem., 2012, 22, 4484.
- 11 M. J. Richard and N. H. Cromwell, J. Am. Chem. Soc., 1957, 79, 402.
- 12 R. B. V. Order and H. G. Lindwall, J. Org. Chem., 1945, 10, 129.
- 13 K.Ozaki, A. W. Lei and K. Itami, Chem. Sci. 2013, 4, 3416.
- 14 D. S. Black, M. C. Bowyer and N. Kumar, Tetrahedron, 1997, 53, 8568.
- 15 C. Venkatesh and H. Ila, J. Org. Chem., 2002, 67, 9477.
- 16 S. K. Xiang and N. Jiao, Tetrahedron Lett., 2012, 53, 3803.
- 17 H.-F. Jiang, Y.-X. Shen and Z.-Y. Wang, Tetrahedron Lett., 2007, 48, 7544.

2. Experimental procedures

2.1. A typical procedure for the synthesis of carbazoles from the reactions of indoles (1) and β-chloroalkyl ketones (2)

Synthesis of 3a: A mixture of *N*-methylindole (1a) (26 mg, 0.2 mmol), 3chloropropiophenone (2a) (133 mg, 0.8 mmol), Pd(OAc)₂ (4.5 mg, 0.02 mmol), Cu(OAc)₂ (218 mg, 1.2 mmol), and NaOAc (66 mg, 0.8 mmol) in 2.5 mL DMF/DMSO (v/v = 9:1) was stirred at 110 °C under an air atmosphere for 20 h. After cooled to ambient temperature, the resultant mixture was diluted with 10 mL of CH₂Cl₂, filtered through a short pad of silica gel, followed by rinsing the silica gel with the same solvent (20 mL). The combined filtrate was washed with brine (15 mL). The organic phase was then dried over anhydrous Na₂SO₄, filtered, concentrated under reduced pressure. The resulting residue was purified by flash silica gel column chromatography (eluent: petroleum ether (60-90 °C)/EtOAc/CH₂Cl₂ = 30:1:2, v/v/v) to afford **3a** as a white solid (64 mg, 82%).

2.2. Screening of reaction conditions

Table S1. Screening of conditions for the reaction of *N*-methyl indole (1a) with 3-chloropropiophenone (2a).^[a]

		+ Ph Cl	Conditions		Ph -Ph	
Entry	Catalyst	Solvent	Oxidant	Base	Temp (°C)	Yield ^[b]
1	$Pd(OAc)_2$	dioxane	$Cu(OAc)_2$	Na ₂ CO ₃	100	10
2	$Pd(OAc)_2$	DMSO	$Cu(OAc)_2$	Na ₂ CO ₃	100	43
3	$Pd(OAc)_2$	DMF	$Cu(OAc)_2$	Na ₂ CO ₃	100	51
4	$Pd(OAc)_2$	$\frac{DMF/DMSO}{(v/v = 5:1)}$	$Cu(OAc)_2$	Na ₂ CO ₃	100	71
5	$Pd(OAc)_2$	$\frac{DMF}{DMSO}$ $(v/v = 9:1)$	$Cu(OAc)_2$	Na ₂ CO ₃	100	74
6	$Pd(OAc)_2$	$\frac{DMF/DMSO}{(v/v = 9:1)}$		Na ₂ CO ₃	100	<1
7 ^[c]	$Pd(OAc)_2$	DMF/DMSO (v/v = 9:1)	$Cu(OAc)_2$	Na ₂ CO ₃	100	46
8 ^[d]	$Pd(OAc)_2$	DMF/DMSO (v/v = 9:1)	$Cu(OAc)_2 + O_2$	Na ₂ CO ₃	100	40
9	$Pd(OAc)_2$	DMF/DMSO (v/v = 9:1)	Cu(OAc) ₂ ·H ₂ O	Na ₂ CO ₃	100	65
10	$Pd(OAc)_2$	$\frac{DMF}{DMSO}$ (v/v = 9:1)	AgOAc	Na ₂ CO ₃	100	45
11	Pd(OAc) ₂	$\frac{DMF}{DMSO}$ (v/v = 9.1)	Ag ₂ CO ₃	Na ₂ CO ₃	100	32
12	$Pd(OAc)_2$	DMF/DMSO $(y/y = 9.1)$	CuCl ₂	Na ₂ CO ₃	100	24
13	$Pd(OAc)_2$	(v/v = 9.1) DMF/DMSO (v/v = 9.1)	$K_2S_2O_8$	Na ₂ CO ₃	100	0
14	$Pd(OAc)_2$	(v/v = 9.1) DMF/DMSO (v/v = 9.1)	PhI(OAc) ₂	Na ₂ CO ₃	100	0
15	$Pd(OAc)_2$	(v/v = 9.1) DMF/DMSO (v/v = 9.1)	BQ	Na ₂ CO ₃	100	<1
16	$Pd(OAc)_2$	(v/v = 9.1) DMF/DMSO (v/v = 9.1)	^t BuOO ^t Bu	Na ₂ CO ₃	100	<1
17	$Pd(OAc)_2$	$(\sqrt{v} = 9.1)$ DMF/DMSO	CuOAc	Na ₂ CO ₃	100	<1
18	$Pd(OAc)_2$	(v/v = 9.1) DMF/DMSO (v/v = 9.1)	Cu(OAc) ₂	Na ₂ CO ₃	110	77
19	$Pd(OAc)_2$	(v/v = 9.1) DMF/DMSO (v/v = 9.1)	Cu(OAc) ₂	Na ₂ CO ₃	120	73
20		$(\sqrt{v} - 9.1)$ DMF/DMSO	Cu(OAc) ₂	Na ₂ CO ₃	110	0
21	PdCl ₂	(V/V = 9.1) DMF/DMSO	Cu(OAc) ₂	Na ₂ CO ₃	110	68
22	Pd(PPh ₃) ₂ Cl ₂	(V/V = 9.1) DMF/DMSO	Cu(OAc) ₂	Na ₂ CO ₃	110	75
23	Pd(CH ₃ CN) ₂ Cl ₂	(V/V = 9:1) DMF/DMSO	Cu(OAc) ₂	Na ₂ CO ₃	110	73
24	Pd ₂ (dba) ₃	(v/v = 9:1) DMF/DMSO	Cu(OAc) ₂	Na ₂ CO ₃	110	76
25	Pd(PPh ₃) ₄	$(\sqrt{v} = 9.1)$ DMF/DMSO	Cu(OAc) ₂	Na ₂ CO ₃	110	64
26	Pd(OAc) ₂	(V/V = 9:1) DMF/DMSO	Cu(OAc) ₂	K ₂ CO ₃	110	72
27	Pd(OAc) ₂	(v/v = 9:1) DMF/DMSO	Cu(OAc) ₂	K ₃ PO ₄	110	63
28	Pd(OAc) ₂	(v/v = 9:1) DMF/DMSO	Cu(OAc) ₂	NaOAc	110	81
29	Pd(OAc) ₂	(v/v = 9:1) DMF/DMSO	Cu(OAc) ₂	KOAc	110	80
30 ^[e]	Pd(OAc) ₂	(v/v = 9:1) DMF/DMSO (v/v = 0:1)	Cu(OAc) ₂	NaOAc	110	82
31 ^[e]	$Pd(OAc)_2$	(v/v = 9:1) DMF/DMSO	air	NaOAc	110	<1

32 ^[e,f]	$Pd(OAc)_2$	DMF/DMSO (y/y = 9.1)	Cu(OAc) ₂	NaOAc	110	63
33 ^[e]	$Pd(OAc)_2$	DMF/DMSO ($y/y = 9.1$)	CuOAc	NaOAc	110	51
34 ^[e]	Pd(OAc) ₂	(v/v = 9.1) DMF/DMSO (v/v = 9.1)	Cu(OAc) ₂		110	29
35 ^[e,g]	Pd(OAc) ₂	$\frac{\text{DMF/DMSO}}{(v/v = 9:1)}$	Cu(OAc) ₂	NaOAc	110	70

[a] Conditions: **1a** (0.2 mmol), **2a** (0.8 mmol), catalyst (0.02 mmol), base (0.8 mmol), oxidant (1.2 mmol), solvent (2.5 mL), N₂, 20 h. [b] Isolated yields. [c] $Cu(OAc)_2$ (0.6 mmol) [d] $Cu(OAc)_2$ (0.6 mmol), O₂ (1.0 atm). [e] In air. [f] $Cu(OAc)_2$ (1.0 mmol) were used. [g] Using 5 mol % catalyst.

2.3. Construnction of a benzene ring from 3-chloropropiophenone (2a)

A mixture of 3-chloropropiophenone (**2a**) (101 mg, 0.6 mmol), Pd(OAc)₂ (13.5 mg, 0.06 mmol), Cu(OAc)₂ (218 mg, 1.2 mmol), and NaOAc (50 mg, 0.6 mmol) in 2.5 mL DMF/DMSO (v/v = 9:1) was stirred at 110 °C under an air atmosphere for 20 h. After cooled to ambient temperature, the reaction mixture was diluted with 10 mL CH₂Cl₂, filtered through a short pad of silica gel, followed by rinsing the silica gel with the same solvent (20 mL). The combined filtrate was washed with brine (15 mL). The organic phase was then dried over anhydrous Na₂SO₄, filtered, concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (eluent: petroleum ether (60-90 °C)/EtOAc/CH₂Cl₂ = 30:1:2, v/v/v) to afford benzene-1,3,5-triyltris(phenylmethanone) as a yellow liquid (16 mg, 20%).

2.4. Monitoring the reaction of 1a with 2a

A mixture of *N*-methylindole (**1a**) (26 mg, 0.2 mmol), 3chloropropiophenone (**2a**) (133 mg, 0.8 mmol), $Pd(OAc)_2$ (1.8 mg, 0.008 mmol), $Cu(OAc)_2$ (218 mg, 1.2 mmol), and NaOAc (66 mg, 0.8 mmol) in 2.5 mL DMF/DMSO (v/v = 9:1) was stirred at 80 °C under an air atmosphere for 1.5 h. In a fashion similar to the work-up procedure described in 2.1, **4a** was isolated as a yellow solid (20 mg, 38%) and compound **3a** was not observed. In a similar fashion the reaction was performed and stopped at 3.0 h, **4a** (30 mg, 57%) was then isolated as a yellow solid (20 mg, 38%) and compound **3a** (12 mg, 15%) was obtained as a white solid.

2.5. Synthesis of 3a from the reaction of 1a and enone 6

A mixture of *N*-methylindole (**1a**) (26 mg, 0.2 mmol), phenyl vinyl ketone (**6**) (106 mg, 0.8 mmol), $Pd(OAc)_2$ (4.5 mg, 0.02 mmol), $Cu(OAc)_2$ (218 mg, 1.2 mmol), and NaOAc (33 mg, 0.4 mmol) in 2.5 mL DMF/DMSO (v/v = 9:1) was stirred at 110 °C under an air atmosphere for 20 h. After cooled to ambient temperature, the reaction mixture was worked up in a fashion similar to that described in 2.1 to afford **3a** as a white solid (43 mg, 55%). Without a base, the same reaction gave **3a** (47 mg, 60%).

