Supporting information

Intermolecular Reactions of Gold(I)-Carbenes with Furans by Related Mechanisms

David Lebœuf, Morgane Gaydou, Yahui Wang, and Antonio M. Echavarren* Institute of Chemical Research of Catalonia (ICIQ), Tarragona, Spain E-mail: aechavarren@iciq.es

General Information

Unless otherwise stated, reactions were carried out under argon atmosphere in solvents dried by passing through an activated alumina column on a PureSolvTM solvent purification system (Innovative Technologies, Inc., MA). Analytical thin layer chromatography was carried out using TLC-aluminium sheets with 0.2 mm of silica gel (Merck GF_{234}) using UV light as the visualizing agent and an acidic solution of vanillin in ethanol as the developing agent. Chromatograpy purifications were carried out using flash grade silica gel (SDS Chromatogel 60 ACC, 40-60 mm) or automated flash chromatographer CombiFlash Companion. Preparative TLC was performed on 20 cm × 20 cm silica gel plates (2.0 mm thick, catalogue number 02015, Analtech). Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator.

NMR spectra was recorded at 298 K on a Bruker Avance 400 Ultrashield and Bruker Avance 500 Ultrashield apparatus. Mass spectra was recorded on a Waters Micromass LCT Premier (ESI), Waters Micromass GCT (EI, CI) and Bruker Daltonics Autoflex (MALDI) spectrometers. Melting points were determined using a Büchi melting point apparatus.

Crystal structure determinations were carried out using a Bruker-Nonius diffractomer equipped with an APPEX 2 4K CCD area detector, a FR591 rotating anode with MoK_a radiation, Montel mirrors as monochromator and a Kryoflex low temperature device ($T = \Box 173$ °C). Full-sphere data collection was used with w and j scans. *Programs used*: Data collection APEX-2, data reduction Bruker Saint V/.60A and absorption correction SADABS. Structure Solution and Refinement: Crystal structure solution was achieved using direct methods as implement in SHELXTL and visualized using the program XP. Missing atoms were subsequently located from difference Fourier synthesis and added to the atom list. Least-squares refinement on F2 using all measured intensities was carried out using the program SHELXTL. All non hydrogen atoms were refined including anisotropic displacement parameters.

Experimental Part

Intermolecular Cyclizations of Propargyl Esters with Furans

The physical and spectral data (¹H NMR and ¹³C NMR) for the following compounds are in agreement with the data previously reported: Propargyl esters $1a_{,2}^{2}$ $1b_{,1}^{1}$ $1c_{,2}^{2}$ $1e_{,3}^{3}$ $1g_{,4}^{4}$ $1h_{,2}^{2}$ and furans $2c_{,5}^{5}$ $2d^{6}$.

General procedure for the preparation of propargylic acetates and benzoates

A solution of ethynylmagnesium bromide (3.60 mmol, 0.5 M in THF) was added slowly to a solution of aldehyde (3 mmol) in THF (3 mL) at -20 °C. The cold bath was then removed and the reaction mixture was stirred at room temperature until completion of the reaction. The reaction was then quenched with saturated NH₄Cl aqueous solution and extracted with Et₂O. The combined organic layers were washed with brine, dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation to furnish the corresponding propargylic alcohol, which was used in the next step without further purification.

To a solution of the propargylic alcohol (0.50 mmol) in CH₂Cl₂ (0.7 M) at 0 °C were added DMAP (0.025 mmol), triethylamine (1.00 mmol), Ac₂O (0.55 mmol) or BzCl (0.55 mmol), and the reaction mixture was stirred for 2 h at room temperature. After addition of water, the reaction was extracted with EtOAc. The combined organic layers were washed twice with saturated NaCl aqueous solution, dried over Na₂SO₄, filtered and concentrated. The crude product was purified by flash chromatography over silica gel (cyclohexane/EtOAc, 10:1) to give the desired propargylic carboxylate.

1-(4-Bromophenyl)prop-2-yn-1-yl benzoate (1d)

OBz

Transparent oil, yield 85% (over two steps).