2.6. Controlled reaction of 4a with 2a

The reaction conducted under the standard conditions: A mixture of **4a** (52 mg, 0.2 mmol), 3-chloropropiophenone (**2a**) (101 mg, 0.6 mmol), $Pd(OAc)_2$ (4.5 mg, 0.02 mmol), $Cu(OAc)_2$ (145 mg, 0.8 mmol), and NaOAc (50 mg, 0.6 mmol) in 2.5 mL DMF/DMSO (v/v = 9:1) was stirred at 110 °C under an air atmosphere for 20 h. After cooled to ambient temperature, the reaction mixture was worked up in a fashion similar to that described in 2.1 to afford **3a** as a white solid (59 mg, 75%).

2.7. Reaction of 4a with styrene

A 10-mL screw-capped tube was charged with a mixture of **4a** (52 mg, 0.2 mmol), styrene (63 mg, 0.6 mmol), $Pd(OAc)_2$ (4.5 mg, 0.02 mmol), $Cu(OAc)_2$ (145 mg, 0.8 mmol), and NaOAc (32 mg, 0.4 mmol) in DMF/DMSO (v/v = 9:1) 2.5 mL, and then fitted with a Teflon screwcap. The reaction mixture was

stirred at 110 °C under an air atmosphere for 20 h. After cooled to ambient temperature, the reaction mixture was worked up in a fashion similar to that described in 2.1 to afford 7 as a yellow solid (16 mg, 22%) and 8 as a pale yellow solid (12 mg, 17%) by means of petroleum ether (60-90 °C)/EtOAc/CH₂Cl₂ = 30:1:4, v/v/v) as the eluent.

2.8. Reaction of 4a' with 2a

A mixture of **4a'** (48 mg, 0.2 mmol), 3-chloropropiophenone (**2a**) (110 mg, 0.6 mmol), and NaOAc (50 mg, 0.6 mmol) in 2.5 mL DMF/DMSO (v/v = 9:1) was stirred at 110 °C under an air atmosphere for 20 h. After cooled to ambient temperature, the reaction mixture was worked up in a fashion similar to that described in 2.1 to afford **9** as a yellow solid (30 mg, 39%) by means of petroleum ether (60-90 °C)/EtOAc/CH₂Cl₂ = 30:1:5, v/v/v) as the eluent.

2.9. A typical procedure for the synthesis of mixed aroyl-substituted carbazoles

Synthesis of 10a: A mixture of 4a (52 mg, 0.2 mmol), 2b (110 mg, 0.6 mmol), Cu(OAc)₂ (145 mg, 0.8 mmol), and NaOAc (50 mg, 0.6 mmol) in 2.5 mL DMF/DMSO (v/v = 9:1) was stirred at 110 °C under an air atmosphere for 20 h. After cooled to ambient temperature, the reaction mixture was worked up in a fashion similar to that described in 2.1 to afford 10a as a white solid (60 mg, 74%) by means of petroleum ether (60-90 °C)/EtOAc/CH₂Cl₂ = 30:1:5, v/v/v) as the eluent.

2.10. A typical procedure for one-pot synthesis of functionalized carbazoles

Synthesis of 10c: A mixture of *N*-methylindole (**1a**) (26 mg, 0.2 mmol), **2d** (40 mg, 0.2 mmol), Pd(OAc)₂ (4.5 mg, 0.02 mmol), Cu(OAc)₂ (218 mg, 1.2 mmol), and NaOAc (66 mg, 0.8 mmol) in 2.5 mL DMF/DMSO (v/v = 9:1) was stirred at 80 °C under air atmosphere for 2 h until **2d** was completely consumed by TLC monitoring. Then, 3-chloropropiophenone (**2a**) (101 mg, 0.6 mmol) was added, and the mixture was further stirred at 110 °C under air atmosphere for 20 h. After cooled to ambient temperature, the reaction mixture was worked up in a fashion similar to that described in 2.1 to afford **10c** as a white solid (52 mg, 62%).

3. X-Ray crystallographic studies

Single crystal X-ray diffraction studies for compounds **3i** and **8** were carried out on a SMART APEX diffractometer with graphite-monochromated Mo K α radiation (λ = 0.71073 Å). Cell parameters were obtained by global refinement of the positions of all collected reflections. Intensities were corrected for Lorentz and polarization effects and empirical absorption. The structures were solved by direct methods and refined by full-matrix least squares on F^2 . All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed in calculated positions. Structure solution and refinement were performed by using the SHELXL-97 package. The X-ray crystallographic files, in CIF format, are available from the Cambridge Crystallographic Data Centre on quoting the deposition numbers CCDC 973030 for **3i** and CCDC 973031 for **8**. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 IEZ, UK (Fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk).

Figure 1. Molecular structure of 3i.

Table S2. Crystal data and structure refinement for 3i.

Identification code cd213329
Empirical formula C28 H21 N O2
Formula weight 403.46
Temperature293(2) K
Wavelength 0.71073 A
Crystal system, space group Monoclinic, P2(1)/n
Unit cell dimensions $a = 13.6381(14) \text{ A}$ alpha = 90 deg.
b = 10.0676(11) A beta = 91.542(2) deg.
c = 15.0801(15) A gamma = 90 deg.
Volume 2069.8(4) A^3
Z, Calculated density 4, 1.295 Mg/m ³
Absorption coefficient 0.081 mm^-1
F(000) 848
Crystal size 0.232 x 0.175 x 0.121 mm
Theta range for data collection 1.99 to 26.00 deg.
Limiting indices -13<=h<=16, -12<=k<=12, -17<=l<=18
Reflections collected / unique $12052 / 4067 [R(int) = 0.0489]$
Completeness to theta = 26.00 99.9 %
Absorption correction Empirical
Max. and min. transmission 1.00000 and 0.10650
Refinement method Full-matrix least-squares on F^2

Data / restraints / parameters	4067 / 0 / 283
Goodness-of-fit on F^2	1.055
Final R indices [I>2sigma(I)]	R1 = 0.0513, wR2 = 0.1237
R indices (all data)	l = 0.0652, wR2 = 0.1343
Extinction coefficient (0.029(3)
Largest diff. peak and hole	0.274 and -0.261 e.A^-3

Figure 2. Molecular structure of 8.

Table S3. Crystal data and structure refinement for 8.

Identification code	cd213449			
Empirical formula	C26 H19 N O			
Formula weight	361.42			
Temperature	293(2) K			
Wavelength	0.71073 A			
Crystal system, space gro	Crystal system, space group Triclinic, P-1			
Unit cell dimensions	a = 8.8997(14) A alpha = 79.341(3) deg.			
b =	9.2955(15) A beta = $78.262(3)$ deg.			
c =	11.9387(19) A gamma = $83.259(3)$ deg.			
Volume	947.0(3) A^3			
Z, Calculated density	2, 1.267 Mg/m^3			
Absorption coefficient	0.077 mm^-1			
F(000)	380			
Crystal size	0.221 x 0.165 x 0.123 mm			

Theta range for data collection 1.77 to 25.99 deg.
Limiting indices -8<=h<=10, -11<=k<=11, -12<=l<=14
Reflections collected / unique 5740 / 3700 [R(int) = 0.0185]
Completeness to theta = 25.99 99.6 %
Absorption correction Empirical
Max. and min. transmission 1.00000 and 0.59495
Refinement method Full-matrix least-squares on F ²
Data / restraints / parameters 3700 / 0 / 254
Goodness-of-fit on F ² 1.058
Final R indices $[I>2sigma(I)]$ R1 = 0.0471, wR2 = 0.1344
R indices (all data) $R1 = 0.0555$, $wR2 = 0.1431$
Largest diff. peak and hole 0.202 and -0.283 e.A^-3

4. Analytical data

(9-Ethyl-9*H*-carbazole-1,3-diyl)bis(phenylmethanone) (3b): Yield 70%. Pale yellow solid, m.p.: 110-113 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.75 (d, *J* = 1.3 Hz, 1 H, aromatic CH), 8.16 (d, *J* = 7.8 Hz, 1 H, aromatic CH), 7.97 (m, 3 H, aromatic CH), 7.84 (d, *J* = 7.2 Hz, 2 H, aromatic CH), 7.64 (t, 1 H, aromatic CH), 7.57 and 7.50 (m each, 2:5 H, aromatic CH), 7.35 (t, 1 H, aromatic CH), 4.31 (q, 2 H, NCH₂CH₃), 1.22 (t, 3 H, NCH₂CH₃). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 196.2 and 195.8 (Cq each, C=O), 141.8, 139.6, 138.5, 137.5, 127.3, 125.1, 123.1, and 122.5 (Cq each), 133.9, 132.1, 130.8, 130.0, 129.6, 128.9, 128.4, 127.3, 125.6, 120.9, 120.7, and 109.8 (aromatic CH), 40.2 (NCH₂CH₃), 13.4 (NCH₂CH₃). HRMS Calcd for C₂₈H₂₁NO₂ [M]⁺: 403.1572; Found: 403.1580.

(9-Propyl-9*H*-carbazole-1,3-diyl)bis(phenylmethanone) (3c): Yield 63%. Pale yellow solid, m.p.: 96-98 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.76 (d,

J = 1.2 Hz, 1 H, aromatic CH), 8.16 (d, J = 7.8 Hz, 1 H, aromatic CH), 7.98 (m, 3 H, aromatic CH), 7.85 (d, J = 7.3 Hz, 2 H, aromatic CH), 7.64 (t, 1 H, aromatic CH), 7.54 (m, 7 H, aromatic CH), 7.34 (t, 1 H, aromatic CH), 4.24 (t, 2 H, NCH₂CH₂CH₃), 1.63 (m, 2 H, NCH₂CH₂CH₃), 0.72 (t, 3 H, NCH₂CH₂CH₃). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 196.0 and 195.8 (Cq each, C=O), 142.2, 139.8, 138.5, 137.5, 127.3, 125.0, 123.0, and 122.6 (Cq each), 133.9, 132.1, 130.8, 130.0, 129.7, 128.9, 128.4, 127.2, 125.6, 120.8, 120.6, and 110.1 (aromatic CH), 46.7 (NCH₂CH₂CH₃), 21.8 (NCH₂CH₂CH₃), 11.2 (NCH₂CH₂CH₃). HRMS Calcd for C₂₉H₂₃NO₂ [M]⁺: 417.1729; Found: 417.1735.

(9-Benzyl-9*H*-carbazole-1,3-diyl)bis(phenylmethanone) (3d): Yield 63%. Pale yellow solid, m.p.: 115-117 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.79 and 7.86 (s each, 1:1 H, aromatic CH), 8.22 (d, *J* = 7.8 Hz, 1 H, aromatic CH), 7.82 (d, *J* = 7.4 Hz, 2 H, aromatic CH), 7.56, 7.48, and 7.40 (m each, 3:5:1 H, aromatic CH), 7.28 (t, 2 H, aromatic CH), 6.92 and 6.86 (t each, 1:2 H, aromatic CH), 6.65 (d, *J* = 7.4 Hz, 2 H, aromatic CH), 5.61 (s, 2 H, *CH*₂Ph). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 195.8 and 195.5 (Cq each, C=O), 143.0, 139.8, 138.3, 137.2, 135.8, 127.6, 125.5, 123.4, and 122.9 (Cq each), 133.1, 132.2, 130.5, 130.1, 129.9, 128.5, 128.4, 128.2, 127.5, 127.4, 127.0, 125.6, 121.2, 120.8, and 110.0 (aromatic CH), 48.3 (*C*H₂Ph). HRMS Calcd for C₃₃H₂₃NO₂ [M]⁺: 465.1729; Found: 465.1727.

(9-Allyl-9*H*-carbazole-1,3-diyl)bis(phenylmethanone) (3f): Yield 56%. Pale yellow solid, m.p.: 111-114 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.78 and 8.00 (s each, 1:1 H, aromatic CH), 8.17 (d, *J* = 7.8 Hz, 1 H, aromatic CH), 7.93 (d, *J* = 7.9 Hz, 2 H, aromatic CH), 7.85 (d, *J* = 7.7 Hz, 2 H, aromatic CH), 7.58 and 7.49 (m each, 3:5 H, aromatic CH), 7.36 (t, 1 H, aromatic CH), 5.71 (m, 1 H, CH₂CH=CH₂), 4.97 (d, *J* = 4.6 Hz, 2 H, CH₂CH=CH₂), 4.93 and 4.74 (d each, *J* = 10.4 Hz and 17.2 Hz, 1:1 H, CH₂CH=CH₂). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 195.9 and 195.78 (Cq each, C=O), 142.3, 140.0, 138.4, 137.5, 127.5, 125.2, 123.0, and 122.9 (Cq each), 133.7, 132.2, 131.8, 131.0, 130.2, 130.0, 128.6, 128.4, 127.4, 125.7, 121.1, 120.6, 117.7, 110.1 (aromatic CH), 47.4 (CH₂CH=CH₂). HRMS Calcd for C₂₉H₂₁NO₂ [M]⁺: 415.1572; Found: 415.1574.

(5,9-Dimethyl-9*H*-carbazole-1,3-diyl)bis(phenylmethanone) (3g): Yield 78%. Pale yellow solid, m.p.: 163-166 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.89 and 8.01 (s each, 1:1 H, aromatic CH), 7.97 (d, J = 7.5 Hz, 2 H, aromatic CH), 7.86 (d, J = 7.4 Hz, 2 H, aromatic CH), 7.64 and 7.58 (t each, 1:1 H, aromatic CH), 7.49 (m, 5 H, aromatic CH), 7.33 (d, J = 8.2 Hz, 1 H, aromatic CH), 7.14 (d, J = 7.3 Hz, 1 H, aromatic CH), 3.67 (s, 3 H, NCH₃), 2.89 (s, 3 H, CH₃). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 196.0 and 195.9 (Cq each, C=O), 142.8, 141.2, 138.5, 137.8, 127.5, 125.5, 122.0, and 121.3 (Cq each), 133.8, 132.1, 130.7, 130.0, 129.3, 128.8, 128.4, 127.8, 127.0, 122.7, and 107.3 (aromatic CH), 33.45 (NCH₃), 21.01 (CH₃). HRMS Calcd for C₂₈H₂₁NO₂ [M]⁺: 403.1572; Found: 403.1577.

(6,9-Dimethyl-9*H*-carbazole-1,3-diyl)bis(phenylmethanone) (3h): Yield 76%. Pale yellow solid, m.p.: 159-162 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.72 and 8.04 (d each, J = 1.3 Hz and 1.2 Hz, 1:1 H, aromatic CH), 7.97 and 7.84 (m each, 3:2 H, aromatic CH), 7.64 and 7.59 (t each, 1:1 H, aromatic CH), 7.50 and 7.36 (m each, 4:2 H, aromatic CH), 3.66 (s, 3 H, NCH₃), 2.55 (s, 3 H, CH₃). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 196.0 and 195.9 (Cq each, C=O), 141.4, 141.0, 138.6, 137.8, 130.4, 127.3, 124.7, 122.9, and 122.4 (Cq each), 133.8, 132.1, 130.8, 130.0, 129.8, 128.8, 128.7, 128.4, 125.7, 120.6, and 109.4 (aromatic CH), 33.3 (NCH₃), 21.5 (CH₃). HRMS Calcd for C₂₈H₂₁NO₂ [M]⁺: 403.1572; Found: 403.1580.

(7,9-Dimethyl-9*H*-carbazole-1,3-diyl)bis(phenylmethanone) (3i): Yield 70%. Pale yellow solid, m.p.: 156-158 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.71 (d, *J* = 1.6 Hz, 1 H, aromatic CH), 8.02, 7.98, and 7.84 (m each, 2:2:2 H, aromatic CH), 7.64 and 7.58 (t each, 1:1 H, aromatic CH), 7.50 (m, 4 H, aromatic CH), 7.26 (s, 1 H, aromatic CH), 7.17 (d, *J* = 8.0 Hz, 1 H, aromatic CH), 3.65 (s, 3 H, NCH₃), 2.58 (s, 3 H, CH₃). ¹³C{H¹} NMR (100 MHz, CDCl₃) δ 196.0 and 195.9 (Cq each, C=O), 143.2, 141.2, 138.5, 137.82, 137.77, 127.4, 124.9, 122.3, and 120.5 (Cq each), 133.8, 132.1, 130.8, 130.0, 129.4, 128.8, 128.4, 125.3, 122.4, 120.3, and 109.9 (aromatic CH), 33.2 (NCH₃), 22.4 (CH₃). HRMS Calcd for C₂₈H₂₁NO₂ [M]⁺: 403.1572; Found: 403.1576.

(8,9-Dimethyl-9*H*-carbazole-1,3-diyl)bis(phenylmethanone) (3j): Yield 79%. Pale yellow solid, m.p.: 176-179 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.72 and 8.06 (d each, J = 1.6 Hz, 1:1 H, aromatic CH), 7.98 and 7.84 (m each, 3:2 H, aromatic CH), 7.64 and 7.59 (t each, 1:1 H, aromatic CH), 7.51 (m, 4 H, aromatic CH), 7.27 (d, J = 6.4 Hz, 1 H, aromatic CH), 7.21 (t, 1 H, aromatic CH), 3.83 (s, 3 H, NCH₃), 2.80 (s, 3 H, CH₃). ¹³C{H¹} NMR (100 MHz, CDCl₃) δ 195.9 and 195.8 (Cq each, C=O), 142.9, 142.0, 138.4, 137.7, 127.8, 125.1, 123.9, 122.5, and 121.7 (Cq each), 133.8, 132.1, 130.7, 130.6, 130.2, 130.0, 128.8, 128.4, 125.5, 121.2, and 118.5 (aromatic CH), 37.2 (NCH₃), 20.5 (CH₃). HRMS Calcd for C₂₈H₂₁NO₂ [M]⁺: 403.1572; Found: 403.1578.

(6-Methoxy-9-methyl-9H-carbazole-1,3-diyl)bis(phenylmethanone)

(3k): Yield 80%. Pale yellow solid, m.p.: 166-169 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.73 and 8.03 (d each, J = 1.6 Hz, 1:1 H, aromatic CH), 7.98, 7.84, and 7.63 (m each, 2:2:2 H, aromatic CH), 7.58 (t, 1 H, aromatic CH), 7.50 (m, 4 H, aromatic CH), 7.36 (d, J = 8.9 Hz, 1 H, aromatic CH), 7.19 (dd, J = 8.9 and 2.4 Hz, 1 H, aromatic CH), 3.93 (s, 3 H, NCH₃), 3.65 (s, 3 H, OCH₃). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 195.85 and 195.83 (Cq each, C=O), 155.0, 141.5, 138.6, 137.8, 137.6, 127.0, 124.6, 123.3, and 122.4 (Cq each), 133.8, 132.1,

130.8, 130.0, 120.0, 128.8, 128.4, 125.8, 116.6, 110.5, and 103.2 (aromatic CH), 56.2 (OCH₃), 33.4 (NCH₃). HRMS Calcd for $C_{28}H_{21}NO_3$ [M]⁺: 419.1521; Found: 419.1529.

(6-Fluoro-9-methyl-9*H*-carbazole-1,3-diyl)bis(phenylmethanone) (31): Yield 70%. White solid, m.p.: 233-236 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.68 and 8.06 (d each, *J* = 1.4 Hz Hz, 1:1 H, aromatic CH), 7.98 (d, *J* = 7.2 Hz, 2 H, aromatic CH), 7.83 (m, 2 H, aromatic CH), 7.79 (dd, *J* = 8.5 and 2.4 Hz, 1 H, aromatic CH), 7.65 and 7.59 (t each, 1:1 H, aromatic CH), 7.51 (m, 4 H, aromatic CH), 7.39 (dd, *J* = 8.9, 4.1 Hz, 1 H, aromatic CH), 7.29 (m, 1 H, aromatic CH), 3.68 (s, 3 H, NCH₃). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 195.7 (Cq, C=O), 158.3 (Cq, d, *J* = 237 Hz, *i*-C of C₆H₃F), 141.9, 139.0, 138.3, 137.7, 127.5, 124.3 (Cq, d, *J* = 4.1 Hz, *p*-C of C₆H₃F), 123.4 (Cq, d, *J* = 9.7 Hz, *m*-C of C₆H₃F), and 122.8 (Cq each), 134.0, 132.3, 130.8, 130.3, 130.0, 128.9, 128.5, 126.1, 115.2 (CH, d, *J* = 25.4 Hz, *o*-C of C₆H₃F), 110.5 (CH, d, *J* = 8.9 Hz, *m*-C of C₆H₃F), and 106.5 (CH, d, *J* = 24.0 Hz, *o*-C of C₆H₃F) (aromatic CH), 33.5 (NCH₃). HRMS Calcd for C₂₇H₁₈FNO₂ [M]⁺: 407.1322; Found: 407.1329.

(6-Chloro-9-methyl-9*H*-carbazole-1,3-diyl)bis(phenylmethanone) (3m): Yield 61%. White solid, m.p.: 247-249 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.67 (d, *J* = 1.3 Hz, 1 H, aromatic CH), 8.08 (dd, *J* = 8.9 and 1.5 Hz, 2 H, aromatic CH), 7.98 (d, *J* = 7.5 Hz, 2 H, aromatic CH), 7.83 (d, *J* = 7.3 Hz, 2 H, aromatic CH), 7.65 and 7.60 (t each, 1:1 H, aromatic CH), 7.52 (m, 5 H, aromatic CH), 7.38 (d, *J* = 8.7 Hz, 1 H, aromatic CH), 3.68 (s, 3 H, NCH₃). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 195.6 (Cq, C=O), 141.5, 141.1, 138.3, 137.6, 127.9, 126.6, 124.0, 123.8, and 122.9 (Cq each), 134.0, 132.3, 130.8, 130.3, 130.0, 128.9, 128.5, 127.5, 126.0, 120.4, and 110.8 (aromatic CH), 33.5 (NCH₃). HRMS Calcd for C₂₇H₁₈NO₂ [M]⁺: 423.1026; Found: 423.1033.

(9-Methyl-6-nitro-9*H*-carbazole-1,3-diyl)bis(phenylmethanone) (3n): Yield 60%. Pale yellow solid, m.p.: 227-229 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.04 and 8.75 (s each, 1:1 H, aromatic CH), 8.46 (d, *J* = 9.0 Hz, 1 H, aromatic CH), 8.14 (s, 1 H, aromatic CH), 7.99 (d, *J* = 7.6 Hz, 2 H, aromatic CH), 7.84 (d, *J* = 7.5 Hz, 2 H, aromatic CH), 7.68 (t, 1 H, aromatic CH), 7.62 (d, *J* = 7.3 Hz, 1 H, aromatic CH), 7.54 (m, 5 H, aromatic CH), 3.77 (s, 3 H, NCH₃). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 195.4 and 195.2 (Cq each, C=O), 145.7, 142.3, 142.1, 137.9, 137.3, 129.3, 124.4, 123.9, and 122.6 (Cq each), 134.3, 132.6, 130.9, 130.7, 130.0, 129.1, 128.7, 126.0, 122.9, 117.4, and 109.7 (aromatic CH), 33.9 (NCH₃). HRMS Calcd for C₂₇H₁₈N₂O₄ [M]⁺: 434.1267; Found: 434.1276.