¹H NMR (400 MHz, CDCl₃) δ 8.10-8.08 (m, 2H), 7.62-7.52 (m, 5H), 7.49-7.45 (m, 2H), 6.68 (d, J = 2.3 Hz, 1H), 2.73 (d, J = 2.3 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ165.4, 135.8, 133.6, 132.1, 130.1, 129.5, 128.6, 123.5, 79.9, 76.1, 65.3, 29.9.

HRMS-APCI: *m/z* calcd for C₁₆H₁₂BrO₂ [*M*+H]⁺: 315.0015, found: 315.0017.

1-(4-Methoxyphenyl)prop-2-yn-1-yl benzoate (1f)

Yellow oil, yield 81% (over two steps).

OBz

¹H NMR (400 MHz, CDCl₃) δ 8.10-8.08 (m, 2H), 7.61-7.57 (m, 3H), 7.47-7.44 (m, 2H), 6.97-6.95 (m, 2H), 6.69 (d, J = 2.3 Hz, 1H), 3.85 (s, 3H), 2.71 (d, J = 2.3 Hz,

1H).

¹³C NMR (100 MHz, CDCl₃) δ 165.4, 160.2, 134.5, 133.3, 129.9, 129.3, 128.9, 128.4, 114.1, 80.5, 75.4, 65.6, 55.4.

HRMS-ESI: *m/z* calcd for C₁₇H₁₄NaO₃ [*M*+Na]⁺: 289.0835, found: 289.0837.

1-Cyclopropylprop-2-yn-1-yl acetate (1i)

OAc Transparent oil, yield 53% (over two steps, volatile).

¹ T. Okada, K. Shishido, M. Yoshida, *Tetrahedron* 2007, 63, 6996-7002.

² N. Ghosh, S. Nayak, A. K. Sahoo, J. Org. Chem. 2011, 76, 500-511.

³ R. J. Detz, M. M. E. Delville, H. Hiemstra, J. H. van Maarseveen, Angew. Chem. Int. Ed. 2008, 47, 3777-3780.

⁴ A. Bartels, R. Mahrwald, K. Mueller, Adv. Synth. Catal 2004, 346, 483-485.

⁵ M. Tofi, K. Koltsida, G. Vassilikogiannakis, Org. Lett. 2009, 11, 313-316.

⁶ S. J. Pridmore, P. A. Slatford, J. E. Taylor, M. K. Whittlesey, J. M. J. Williams, *Tetrahedron* 2009, 65, 8981-8986.

¹**H NMR** (400 MHz, CDCl₃) δ 5.21 (dd, J = 7.1, 2.2 Hz, 1H), 2.44 (d, J = 2.2 Hz, 1H), 2.13 (s, 3H), 1.36-1.27 (m, 1H), 0.69-0.48 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ170.0, 79.3, 73.5, 67.2, 21.1, 14.3, 3.5, 2.2.

HRMS-ESI: *m/z* calcd for C₈H₁₀NaO₂ [*M*+Na]⁺: 161.0573, found: 161.0565.

1-Cyclopropylprop-2-yn-1-yl benzoate (1j)

OBz Transparent oil, 79%.

¹H NMR (400 MHz, CDCl₃) δ 8.13-8.11 (m, 2H), 7.62-7.59 (m, 1H), 7.50-7.47 (m, 2H), 5.47 (dd, J = 7.1, 2.2 Hz, 1H), 2.49 (d, J = 2.2 Hz, 1H), 1.49-1.43 (m, 1H), 0.72-0.60 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ165.6, 133.2, 129.9, 129.8, 128.4, 79.4, 73.7, 67.7, 14.5, 3.6, 2.3.

HRMS-ESI: *m/z* calcd for C₁₃H₁₂NaO₂ [*M*+Na]⁺: 223.0730, found: 223.0723.