6,8-Dibenzoyl-9-methyl-9*H***-carbazole-3-carbonitrile (30):** Yield 65%. White solid, m.p.: 253-255 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.72 and 8.11 (d each, *J* = 1.5 Hz, 1:1 H, aromatic CH), 8.45 (d, *J* = 0.8 Hz, 1 H, aromatic CH), 7.98 (d, *J* = 7.3 Hz, 2 H, aromatic CH), 7.82 (m, 3 H, aromatic CH), 7.67 and 7.62 (t each, 1:1 H, aromatic CH), 7.53 (m, 5 H, aromatic CH), 3.74 (s, 3 H, NCH₃). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 195.4 and 195.3 (Cq each, C=O), 144.4, 141.7, 137.9, 137.4, 123.7, 123.5, 123.0, 119.9, and 104.0 (Cq each), 134.3, 132.6, 130.9, 130.6, 130.5, 130.0, 129.0, 128.6, 125.9, 125.6, and 110.6 (aromatic CH), 33.6 (NCH₃). HRMS Calcd for C₂₈H₁₈N₂O₂ [M]⁺: 414.1368; Found: 414.1378.

Methyl 6,8-dibenzoyl-9-methyl-9*H*-carbazole-2-carboxylate (3p): Yield 54%. Pale yellow solid, m.p.: 189-192 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.76 and 8.09 (s each, 1:1 H, aromatic CH), 8.18 (m, 2 H, aromatic CH), 8.03 (d, J = 8.2 Hz, 1 H, aromatic CH), 7.98 (d, J = 7.9 Hz, 2 H, aromatic CH), 7.83 (d, J = 7.7 Hz, 2 H, aromatic CH), 7.65 and 7.59 (t each, 1:1 H, aromatic CH), 7.51 (m, 4 H, aromatic CH), 3.99 (s, 3 H, NCH₃), 3.74 (s, 3 H, CO₂CH₃). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 195.57 and 195.54 (Cq each, C=O), 167.4 (Cq, *C*OOMe), 142.3, 142.2, 138.2, 137.5, 128.8, 128.0, 124.0, and 123.0 (Cq each), 134.1, 132.3, 130.8, 130.8, 130.0, 128.9, 128.5, 126.5, 122.0, 120.4, and 111.5 (aromatic CH), 52.5 (CO₂CH₃), 33.4 (NCH₃). HRMS Calcd for C₂₉H₂₁NO₄ [M]⁺: 447.1471; Found: 447.1471.

Methyl 6,8-dibenzoyl-9-methyl-9*H***-carbazole-1-carboxylate (3q):** Yield 67%. Pale yellow solid, m.p.: 211-214 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.75 and 8.10 (d each, *J* = 1.7 Hz, 1:1 H, aromatic CH), 8.28 (dd, *J* = 7.7 and 1.1 Hz, 1 H, aromatic CH), 7.96 and 7.84 (m each, 3:2 H, aromatic CH), 7.65, 7.59, and 7.51 (t each, 1:1:4 H, aromatic CH), 7.36 (t, 1 H, aromatic CH), 3.97 (s, 3 H, NCH₃), 3.54 (s, 3 H, CO₂CH₃). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 195.7 and 195.4 (Cq each, C=O), 167.6 (Cq, COOMe), 143.6, 141.5, 138.2, 137.5, 125.2 124.6, 123.2, and 116.7 (Cq each), 133.9, 132.34, 130.8, 130.6, 130.0, 130.0, 128.9, 128.5, 125.5, 124.4, and 120.5 (aromatic CH), 52.5 (CO₂CH₃), 38.8 (NCH₃). HRMS Calcd for C₂₉H₂₁NO₄ [M]⁺: 447.1471; Found: 447.1474.

(9-Methyl-9*H*-pyrido[2,3-b]indole-6,8-diyl)bis(phenylmethanone) (3r): Yield 60%. Pale yellow solid, m.p.: 114-116 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.74 and 8.06 (d each, J = 1.6 Hz, 1:1 H, aromatic CH), 8.60 (dd, J = 4.8 and 1.4 Hz, 1 H, aromatic CH), 8.41 (dd, J = 7.7 and 1.5 Hz, 1 H, aromatic CH), 7.97 and 7.83 (m each, 2:2 H, aromatic CH), 7.65 and 7.59 (t each, 1:1 H, aromatic CH), 7.50 (m, 4 H, aromatic CH), 7.29 (dd, J = 7.7 and 4.9 Hz, 1 H, aromatic CH), 3.81 (s, 3 H, NCH₃). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 195.7 and 195.4 (Cq each, C=O), 153.2, 140.4, 138.1, 137.5, 128.3, 123.1, 122.2, and 115.7 (Cq each), 147.6, 134.1, 132.4, 130.8, 130.1, 130.0, 128.9, 128.8, 128.5, 126.0, and 116.8 (aromatic CH), 31.4 (NCH₃). HRMS Calcd for C₂₆H₁₈N₂O₂ [M]⁺: 390.1368; Found: 390.1370.

(*E*)-1-Phenyl-3-(1-propyl-1*H*-indol-3-yl)prop-2-en-1-one (4c): Yield 30%. Pale yellow solid, m.p.: 127-130 °C ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 15.5 Hz, 1 H, C*H*=CHCOPh), 8.04 and 7.57 (m each, 3:1 H, aromatic CH), 7.52 (m, 4 H, aromatic CH and CH=C*H*COPh), 7.40 and 7.32 (m each, 1:2 H, aromatic CH), 4.12 (t, 2 H, NC*H*₂CH₂CH₃), 1.92 (m, 2 H, NCH₂C*H*₂CH₃), 0.97 (t, 3 H, NCH₂CH₂C*H*₃). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 190.9 (Cq, C=O), 139.3, 137.8, 138.93, 126.4 and 113.1 (Cq each), 133.9, 132.2, 128.6, 128.4, 123.2, 121.6, 121.0, 117.1, and 110.5 (CH), 48.6 (NCH₂CH₂CH₃), 23.4 (NCH₂CH₂CH₃), 11.6 (NCH₂CH₂CH₃). HRMS Calcd for C₂₀H₁₉NO [M]⁺: 289.1467; Found: 289.1469.

(*E*)-1-phenyl-3-(1-phenyl-1*H*-indol-3-yl)prop-2-en-1-one (4e): Yield 91%. Pale yellow solid, m.p.: 110-112 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.16 and 7.65 (d each, *J* = 15.6 Hz, 1:1 H, C*H*=C*H*COPh), 8.08 (d, *J* = 7.6 Hz, 3 H, aromatic CH), 7.73 (s, 1 H, 2-H of indolyl), 7.60-7.48 (m, 8 H, aromatic CH), 7.45 (t, 1 H, aromatic CH), 7.35 (m, 2 H, aromatic CH). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 190.8 (Cq, C=O), 139.1, 138.6, 137.8, 126.9, and 115.0 (Cq each), 138.3, 133.1, 132.4, 130.0, 128.7, 128.5, 127.82, 124.83, 123.9, 122.4, 121.0, 118.5, and 111.5 (CH). HRMS Calcd for C₂₃H₁₇NO [M]⁺: 323.1310; Found: 323.1307.

(*E*)-Phenyl 3-(1-methyl-1*H*-indol-3-yl)acrylate (4g): Yield 70%. Pale yellow solid, m.p.: 108-110 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.07 and 6.61 (d each, *J* = 15.9 Hz, 1:1 H, C*H*=C*H*COOPh), 7.98 (d, *J* = 7.7 Hz, 1 H, aromatic CH), 7.42 (m, 3 H, aromatic CH), 7.39-7.28 (m, 3 H, aromatic CH), 7.25 (d, *J* = 5.5 Hz, 1 H, aromatic CH), 7.21 (d, *J* = 7.9 Hz, 2 H, aromatic CH), 3.83 (s, 3 H, NCH₃). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.9 (Cq, COOPh), 151.3, 138.3,

126.2, and 112.3 (Cq each), 140.1, 134.0, 129.5, 125.6, 123.3, 122.0, 121.7, 120.8, 111.4, and 110.2 (CH), 33.4 (NCH₃). HRMS Calcd for C₁₈H₁₅NO₂ [M]⁺: 277.1103; Found: 277.1105.

(*E*)-3-(1-Methyl-1*H*-indol-3-yl)-1-(p-tolyl)but-2-en-1-one (4h): Yield 69%. Pale yellow solid, m.p.: 168-170 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.04 and 7.38 (d each, *J* = 7.8 Hz, 1:1 H, aromatic CH), 7.94 (d, *J* = 8.1 Hz, 2 H, aromatic CH), 7.53 (s, 1 H, aromatic CH), 7.45 (s, 1 H, MeC=CH), 7.33 (m, 1 H, aromatic CH), 7.28 (m, 3 H, aromatic CH), 3.84 (s, 3 H, NCH₃), 2.74 and 2.43 (s each, 3:3 H, CH₃). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 191.4 (Cq, C=O), 150.7, 142.6, 138.2, 138.1, 125.6, and 118.6 (Cq each), 131.3, 129.3, 128.3, 122.8, 121.3, 121.2, 117.8, and 110.1 (CH), 33.3 (NCH₃), 21.7 and 19.4 (CH₃). HRMS Calcd for C₂₀H₁₉NO [M]⁺: 289.1467; Found: 289.1469.

(9-Methyl-9*H*-carbazole-1,3-diyl)bis(p-tolylmethanone) (5a): Yield 81%. White solid, m.p.: 221-224 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.73 and 8.00 (d each, J = 1.4 Hz, 1:1 H, aromatic CH), 8.16 (d, J = 7.8 Hz, 1 H, aromatic CH), 7.87 (d, J = 8.1 Hz, 2 H, aromatic CH), 7.76 (d, J = 8.0 Hz, 2 H, aromatic CH), 7.56 (t, 1 H, aromatic CH), 7.46 (d, J = 8.2 Hz, 1 H, aromatic CH), 7.32 (m, 5 H, aromatic CH), 3.68 (s, 3 H, NCH₃), 2.45 (s, 6 H, 2×CH₃). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 195.8 (Cq, C=O), 145.0, 142.9, 142.7, 141.0, 135.8, 135.3, 127.9, 124.7, 122.9, and 122.7 (Cq each), 131.0, 130.0, 129.6, 129.5, 129.1, 127.2, 125.4, 120.8, 120.7, and 109.6 (aromatic CH), 33.2 (NCH₃), 21.9 and 21.8 (CH₃). HRMS Calcd for C₂₉H₂₃NO₂ [M]⁺: 417.1729; Found: 417.1731.

(9-Methyl-9*H*-carbazole-1,3-diyl)bis((4-(tert-butyl)phenyl)methanone)

(**5b**): Yield 81%. Pale yellow solid, m.p.: 168-170 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.77 and 8.05 (d each, J = 1.5 Hz, 1:1 H, aromatic CH), 8.17 (d, J = 7.8 Hz, 1 H, aromatic CH), 7.93 (d, J = 8.5 Hz, 2 H, aromatic CH), 7.82 (d, J = 8.3 Hz, 2 H, aromatic CH), 7.55 (m, 5 H, aromatic CH), 7.47 (d, J = 8.2 Hz, 1 H, aromatic CH), 7.34 (t, 1 H, aromatic CH), 3.70 (s, 3 H, NCH₃), 1.39 and 1.38 (s each, 9:9 H, 2×C(CH₃)₃). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 195.68 and 195.65 (Cq, C=O), 157.8, 155.8, 142.7, 141.1, 135.7, 135.2, 127.8, 124.7, 122.9, and 122.7 (Cq each), 130.9, 130.2, 129.8, 127.2, 125.8, 125.5, 125.4, 120.8, 120.7, and 109.6 (aromatic CH), 35.4 and 35.2 (Cq each, *C*(CH₃)₃), 33.2 (NCH₃), 31.3 and 31.2 (C(*C*H₃)₃). HRMS Calcd for C₃₅H₃₅NO₂ [M]⁺: 501.2668; Found: 501.2677.

(9-Methyl-9*H*-carbazole-1,3-diyl)bis([1,1'-biphenyl]-4-ylmethanone) (5f): Yield 64%. Pale yellow solid, m.p.: 225-228 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.82 and 8.12 (d each, *J* = 1.4 Hz, 1:1 H, aromatic CH), 8.19 (d, *J* = 7.8 Hz, 1 H, aromatic CH), 8.07 (d, *J* = 8.3 Hz, 2 H, aromatic CH), 7.95 (d, *J* = 8.2 Hz, 2 H, aromatic CH), 7.73 and 7.65 (m each, 4:4 H, aromatic CH), 7.59 (t, 1 H, aromatic CH), 7.48 and 7.44-7.35 (m each, 5:3 H, aromatic CH), 3.74 (s, 3 H, NCH₃). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 195.50 and 195.47 (Cq, C=O), 146.6, 145.0, 142.7, 141.2, 140.1, 139.8, 137.1, 136.5, 127.8, 124.9, 122.9, and 122.6 (Cq each), 131.4, 130.7, 129.8, 129.1, 129.1, 128.6, 128.2, 127.52, 127.47, 127.4, 127.4, 127.1, 125.6, 120.9, 120.7, and 109.7 (aromatic CH), 33.3 (NCH₃). HRMS Calcd for C₃₉H₂₇NO₂ [M]⁺: 541.2042; Found: 541.2043.

(9-Methyl-9*H*-carbazole-1,3-diyl)bis(naphthalen-1-ylmethanone) (5g): Yield 62%. Pale yellow solid, m.p.: 138-142 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.86 (d, *J* = 8.5 Hz, 1 H, aromatic CH), 8.75 and 8.14 (d each, *J* = 1.5 and 1.4 Hz, 1:1 H, aromatic CH), 8.07 (m, 3 H, aromatic CH), 7.96 (dd, *J* = 8.0 and 2.4 Hz, 2 H, aromatic CH), 7.90 (d, J = 7.6 Hz, 1 H, aromatic CH), 7.81 (d, J = 6.6 Hz, 1 H, aromatic CH), 7.67 and 7.61 (m each, 1:2 H, aromatic CH), 7.55 (dd, J = 8.9 and 4.1 Hz, 1 H, aromatic CH), 7.44 (m, 5 H, aromatic CH), 7.33 (t, 1 H, aromatic CH), 3.78 (s, 3 H, NCH₃). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 197.16 and 196.85 (Cq each, C=O), 142.9, 141.9, 136.9, 135.3, 134.2, 133.8, 131.5, 131.1, 128.6, 125.1, 124.8, and 122.9 (Cq each), 134.0, 132.9, 131.0, 128.8, 128.6, 128.5, 127.4, 127.2, 126.9, 126.5, 126.4, 126.0, 125.9, 124.5, 124.4, 121.1, 120.7, and 109.8 (aromatic CH), 33.7 (NCH₃). HRMS Calcd for C₃₅H₂₃NO₂ [M]⁺: 489.1729; Found: 489.1736.

(9-Methyl-9*H*-carbazole-1,3-diyl)bis((2,5-dimethylphenyl)methanone) (5h): Yield 54%. Pale yellow solid, m.p.: 151-154 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.72 and 8.09 (d each, *J* = 1.4 Hz, 1:1 H, aromatic CH), 8.22 (d, *J* = 7.7 Hz, 1 H, aromatic CH), 7.8 (m, 1 H, aromatic CH), 7.60 (d, *J* = 8.2 Hz, 1 H, aromatic CH), 7.45 and 7.39-7.25 (m each, 2:5 H, aromatic CH), 3.89 (s, 3 H, NCH₃), 2.64, 2.43, 2.39, and 2.38 (s each, 3:3:3:3 H, 4×CH₃). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 198.0 and 197.9 (Cq each, C=O), 142.9, 141.6, 139.2, 137.9, 136.5, 135.3, 135.0, 133.3, 128.1, 125.1, 124.8, and 122.9 (Cq each), 133.1 132.4, 132.0, 130.9, 130.8, 130.3, 128.7, 127.3, 126.2, 121.0, 120.6, and 109.8 (aromatic CH), 33.7 (NCH₃), 21.04, 20.99, 20.96, and 19.6 (CH₃). HRMS Calcd for C₃₁H₂₇NO₂ [M]⁺: 445.2042; Found: 445.2047.

(9-Methyl-9*H*-carbazole-1,3-diyl)bis((2,4-dimethylphenyl)methanone) (5i): Yield 47%. Pale yellow solid, m.p.: 165-168 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.59 and 8.01 (d each, *J* = 1.4 Hz, 1:1 H, aromatic CH), 8.10 (d, *J* = 7.8 Hz, 1 H, aromatic CH), 7.55 (t, 1 H, aromatic CH), 7.46 (d, *J* = 8.2 Hz, 1 H, aromatic CH), 7.43 (d, *J* = 7.9 Hz, 1 H, aromatic CH), 7.31 (m, 2 H, aromatic CH), 7.18 and 7.13 (s each, 1:1 H, aromatic CH), 7.04 (m, 2 H, aromatic CH), 3.73 (s, 3 H, NCH₃), 2.63, 2.40 and 2.35 (s each, 3:6:3 H, $4 \times CH_3$). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 197.6 and 197.6 (Cq each, C=O), 143.1, 142.8, 141.4, 140.4, 140.2, 137.0, 136.2, 135.0, 128.4, 124.93, 124.79, and 122.90 (Cq each), 133.1, 133.0, 132.0, 129.9, 129.0, 127.2, 126.4, 126.0, 125.9, 120.8, 120.6, and 109.7 (aromatic CH), 33.4 (NCH₃), 21.6, 21.5, and 20.2 (CH₃). HRMS Calcd for C₃₁H₂₇NO₂ [M]⁺: 445.2042; Found: 445.2047.

(9-Methyl-9*H*-carbazole-1,3-diyl)bis((3,4-dimethylphenyl)methanone) (5j): Yield 78%. Pale yellow solid, m.p.: 188-191 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.79 and 8.02 (d each, J = 1.5 Hz, 1:1 H, aromatic CH) 8.19 (d, J = 7.7 Hz, 1 H, aromatic CH), 7.83 (s, 1 H, aromatic CH), 7.71 and 7.59 (m each, 2:2 H, aromatic CH), 7.49 (d, J = 8.2 Hz, 1 H, aromatic CH), 7.37 (t, 1 H, aromatic CH), 7.28 (m, 2 H, aromatic CH), 3.72 (s, 3 H, NCH₃), 2.39 and 2.36 (s each, 6:6 H, 4×CH₃). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 196.00 and 195.97 (Cq each, C=O), 143.7, 142.7, 141.6, 141.0, 137.4, 136.9, 136.2, 135.7, 128.0, 124.7, 122.9, and 122.7 (Cq each), 131.6, 131.2, 130.1, 129.54, 129.53, 128.9, 128.0, 127.2, 125.3, 120.7, 120.6, and 109.6 (aromatic CH), 33.1 (NCH₃), 20.3, 20.1, and 19.9 (CH₃). HRMS Calcd for C₃₁H₂₇NO₂ [M]⁺: 445.2042; Found: 445.2049.

(9-Methyl-9*H*-carbazole-1,3-diyl)bis(thiophen-2-ylmethanone) (5k): Yield 76%. Pale yellow solid, m.p.: 158-161 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.85 and 8.25 (d each, *J* = 1.4 Hz, 1:1 H, aromatic CH), 8.17 (d, *J* = 7.8 Hz, 1 H, aromatic CH), 7.81 (d, *J* = 4.4 Hz, 1 H, thienyl CH), 7.75 (d, *J* = 3.4 Hz, 1 H, thienyl CH), 7.72 (d, *J* = 4.9 Hz, 1 H, thienyl CH), 7.62 (d, *J* = 3.3 Hz, 1 H, thienyl CH), 7.57 (t, 1 H, aromatic CH), 7.47 (d, *J* = 8.2 Hz, 1 H, aromatic CH), 7.35 (t, 1 H, aromatic CH), 7.18 (m, 2 H, thienyl CH), 3.75 (s, 3 H, NCH₃). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 187.8 and 187.1 (Cq, C=O), 145.0, 143.9, 142.7, 140.5, 125.0, 122.7, and 122.4 (Cq each), 136.5, 135.9, 134.4, 133.7, 128.7, 128.6, 128.1, 127.4, 124.8, 120.9, 120.6, and 109.7 (aromatic CH), 33.1 (NCH₃). Calcd for $C_{23}H_{15}NO_2S_2$ [M]⁺: 401.0544; Found: 401.0552.

(9-Methyl-9*H*-carbazole-1,3-diyl)bis(furan-2-ylmethanone) (5l): Yield 75%. yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.99 and 8.43 (d each, J = 1.4 Hz, 1:1 H, aromatic CH), 8.18 (d, J = 7.7 Hz, 1 H, aromatic CH), 7.78 (d, J = 0.8 Hz, 1 H, furyl CH), 7.72 (d, J = 0.6 Hz, 1 H, furyl CH), 7.55 (t, 1 H, aromatic CH), 7.46 (d, J = 8.2 Hz, 1 H, aromatic CH), 7.38-7.31 (m, 2 H, aromatic CH and furyl CH), 7.22 (d, J = 3.4 Hz, 1 H, furyl CH), 6.63 (m, 2 H, furyl CH), 3.74 (s, 3 H, NCH₃). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 182.3 and 181.2 (Cq each, C=O), 152.9, 152.8, 142.7, 140.9, 127.0, 125.1, 122.7, and 121.6 (Cq each), 148.4, 146.8, 129.3, 127.4, 125.3, 122.5, 120.9, 120.6, 120.1, 112.9, 112.4, and 109.7 (aromatic CH), 33.2 (NCH₃). Calcd for C₂₃H₁₅NO₄ [M]⁺: 369.1001; Found: 369.1007.