General procedure for the gold(I) catalyzed intermolecular cyclizations of propargyl esters with furans

A solution of alkyne (1.00 mmol) and furan (2.00 mmol) in dry CH₂Cl₂ (2.5 mL) was added to a solution of gold(I) catalyst A (3 mol%) in dry CH₂Cl₂ (2.5 mL). The reaction mixture was stirred at 23°C until TLC showed full conversion. Then, a drop of Et₃N was added, the solvent was evaporated under vacuum, and the crude product was purified by flash column chromatography using different gradients of cyclohexane and ethyl acetate to obtain the pure desired products.

3-Methyl-4-(2-oxopropyl)-5-phenylcyclopent-2-en-1-one (3a)

Ph

Orange oil, yield 57%.

Orange oil, yield 65%.

¹H NMR (400 MHz, CDCl₃) δ 7.33-7.28 (m, 2H), 7.26-7.21 (m, 1H), 7.11-7.08 (m, 2H), 6.05–6.02 (m, 1H), 3.33-3.29 (m, 1H), 3.22 (d, J = 3.0 Hz, 1H), 2.91 (dd, J = 17.2, 5.5 Hz, 1H), 2.62 (dd, J = 17.2, 7.6 Hz, 1H), 2.14 (s, 3H), 2.12 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ207.1, 206.0, 178.9, 138.8, 130.4, 128.8, 127.8, 127.1, 59.7, 49.1, 46.0, 30.2, 17.6.

HRMS-ESI: *m/z* calcd for C₁₅H₁₅O₂ [*M*-H]⁻: 227.1077, found: 227.1080.

5-(4-Bromophenyl)-3-methyl-4-(2-oxopropyl)cyclopent-2-en-1-one (3b)

Br

¹**H NMR** (400 MHz, CDCl₃) δ 7.44-7.42 (m, 2H), 7.00-6.97 (m, 2H), 6.05-6.02 (m, 1H), 3.27-3.23 (m, 1H), 3.17 (d, J = 3.0 Hz, 1H), 2.92 (dd, J = 17.2, 5.5 Hz, 1H), 2.60(dd, J = 17.2, 7.6 Hz, 1H), 2.15 (s, 3H), 2.13 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 206.4, 205.8, 179.0, 137.9, 131.9, 130.4, 129.6, 121.1, 59.1, 48.9, 46.0, 30.2, 17.6.

HRMS-ESI: *m/z* calcd for C₁₅H₁₅O₂BrNa [*M*+Na]⁺: 329.0148, found: 329.0145.

5-(4-Methoxyphenyl)-3-methyl-4-(2-oxopropyl)cyclopent-2-en-1-one (3c)

MeO

Orange oil, yield 36%.

¹H NMR (400 MHz, CDCl₃) δ 7.02-7.00 (m, 2H), 6.85-6.83 (m, 2H), 6.03-6.01 (m, 1H), 3.77 (s, 3H), 3.28-3.25 (m, 1H), 3.16 (d, J = 3.0 Hz, 1H), 2.89 (dd, J = 17.2, 5.6 Hz, 1H), 2.60 (dd, *J* = 17.2, 7.7 Hz, 1H), 2.13 (s, 3H), 2.11 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 207.6, 206.3, 178.8, 158.8, 131.0, 130.5, 129.0, 114.4, 59.1, 55.4, 49.3, 46.2, 30.3, 17.8.

HRMS-ESI: m/z calcd for C₁₆H₁₉O₃ [M+H]⁺: 259.1329, found: 259.1331.

3,5,5-Trimethyl-4-(2-oxopropyl)cyclopent-2-en-1-one (3d)

Orange oil, yield 61%.

¹**H NMR** (400 MHz, CDCl₃) δ 5.87-5.85 (m, 1H), 3.14-3.10 (m, 1H), 2.66-2.51 (m, 2H), 2.22 (s, 3H), 2.01 (s, 3H), 1.14 (s, 3H), 0.89 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ213.2, 206.7, 177.1, 128.5, 50.7, 47.4, 42.8, 30.2, 26.2, 20.4, 17.6.

HRMS-ESI: *m/z* calcd for C₁₁H₁₆O₂Na [*M*+Na]⁺: 203.1043, found: 203.1041.

3-Methyl-4-(2-oxopropyl)spiro[4.5]dec-2-en-1-one (3e)

Orange oil, yield 63%.

¹**H NMR** (400 MHz, CDCl₃) δ 5.81-5.78 (m, 1H), 3.25-3.22 (m, 1H), 2.75 (dd, J = 17.2, 5.5 Hz, 1H), 2.45 (dd, J = 17.2, 7.6 Hz, 1H), 2.25 (s, 3H), 1.99 (t, J = 1.1 Hz, 3H), 1.88-1.83 (m, 1H), 1.82-1.76 (m, 1H), 1.74-1.68 (m, 1H), 1.55-1.41 (m, 5H), 1.32-1.22 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 213.1, 206.8, 177.4, 128.1, 51.3, 49.4, 43.4, 37.1, 30.5, 28.0, 25.3, 22.7, 22.1, 18.1.

HRMS-ESI: *m/z* calcd for C₁₄H₂₀O₂Na [*M*+Na]⁺: 243.1356, found: 243.1361.

5-Cyclopropyl-3-methyl-4-(2-oxopropyl)cyclopent-2-en-1-one (3f)

Yellow oil, yield 61%; an inseparable mixture of diastereoisomers in a 2.5:1 ratio was obtained starting from the propargyl ester 1i, while 60% yield in a 5:1 ratio was obtained starting from the propargyl ester 1j. All signals corresponding to the major and minor diasteroisomer could

be identified separately.

Major isomer:

¹**H NMR** (500 MHz, CDCl₃) δ 5.88-5.87 (m, 1H), 3.00-2.97 (m, 1H), 2.78 (dd, J = 17.2, 5.0 Hz, 1H), 2.44 (dd, J = 17.3, 8.3 Hz, 1H), 2.19 (s, 3H), 2.04 (s, 3H), 1.64 (dd, J = 7.9, 2.1 Hz, 1H), 0.91-0.86 (m, 1H), 0.55-0.49 (m, 2H), 0.46-0.41 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 209.1, 206.4, 178.3, 130.5, 55.9, 46.6, 46.3, 30.4, 17.5, 13.0, 2.5, 1.8.

Minor isomer:

¹**H NMR** (500 MHz, CDCl₃) δ 5.93-5.92 (m, 1H), 3.56-3.51 (m, 1H), 2.93 (dd, J = 18.1, 9.1 Hz, 1H), 2.62 (dd, *J* = 18.0, 4.5 Hz, 1H), 2.25 (s, 3H), 2.04 (s, 3H), 1.83 (dd, *J* = 9.7, 6.6 Hz, 1H), 0.66-0.61 (m, 1H), 0.40-0.37 (m, 1H), 0.29-0.24 (m, 2H), 0.14-0.09 (m, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 209.4, 206.6, 178.2, 130.4, 53.9, 43.1, 42.5, 30.4, 17.6, 10.1, 4.0, 3.4.

HRMS-ESI: *m/z* calcd for C₁₂H₁₆NaO₂ [*M*+Na]⁺: 215.1043, found: 215.1042.

4-Methyl-3-(2-oxopropyl)-2-phenylcyclopenta-1,4-dien-1-yl benzoate (4a)

OBz

Yellow oil, yield 63%.

¹H NMR (400 MHz, CDCl₃) δ 8.17-8.15 (m, 2H), 7.65-7.61 (m, 1H), 7.52-7.48 (m, 2H), 7.39-7.30 (m, 4H), 7.21-7.16 (m, 1H), 6.30-6.27 (m, 1H), 4.06 (ddd, J = 8.5, 3.5, 1.0 Hz, 1H), 2.74 (dd, J = 17.3, 3.5 Hz, 1H), 2.56 (dd, J = 17.3, 8.4 Hz, 1H), 2.09 (s, 3H), 2.00 (d, J = 1.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 207.1, 164.3, 147.9, 146.5, 133.7, 132.9, 130.2, 129.2, 128.7, 128.6, 127.4, 126.4, 125.2, 46.6, 43.3, 30.5, 15.6.

HRMS-ESI: *m/z* calcd for C₂₂H₂₀O₃Na [*M*+Na]⁺: 355.1305, found: 355.1303.