(7,9-Dimethyl-9*H*-carbazole-1,3-diyl)bis((4-chlorophenyl)methanone) (5m): Yield 72%. Pale yellow solid, m.p.: 166-168 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.64 (d, *J* = 1.5 Hz, 1 H, aromatic CH), 8.01 (d, *J* = 7.9 Hz, 1 H, aromatic CH), 7.92 (m, 3 H, aromatic CH), 7.77 (d, *J* = 8.4 Hz, 2 H, aromatic CH), 7.47 (m, 4 H, aromatic CH), 7.26 (s, 1 H, aromatic CH), 7.18 (d, *J* = 8.0 Hz, 1 H, aromatic CH), 3.64 (s, 3 H, NCH₃), 2.58 (s, 3 H, CH₃). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 194.5 (Cq, C=O), 143.2, 141.2, 140.6, 138.6, 138.1, 136.7, 136.1, 127.1, 125.1, and 122.0 (Cq each), 132.1, 131.4, 129.3, 129.0, 128.8, 125.3, 122.6, 120.4, and 109.9 (aromatic CH), 33.3 (NCH₃), 22.5 (CH₃). HRMS Calcd for C₂₈H₁₉Cl₂NO₂ [M]⁺: 471.0793; Found: 471.0797.

(6-Methoxy-9-methyl-9*H*-carbazole-1,3-diyl)bis(p-tolylmethanone)

(5n): Yield 78%. White solid, m.p.: 213-216 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.70 and 7.99 (d each, J = 1.3 Hz, 1:1 H, aromatic CH), 7.87 (d, J = 8.1 Hz, 2 H, aromatic CH), 7.76 (d, J = 8.0 Hz, 2 H, aromatic CH), 7.61 (d, J = 2.3 Hz, 1 H, aromatic CH), 7.35 (d, J = 8.9 Hz, 1 H, aromatic CH), 7.30 (d, J = 8.0 Hz, 4 H, aromatic CH), 7.18 (dd, J = 8.9 and 2.4 Hz, 1 H, aromatic CH), 3.93 (s, 3 H, NCH₃), 3.64 (s, 3 H, OCH₃), 2.45 (s, 6 H, 2×CH₃). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 195.7 (Cq, C=O), 154.9, 144.9, 142.8, 141.3, 137.5, 135.8, 135.3, 127.4, 124.5, 123.3, and 122.6 (Cq each), 130.9, 130.3, 129.6, 129.1, 125.4, 116.5, 110.5, and 103.2 (aromatic CH), 56.2 (OCH₃), 33.2 (NCH₃), 21.9 and 21.7 (CH₃). HRMS Calcd for C₃₀H₂₅NO₃ [M]⁺: 447.1834; Found: 447.1833.

(6-Methoxy-9-methyl-9*H*-carbazole-1,3-diyl)bis((4-chlorophenyl)methanone) (50): Yield 74%. White solid, m.p.: 224-226 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.66 and 7.95 (d each, J = 1.6 Hz, 1:1 H, aromatic CH), 7.90 (d, J = 8.6 Hz, 2 H, aromatic CH), 7.77 (d, J = 8.5 Hz, 2 H, aromatic CH), 7.60 (d, J = 2.4 Hz, 1 H, aromatic CH), 7.48 (m, 4 H, aromatic CH), 7.37 (d, J = 8.9 Hz, 1 H, aromatic CH), 7.20 (dd, J = 8.9 and 2.5 Hz, 1 H, aromatic CH), 3.94 (s, 3 H, NCH₃), 3.64 (s, 3 H, OCH₃). ¹³C{¹H}</sup> NMR (100 MHz, CDCl₃) δ 194.50 and 194.45 (Cq, C=O), 155.2, 141.4, 140.6, 138.6, 136.8, 136.1, 132.1, 126.7, 124.8, 123.2, and 122.1 (Cq each), 131.4, 129.5, 129.3, 128.8, 125.8, 116.9, 110.7, and 103.2 (aromatic CH), 56.2 (OCH₃), 33.4 (NCH₃). HRMS Calcd for C₂₈H₁₉Cl₂NO₃ [M]⁺: 487.0742; Found:487.0750.

(5-Methoxy-9-methyl-9*H*-carbazole-1,3-diyl)bis(p-tolylmethanone) (5p): Yield 75%. Pale yellow solid. m.p.: 211-214 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.03 and 7.95 (d each, J = 1.7 Hz, 1:1 H, aromatic CH), 7.86 (d, J = 8.2 Hz, 2 H, aromatic CH), 7.79 (d, J = 8.1 Hz, 2 H, aromatic CH), 7.47 (t, 1 H, aromatic CH), 7.29 (d, J = 7.7 Hz, 4 H, aromatic CH), 7.06 (d, J = 8.2 Hz, 1 H, aromatic CH), 6.78 (d, J = 8.0 Hz, 1 H, aromatic CH), 4.07 (s, 3 H, NCH₃), 3.65 (s, 3 H, OCH₃), 2.44 (s, 6 H, 2×CH₃). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 195.8 (Cq, C=O), 156.4, 144.8, 144.1, 142.7, 140.2, 135.8, 135.4, 128.2, 124.1, 122.0, and 111.9 (Cq each), 130.9, 130.4, 129.5, 129.0, 128.7, 128.1, 128.0, 102.3, and 101.7 (aromatic CH), 55.7 (OCH₃), 33.4 (NCH₃), 21.9 and 21.7 (CH₃). HRMS Calcd for C₃₀H₂₅NO₃ [M]⁺: 447.1834; Found: 447.1832.

(6-Fluoro-9-methyl-9*H*-carbazole-1,3-diyl)bis(p-tolylmethanone) (5q): Yield 70%. White solid, m.p.: 231-233 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.66 and 8.02 (d each, J = 1.4 Hz, 1:1 H, aromatic CH), 7.87 (d, J = 8.1 Hz, 2 H, aromatic CH), 7.79 (dd, J = 8.5 and 2.4 Hz, 1 H, aromatic CH), 7.75 (d, J = 8.0Hz, 2 H, aromatic CH), 7.37 (dd, J = 8.9 and 4.1 Hz, 1 H, aromatic CH), 7.29 (m, 5 H, aromatic CH), 3.67 (s, 3 H, NCH₃), 2.45 (s, 6 H, 2×CH₃). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 195.52 and 195.49 (Cq, C=O), 158.2 (Cq, d, J = 234.3 Hz, *i*-C of C₆H₃F), 145.1, 143.0, 141.7, 139.0, 135.6, 135.2, 127.9, 124.1 (Cq, d, J = 4.1 Hz, *p*-C of C₆H₃F), 123.4 (Cq, d, J = 9.7 Hz, *m*-C of C₆H₃F), and 123.0 (Cq each), 131.0, 130.3, 130.0, 129.6, 129.2, 125.7, 115.1 (CH, d, J = 25.5 Hz, *o*-C of C₆H₃F), 110.4 (CH, d, J = 9.1 Hz, *m*-C of C₆H₃F), 106.4 (CH, d, J = 23.9 Hz, *o*-C of C₆H₃F) (aromatic CH), 33.3 (NCH₃), 21.9 and 21.8 (CH₃). HRMS Calcd for C₂₉H₂₂FNO₂ [M]⁺: 435.1635; Found:435.1639.

(6-Fluoro-9-methyl-9*H*-carbazole-1,3-diyl)bis((4-chlorophenyl)methanone) (5r): Yield 80%. White solid, m.p.: 225-227 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.63 and 7.99 (d each, *J* = 1.6 Hz, 1:1 H, aromatic CH), 7.91 (d, *J* = 8.5 Hz, 2 H, aromatic CH), 7.78 (m, 3 H, aromatic CH), 7.49 (m, 4 H, aromatic CH), 7.40 (dd, *J* = 8.9 and 4.0 Hz, 1 H, aromatic CH), 7.30 (m, 1 H, aromatic CH), 3.67 (s, 3 H, NCH₃). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 194.3 and 194.2 (Cq each, C=O), 158.4 (Cq, d, *J* = 237.4 Hz, *i*-C of C₆H₃F), 141.8, 140.7, 139.0,

138.8, 136.5, 135.9, 127.2, 124.4 (Cq, d, J = 4.3 Hz, p-C of C₆H₃F), and 123.3 (Cq, d, J = 9.5 Hz, m-C of C₆H₃F) (Cq each), 132.1, 131.4, 129.9, 129.3, 128.9, 126.1, 122.4, 115.4 (CH, d, J = 25.4 Hz, o-C of C₆H₃F), 110.6 (CH, d, J = 8.9 Hz, m-C of C₆H₃F), and 106.5 (CH, d, J = 24.0 Hz, o-C of C₆H₃F) (aromatic CH), 33.56 (NCH₃). HRMS Calcd for C₂₇H₁₆Cl₂FNO₂ [M]⁺: 475.0542; Found: 475.0539.

Methyl 6,8-bis(4-fluorobenzoyl)-9-methyl-9H-carbazole-1-carboxylate (5s): Yield 64%. Pale yellow solid, m.p.: 203-205 °C.¹H NMR (400 MHz, CDCl₃) δ 8.70 (d, *J* = 1.6 Hz, 1 H, aromatic CH), 8.28 (dd, *J* = 7.7 and 1.0 Hz, 1 H, aromatic CH), 7.99 (m, 4 H, aromatic CH), 7.87 (m, 2 H, aromatic CH), 7.37 (t, 1 H, aromatic CH), 7.18 (m, 4 H, aromatic CH), 3.97 (s, 3 H, NCH₃), 3.53 (s, 3 H, CO₂CH₃). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 194.2 and 193.8 (Cq, C=O), 167.5 (*CO*OCH₃), 166.3 and 165.4 (Cq each, d each, *J* = 255.2 Hz and 252.4 Hz, *i*-C of C₆H₄F), 143.4, 141.5, 134.3 and 133.9 (Cq, d each, *J* = 3.0 Hz and 2.8 Hz, *p*-C of C₆H₄F), 128.8, 125.1, 124.7, 123.0, and 116.8 (Cq each), 133.2 and 132.6 (CH, d each, *J* = 9.4 Hz and 8.9 Hz, *m*-C of C₆H₄F), 130.3, 130.1, 125.4, 124.4, 120.6, 116.2 and 115.7 (CH, d each, *J* = 21.9 Hz and 21.7 Hz, *o*-C of C₆H₄F) (aromatic CH), 52.5 (CO₂CH₃), 38.8 (NCH₃). HRMS Calcd for C₂₉H₁₉F₂NO₄ [M]⁺: 483.1282; Found: 483.1284.

(6,9-Dimethyl-9*H*-carbazole-1,3-diyl)bis(thiophen-2-ylmethanone) (5t): Yield 66%. Pale yellow solid, m.p.: 137-140 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.81 and 8.23 (d each, J = 1.5 Hz, 1:1 H, aromatic CH), 7.96 (s, 1 H, aromatic CH), 7.80 (dd, J = 4.9 and 0.9 Hz, 1 H, thienyl CH), 7.75 (m, 1 H, thienyl CH), 7.71 (dd, J = 5.0 and 0.8 Hz, 1 H, thienyl CH), 7.62 (dd, J = 3.7 and 0.9 Hz, 1 H, thienyl CH), 7.36 (q, 2 H, aromatic CH), 7.18 (m, 2 H, thienyl CH), 3.72 (s, 3 H, NCH₃), 2.55 (s, 3 H, CH₃). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 187.8 and 187.1 (Cq each, C=O), 145.0, 144.0, 141.0, 140.7, 130.4, 127.8, 124.8, 122.8, and 122.3 (Cq each), 136.5, 135.8, 134.3, 133.6, 128.8, 128.6, 128.6, 128.0, 124.7, 120.5, and 109.4 (aromatic CH), 33.1 (NCH₃), 21.5 (CH₃). HRMS Calcd for $C_{24}H_{17}NO_2S_2$ [M]⁺: 415.0701; Found: 415.0695.