2-(4-Bromophenyl)-4-methyl-3-(2-oxopropyl)cyclopenta-1,4-dien-1-yl benzoate (4b)

Yellow oil, yield 44%.

¹**H** NMR (400 MHz, CDCl₃) δ 8.15-8.13 (m, 2H), 7.66-7.63 (m, 1H), 7.53-7.49 (m, 2H), 7.45-7.43 (m, 2H), 7.24-7.22 (m, 2H), 6.29-6.27 (m, 1H), 4.02 (ddd, J = 8.5, 3.6, 1.0 Hz, 1H), 2.69 (dd, J = 17.5, 3.4 Hz, 1H), 2.55 (dd, J = 17.5, 8.3 Hz, 1H), 2.11 (s, 3H), 1.98 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 207.0, 164.2, 148.5, 147.2, 134.0, 132.0, 131.7, 130.8, 130.3, 129.0, 128.9, 127.6, 125.3, 120.4, 46.6, 43.2, 30.7, 15.7.

HRMS-ESI: *m/z* calcd for C₂₂H₁₉O₃BrNa [*M*+Na]⁺: 433.0410, found: 433.0415.

2-(4-Methoxyphenyl)-4-methyl-3-(2-oxopropyl)cyclopenta-1,4-dien-1-yl benzoate (4c)

MeO

Yellow oil, yield 48%.

¹**H** NMR (400 MHz, CDCl₃) δ 8.17-8.14 (m, 2H), 7.65-7.61 (m, 1H), 7.52-7.48 (m, 2H), 7.31-7.29 (m, 2H), 6.88-6.86 (m, 2H), 6.25 (m, 1H), 3.99 (ddd, J = 8.4, 3.6, 1.0 Hz, 1H), 3.79 (s, 3H), 2.71 (dd, J = 17.3, 3.6 Hz, 1H), 2.55 (dd, J = 17.3, 8.4 Hz, 1H), 2.08 (s, 3H), 1.98 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 207.3, 164.4, 158.2, 146.8, 145.2, 133.6, 130.2, 129.3, 128.6, 128.4, 125.7, 125.1, 114.2, 55.2, 46.7, 43.5, 30.5, 15.6.

HRMS-ESI: *m/z* calcd for C₂₃H₂₂O₄Na [*M*+Na]⁺: 385.1410, found: 385.1422.

3-(2-Oxo-2-phenylethyl)-2,4-diphenylcyclopenta-1,4-dien-1-yl benzoate (4d)

Yellow solid, yield 75%.

mp 149-153 °C.

¹³**C NMR** (100 MHz, CDCl₃) *δ* 198.6, 164.3, 150.3, 146.7, 137.1, 134.4, 133.8, 132.9, 132.8, 132.4, 130.3, 129.2, 128.8, 128.7, 128.6, 128.3, 128.0, 127.9, 127.5, 126.8, 126.5, 125.1, 43.6, 39.0.

HRMS-ESI: *m/z* calcd for C₃₂H₂₄O₃Na [*M*+Na]⁺: 479.1618, found: 479.1627.

3-Methyl-4-(4-methyl-2-oxopent-4-en-1-yl)-5-phenylcyclopent-2-en-1-one (3i/3i'')

Orange oil, 56%; an inseparable mixture of diastereoisomers in a 1.6:1 ratio was obtained. The following characterization data is reported for the mixture of isomers with the relative integration for each signal.

¹**H NMR** (400 MHz, CDCl₃) δ 7.33-7.28 (m, 3.2H), 7.25-7.22 (m, 1.6H), 7.11-7.06 (m, 3.2H), 6.09-6.06 (m, 0.6H), 6.05-6.02 (m, 1H), 4.98-4.95 (m, 1.6H), 4.86 (s, 0.6H), 4.81 (s, 1H), 3.35-3.29 (m, 1.6H), 3.25 (d, *J* = 3.0 Hz, 0.6H), 3.21 (d, *J* = 3.0 Hz, 1H), 3.14-3.05 (m, 3.2H), 2.96-2.91 (m, 1.6H), 2.67-2.57 (m, 1.6H), 2.12 (s, 3H), 2.11 (s, 1.8H), 1.78 (s, 1.8H), 1.71 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 207.1, 207.0, 206.0, 205.9, 180.1, 179.0, 140.6, 138.9, 138.8, 138.5, 130.7, 130.4, 128.9, 128.8, 127.8, 127.7, 127.1, 127.0, 115.6, 114.7, 59.8, 59.7, 52.4, 49.1, 48.1, 46.1, 44.0, 40.0, 30.1, 22.6, 22.3, 17.6.