1,1'-(9-Methyl-9*H***-carbazole-1,3-diyl)bis(propan-1-one) (5u):** Yield 26%. Pale yellow solid, m.p.: 139-142 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.78 and 8.35 (d each, *J* = 1.3 Hz, 1:1 H, aromatic CH), 8.12 (d, *J* = 7.8 Hz, 1 H, aromatic CH), 7.54 (t, 1 H, aromatic CH), 7.46 (d, *J* = 8.2 Hz, 1 H, aromatic CH), 7.33 (t, 1 H, aromatic CH), 3.73 (s, 3 H, NCH₃), 3.20 and 3.14 (q each, 2:2 H, 2×CH₂CH₃), 1.34 and 1.30 (t each, 3:3 H, 2×CH₂CH₃). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 204.0 and 199.6 (Cq each, C=O), 143.0, 140.5, 127.5, 125.3, 124.4, and 122.7 (Cq each), 127.2, 126.3, 123.7, 120.9, 120.3, and 109.9 (aromatic CH), 35.4 and 31.7 (*C*H₂CH₃), 33.7 (NCH₃), 9.0 and 8.7 (CH₂CH₃). HRMS Calcd for C₁₉H₁₉NO₂ [M]⁺: 293.1416; Found: 293.1420.

Diphenyl 9-methyl-9*H***-carbazole-1,3-dicarboxylate (5v):** Yield 25%. Pale yellow solid, m.p.: 150-153 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.11 and 9.01 (s each, 1:1 H, aromatic CH), 8.19 (d, J = 7.8 Hz, 1 H, aromatic CH), 7.60 (t, 1 H, aromatic CH), 7.49 (m, 5 H, aromatic CH), 7.39 (t, 1 H, aromatic CH), 7.33 (m, 6 H, aromatic CH), 4.02 (s, 3 H, NCH₃). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.3 and 165.2 (Cq each, *C*OOPh), 151.2, 151.0, 143.2, 142.1, 125.98, 122.6, 119.6, and 114.3 (Cq each), 131.2, 129.8, 129.7, 127.6, 126.8, 126.34, 126.01, 122.0, 121.8, 121.3, 120.6, and 110.0 (aromatic CH), 34.1 (NCH₃). HRMS Calcd for C₂₇H₁₉NO₄ [M]⁺: 421.1314; Found: 421.1324.

(*E*)-3-(1-Methyl-2-((*E*)-styryl)-1*H*-indol-3-yl)-1-phenylprop-2-en-1-one (7): Yield 22%. Yellow solid, m.p.: 126-129 °C. ¹H NMR (400 MHz, CDCl₃) δ

8.31 and 7.68 (d each, J = 15.5 Hz, 1:1 H, CH=CHCOPh), 8.08 (m, 3 H, aromatic CH), 7.57 (m, 3 H, aromatic CH), 7.50 and 7.42 (t each, 2:2 H, aromatic CH), 7.35 (m, 4 H, aromatic CH), 7.20 and 6.99 (d each, J = 16.3 Hz, 1:1 H, CH=CHPh), 3.79 (s, 3 H, NCH₃). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 190.7 (Cq, C=O), 143.3, 139.4, 138.6, 136.4, 126.0, and 111.8 (Cq each), 139.1, 138.9, 132.2, 129.0, 129.0, 128.6, 128.4, 127.2, 123.6, 122.0, 121.0, 118.0, 115.7, and 110.0 (CH), 31.2 (NCH₃). HRMS Calcd for C₂₆H₂₁NO [M]⁺: 363.1623; Found: 363.1620.

(9-Methyl-2-phenyl-9*H*-carbazol-3-yl)(phenyl)methanone (8): Yield 17%. Pale yellow solid, m.p.: 201-203 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.34 (s, 1 H, aromatic CH), 8.11 (d, *J* = 7.7 Hz, 1 H, aromatic CH), 7.71, 7.55, 7.47, and 7.41 (m each, 2:1:2:3 H, aromatic CH), 7.28 and 7.19 (m each, 5:1 H, aromatic CH), 3.93 (s, 3 H, NCH₃). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 199.1 (Cq, C=O), 142.2, 142.0, 141.8, 140.4, 139.0, 130.6, 122.8, and 121.4 (Cq each), 132.4, 130.2, 129.5, 128.3, 128.0, 127.2, 126.5, 122.7, 121.4, 120.8, 120.0, 110.2, and 109.0 (aromatic CH), 29.4 (NCH₃). HRMS Calcd for C₂₆H₁₉NO [M]⁺: 361.1467; Found: 361.1462.

(*E*)-3-(1-(3-oxo-3-phenylpropyl)-1*H*-indol-3-yl)-1-phenylprop-2-en-1one (9): Yield 39%. Pale yellow solid, m.p.: 104-107 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (m, 2 H, C*H*=CHCOPh and aromatic CH), 8.02 and 7.90 (m each, 2:2 H, aromatic CH), 7.65 (s, 1 H, 2-H of indolyl), 7.52 (m, 5 H, aromatic CH), 7.44 (m, 3 H, aromatic CH and CH=C*H*COPh), 7.33 (m, 2 H, aromatic CH), 4.66 (t, 2 H, NC*H*₂CH₂COPh), 3.52 (t, 2 H, NC*H*₂C*H*₂COPh). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 197.1 and 190.8 (Cq each, C=O), 139.2, 137.3, 136.2, 126.6, and 113.4 (Cq each), 138.7, 134.2, 133.8, 132.2, 128.9, 128.6, 128.4, 128.1, 123.4, 121.8, 121.1, 117.5, and 110.2 (CH), 41.4 (NCH₂CH₂COPh), 38.4 (NCH₂CH₂COPh). HRMS Calcd for C₂₆H₂₁NO₂ [M]⁺: 379.1572; Found: 379.1564.

(3-Benzoyl-9-methyl-9*H*-carbazol-1-yl)(*p*-tolyl)methanone (10a): Yield 71%. White solid, m.p.: 125-128 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.75 and 8.03 (d each, J = 1.6 Hz, 1:1 H, aromatic CH), 8.15 (d, J = 7.8 Hz, 1 H, aromatic CH), 7.86 (m, 4 H, aromatic CH), 7.57 (m, 2 H, aromatic CH), 7.49 (t, 2 H, aromatic CH), 7.45 (d, J = 8.2 Hz, 1 H, aromatic CH), 7.34 (m, 3 H, aromatic CH), 3.68 (s, 3 H, NCH₃), 2.45 (s, 3 H, CH₃). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 195.9 and 195.6 (Cq each, C=O), 145.0, 142.7, 141.1, 138.6, 135.4, 127.7, 124.8, 122.9, and 122.8 (Cq each), 132.1, 130.9, 130.0, 129.6, 128.4, 127.3, 125.4, 120.8, 120.6, and 109.6 (aromatic CH), 33.1 (NCH₃), 21.86 (CH₃). HRMS Calcd for C₂₈H₂₁NO₂ [M]⁺: 403.1572; Found: 403.1569.

(3-Benzoyl-9-methyl-9*H*-carbazol-1-yl)(4-chlorophenyl)methanone (10b): Yield 75%. White solid, m.p.: 115-117 °C. ¹H NMR (400 MHz, CDCl3) δ 8.75 and 8.02 (d each, J = 1.6 Hz, 1:1 H, aromatic CH), 8.15 (d, J = 7.8 Hz, 1 H, aromatic CH), 7.92 (m, 2 H, aromatic CH), 7.84 (m, 2 H, aromatic CH), 7.59 (m, 2 H, aromatic CH), 7.49 (m, 5 H, aromatic CH), 7.35 (t, 1 H, aromatic CH), 3.68 (s, 3 H, NCH₃). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 195.8 and 194.5 (Cq each, C=O), 142.7, 141.1, 140.5, 138.4, 136.1, 127.6, 125.0, 122.8, and 122.0 (Cq each), 132.2, 132.1, 130.0, 129.73, 129.2, 128.5, 127.5, 125.9, 121.0, 120.7, and 109.7 (aromatic CH), 33.3 (CH₃). HRMS Calcd for C₂₇H₁₈ClNO₂ [M]⁺: 423.1026; Found: 423.1027.

(1-Benzoyl-9-methyl-9*H*-carbazol-3-yl)(4-methoxyphenyl)methanone (10c): Yield 62%.White solid, m.p.: 128-130 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.73 (d, *J* = 1.4 Hz, 1 H, aromatic CH), 8.16 (d, *J* = 7.8 Hz, 1 H, aromatic CH), 7.98 (m, 3 H, aromatic CH), 7.86 (d, *J* = 8.8 Hz, 2 H, aromatic CH), 7.64 and 7.57 (t each, 1:1 H, aromatic CH), 7.49 (m, 3 H, aromatic CH), 7.35 (t, 1 H, aromatic CH), 6.98 (d, J = 8.8 Hz, 2 H, aromatic CH), 3.89 (s, 3 H, NCH₃), 3.69 (s, 3 H, OCH₃). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 196.0 and 194.8 (Cq each, C=O), 163.1, 142.7, 141.0, 137.8, 130.9, 128.2, 124.8, 122.8, and 122.4 (Cq each), 133.9, 132.5, 130.8, 129.7, 128.9, 127.3, 125.4, 120.8, 120.7, 113.7, and 109.6 (aromatic CH), 55.6 (OCH₃), 33.3 (NCH₃). HRMS Calcd for C₂₈H₂₁NO₃ [M]⁺: 419.1521; Found: 419.1522.

(3-(4-Methoxybenzoyl)-9-methyl-9*H*-carbazol-1-yl)(p-tolyl)methanone (10d): Yield 55%. White solid, m.p.: 190-193 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.72 and 7.97 (d each, J = 1.6Hz, 1:1 H, aromatic CH), 8.16 (d, J = 7.7 Hz, 1 H, aromatic CH), 7.86 (m, 4 H, aromatic CH), 7.55 (m, 1 H, aromatic CH), 7.45 (d, J = 8.2 Hz, 1 H, aromatic CH), 7.34 (t, J = 7.5 Hz, 1 H, aromatic CH), 7.30 (d, J = 8.0 Hz, 2 H, aromatic CH), 6.98 (d, J = 8.8 Hz, 2 H, aromatic CH), 3.89 (s, 3 H, NCH₃), 3.68 (s, 3 H, OCH₃), 2.45 (s, 3 H, CH₃). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 195.8 and 194.8 (Cq each, C=O), 163.0, 145.0, 142.7, 140.9, 135.4, 131.0, 128.2, 124.7, 122.8, and 122.6 (Cq each), 132.5, 130.9, 129.6, 129.5, 127.2, 125.2, 120.7, 120.6, 113.7, and 109.6 (aromatic CH), 55.6 (OCH₃), 33.2 (NCH₃), 21.9 (CH₃). HRMS Calcd for C₂₉H₂₃NO₃ [M]⁺: 433.1678; Found: 433.1680.

5. Copies of NMR spectra for known compounds

gtl-15800 1H NMR gtl-15800 in CDCl3

gtl-15800 13C NMR gtl-15800 CDCl3

210 200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm) . 70 -10

gtl-16802 1H NMR gtl-16802 in CDCl3

-3.8259

8.1089 8.0968 8.0968 8.0968 8.0968 8.0968 8.0968 8.0046 8.0034 8.0034 7.5531 7.5531 7.5531 7.5531 7.5531 7.5531 7.5531 7.5531 7.5531 7.5531 7.5531 7.5531 7.5531 7.5531 7.5536 7.73396 7.73379 7.73370

(139.384 138.472 138.472 138.472 138.472 138.472 138.472 138.472 138.572 117.034 117.293 117.293 117.203 117.2	77.577 77.260 76.943	-33.502
---	----------------------------	---------

33

gtl-	14701	
411	NIM D att	14701

gtl-14701 13C NMR gtl-14701 CDCl3 -190.899

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

gtl-12000 13C NMR (gtl-12000 in CDCl3)

194,385 194,255 194,255 166,030 166,030 166,030 166,030 166,030 166,030 166,030 132,589 133,381 122,492 124,492 124,492 124,492 124,492 124,492 124,492 124,492 124,492 124,49				
	41.385 41.255 41.255	167.584 166.540 165.033 164.020	142,710 141,167 143,476 143,476 143,476 143,476 142,567 142,567 142,567 142,567 142,567 142,567 142,567 142,567 142,567 142,567 145,567 146,042 146,042 146,779 146,522 146,52	-33.267

6. Copies of NMR spectra for new compounds

40

gtl-14100 1H NMR gtl-14100 in CDCl3 A. 7662
 A. 71532
 A. 1712
 A. 1712
 A. 1723
 A. 1524
 4.2417 4.2228 4.2036 0.7700 0.778

gtl-14100 13C NMR gtl-14100 CDCl3

•					
(195.978	142 224 133, 769 133, 769 133, 748 133, 748 133, 748 133, 748 133, 748 133, 748 133, 748 133, 748 123, 680 125, 682 125, 562 125,	77.478 777.160 76.843	-46.731	-21.818	-11.205

gtl-13700 1H NMR gtl-13700 in CDCl3

gtl-13700 13C NMR gtl-13700 CDCl3

288 288 288 288 288 288 288 288	
(195, 195, 195, 195, 195, 195, 195, 195,	-47.414

gtl-15500 13C NMR gtl-15500 CDCl3

88	2221 2222 2222 2222 2222 2222 2222 222	78 60 78	13 47
ഗഗ	ひて きてき ひつつ うきき てててら ひひてて	4 - 00	4 0
თთ	44000000000000000000000	~~ 0	- 0
			0 0
\sim		<u> </u>	T T

gtl-15400 13C NMR gtl-15400 CDCl3

(195.950 (195.866 (195.886 (132.8864 (132.885 (132.894 (132.894 (122.791 (122.382 (122.382 (122.382 (122.382 (122.382 (122.382 (122.382 (122.382 (122.382 (122.382 (122.382 (122.382 (122.382 (122.382 (122.382) (122.382 (122.382) (122.382 (122.382)	77.478 77.160 76.842	-33.312 -21.482
--	----------------------------	--------------------

gtl-16600 13C NMR gtl-16600 CDCl3

195.958 195.901	143,152 144,1260 138,525 137,825 137,825 137,825 137,825 133,768 133,778 133,778 133,525 133,527 122,938 122,318 123,518 123,5	77.477 77.160 76.842	33.201
\sim		4	1 1

gtl-13600 1H NMR gtl-13600 in CDCl3

A. 7.273
 A. 7.274
 A. 7.274
 A. 7.274
 A. 7.201
 A. 7.172
 A. 7.172
 A. 7.172
 A. 7.172
 A. 7.172

gtl-13600 13C NMR gtl-13600 CDCl3 *8 58 *8 58 *8 58 *8 58 *8 58 *1228 *8 58 *1228 *8 58 *1228 *8 58 *1228 *8 58 *1228 *8 58 *1228 *8 58 *1228 *8 58 *1228 *8 58 *1228 *8 58 *1228 *8 58 *1228 *8 58 *1228 *8 58 *1228 *8 58 *1228 *8 58 *1228 *8 58 *1228 *12888 *1288 *1288 *1288 *1288 *1288 *1288 *1288 *1288 *12888

gtl-15200 1H NMR gtl-15200 in CDCl3

gtl-15200 13C NMR gtl-15200 CDCl3 889 961-2268 981 991-2268 991-

gtl-15300 1H NMR gtl-15300 in CDCl3

gtl-15300 13C NMR gtl-15300 CDCl3

unit gu 100			
-195.652	141.541 132.562 133.262 133.653 133.659 133.650 133.259 133.259 133.259 133.259 133.259 133.259 133.259 133.259 132.557 125.570 125.570 125.570 122.559 122.55	77.478 77.160 76.842	-33.486

gtl-13800 13C NMR gtl-13800 CDCl3

gtl-16700 13C NMR gtl-16700 CDCl3

Aligned Applies 427 Aligned Applies 42 Aligned Appli	144.368 1137.347 1137.347 1137.347 1137.347 1137.347 1137.347 1132.585 1130.626 1130.626 1130.626 1130.626 1130.626 1130.626 1133.535 1125.657 1125.5577 1125.5577 1125.5577 1125.5577 1125.5577 1125.5577 1125.5577 1125.5577 1125.55777 1125.55777 1125.557777 1125.55777777777777777777777777777777777	-103.957	77.478 77.160 76.843	-33.610
--	--	----------	----------------------------	---------

52

gtl-14900 1H NMR gtl-14900 in CDCl3

210	200	190	180	170	160	150	140	130	120	110 f1 (p	100 pm)	90	80	70	60	50	40	30	20	10	ò

gtl-14101 1H NMR gtl-14101 in CDCl3

gtl-17800 1H NMR gtl-17800 in CDCl3

gtl-14301 13C NMR gtl-14301 CDCl3

110 100 f1 (ppm) 210 200 190 170 160 140 130 ò

gtl-16100 13C NMR gtl-16100 CDCl3

•				
680	789	230 851 851 822 822 822 825 825 825 823 825 823 823 823	80 80 80	8 2 2 8 2
95.	57.	33 0 50 52 52 52 53 53 33 32	7.1 7.1 6.8	2223 23.2 21.2 21.2
	77			000000

gtl-16200 1H NMR gtl-16200 in CDCl3

gtl-16201 13C NMR gtl-16200 CDCl3

0			
(195.503 (195.472)	146.619 144.977 140.729 137.146 137.146 131.40.729 133.606 131.40.729 133.606 131.40.729 129.739 172.405 1727.4	77.479 77.180 76.843	-33.291

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

gtl-12400 13C NMR (gtl-12400 in CDCl3)

INIT (gu-12400 III CDCI5)				
(198,037) (198,037) (198,037) (142,912) (142,912) (142,912) (133,316) (134,366) (133,3	-124.785 122.903 120.637 -109.828	76.842	-33.668	21.038 20.987 20.964 19.609

gtl-12500 13C NMR (gtl-12500 in CDCl3) 0 - 4 - 9 - 4 - - 0 4-40000-0

26.03	4 6 8 6 0 8 8 8 6 8 8 8 8 8 8 8 8 8 8 8 8	8 8 2	888
55	లో నిలిలో స్తాత్లో నిల్లో లో ల	4 - 0	4 0.01
ດດ	4444000000000000000000000000	N N 9	0 77 0
<u> </u>			0 0 0 0
\sim		4	

gtl-12900 1H NMR (gtl-12900 in CDCl3)

gtl-12900 13C NMR (gtl-12900 in CDCl3)

₹196.003 ₹195.966	143.726 141.574 141.575 141.575 141.575 132.685 133.577 133.682 133.685 133.577 133.685 133.577 133.685 133.685 133.685 122.683 122.583 123.583 123.55	77.160 76.843	-33.120	20.271 20.108 19.931
-------------------	---	------------------	---------	----------------------------

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

-33.060

gtl-13000 13C NMR gtl-13	3000 CDCI3	
	7182.311 7181.190	152.947

442 88 88 88 88 88 88 88 88 88 88 88 88 88	60 60 60 60 73 73 73 80 80 80 80 80 80 80 80 80 80 80 80 80	N8-	~
0 0 0 0 0 0 0	0,	44	ĸ
2234444	874888678	2.74	0
272727	27722277		ę

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

gtl-24800 1H NMR gtl-24800 in CDCl3

gtl-24800 13C NMR gtl-24800 CDCl3 13C NMR gtl-24800 CDCl3 132 NMR gtl-24800 CDCl3 140 521 140 140 5210

110 100 f1 (ppm) 210 200 190 180 170 160 150 140 130 120 90 80 70 60 50 40 30 20 10 ò

gtl-18000 1H NMR gtl-18000 in CDCl3

gtI-18000 13C NMR gtI-18000 CDCl3 13C NMR gtI-18000 CDCl3 13C NMR gtI-18000 CDCl3 132 Str 197 132 Str 197 147 Str

gtl-18100 13C NMR gtl-18100 CDCl3					
194.497	155.189	140.587 138.581 138.581 138.50 138.50 138.50 138.50 129.281 129.281 122.432 125.818 122.432 125.818 122.432 123.432 12	.77.477 .77.160 .76.842	-56.198	33.440

gtl-25600 1H NMR gtl-25600 in CDCl3

gtl-25600 13C NMR gtl-25600 CDCl3							
- 195.823	-156.417	144.807 142.736 135.406 130.420 130.420 130.420 1128.972 128.972 128.166 128.166 128.166	<102.338 <101.720	77.478 77.160 76.843	-55.668	-33.395	$\binom{21.853}{21.737}$

gtl-18400 1H NMR gtl-18400 in CDCl3

gtl-18600 13C NMR gtl-18600 CDCl3

gtl-15600 1H NMR gtl-15600 in CDCl3

gtl-15600 13C NMR gtl-15600 CDCl3	
204.017 199.639	

- 143.018 - 140.486	127.470 126.276 126.276 126.276 126.276 126.276 120.966 120.966	77.477 77.160 76.842	35.401 33.748 `_31.737	€ 9.004 8.704
------------------------	--	----------------------------	------------------------------	---------------

gtl-19702-1 1H NMR gtl-19702 in CDCl3

gtl-19701 1H NMR gtl-19701 in CDCl3

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										f1 (p	opm)										

gtl-19400 13C NMR gtl-19400 CDCl3 144,960 1412,734 1412,1734 1413,1734 1413,238 1432,632 1432,632 1432,632 1422,662 1422,662 1422,662 1422,663 1422,663 1422,663 1422,663 1422,6649 ^{195,861}
 ^{195,647} -33.102 -21.855 77.477 77.160 76.842

gtl-19500 13C NMR gtl-19500 CDCl3

-196.750 -194.533 -194.108 -141.108 -138.351 -138.351 -138.351 -138.351 -138.351 -138.351 -138.351 -128.351 -128.581 -1	-			
	~195.750 ~194.533	142.728 141.009 140.508 133.231 138.231 132.238 132.008 132.008 132.008 132.008 172.458 172.75	77.477 77.160 76.841	-33.330

gtl-24500 1H NMR gtl-24500 in CDCl3

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

gtl-24600 13C NMR gtl-24600 CDCl3 195.778 194.839 -163.039 -163.039 -144.851 -144.861 -144.863 -144.863 -144.863 -144.863 -144.863 -142.864 -123.494 -123.494 -122.841 -123.842 -123.842 -123.542 -12 -33.153 -21.902 77.477 77.160 76.843 -55.616

85