HRMS-ESI: *m/z* calcd for C₁₈H₂₀O₂Na [*M*+Na]⁺: 291.1356, found: 291.1356.

3-Methyl-4-(2-oxo-2-phenylethyl)-5-phenylcyclopent-2-en-1-one (3j)

Orange oil, yield 35%.

Ph O Ph

¹**H** NMR (400 MHz, CDCl₃) δ 7.93-7.90 (m, 2H), 7.61-7.56 (m, 1H), 7.51-7.44 (m, 2H), 7.35-7.20 (m, 3H), 7.12-7.09 (m, 2H), 6.10-6.07 (m, 1H), 3.55-3.42 (m, 2H), 3.34 (d, J = 2.7 Hz, 1H), 2.60 (dd, J = 16.5, 6.5 Hz, 1H), 2.18 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 207.4, 197.8, 179.4, 139.0, 136.7, 133.7, 130.6, 128.9, 128.2, 128.0, 127.2, 60.1, 49.6, 40.9, 18.0.

HRMS-ESI: *m/z* calcd for C₃₀H₁₈O₂Na [*M*+Na]⁺: 313.1199, found: 313.1187.

1,5-Migration and trapping of Au(I)-carbene with furans

1,6-Enynes bearing -OMe,⁷ -OAc,⁸ -OPNB⁷ were identified by comparison of their ¹H NMR spectra with the previously reported data.

Screening of Migrating groups

OPG	OTMS	[JohnPhosAuN (2 mol%) CH ₂ Cl ₂ (0.1 M)	ICMe]+SbF ₆ -), rt, 30 min OPG
Ent	ry	OPG	Yield (%) ^a
1		OMe	12a (36)
2		OAc	12a' (19)
3		OPNB	12a'' (35)
4		OPNP	12d (60)

^a Isolated yield.

Screening of Au(I) catalysts

OPNP OTMS	[AuL]⁺ (2 mol%) CH ₂ Cl ₂ (0.1 M), rt, 30 mi	
Entry	[AuL] ⁺	Yield 12d (%)
1	Α	33 ^a
2	В	64 ^a
3	С	25ª
3	D	28 ^a
1	E	60
2	F	82

^a Determined by ¹H NMR (diphenylmethane as internal standard).

⁷ E. Jiménez-Núñez, M. Raducan, T. Lauterbach, K. Molawi, C. R. Solorio and A. M. Echavarren, *Angew. Chem. Int. Ed.* **2009**, *48*, 6152-6155.

⁸ M. J. Ardolino, J. P. Morken, J. Am. Chem. Soc. 2012, 134, 8770-8773.

1-((3,7-Dimethyloct-6-en-1-yn-3-yl)oxy)-4-nitrobenzene

To a solution of propargylic alcohol (1.0 g, 6.57 mmol) in dry acetonitrile (7 mL) were added DBU (1.47 mL, 9.85 mmol) and trifluoroacetic anhydride (1.42 mL, 10.18 mmol) at -15° C. After stirring at this temperature for 2h, a solution of DBU (1.47 mL, 9.85 mmol), CuCl₂.2H₂O (11.0 mg, 0.066 mmol) and *p*-nitrophenol (1.01 g, 7.23 mmol) was added dropwise. After stirring for 30 min at room temperature, the reaction was quenched with saturated NH₄Cl aqueous solution and extracted with Et₂O. The combined organic layers

were washed with brine, dried over Na_2SO_4 and filtered. The solvent was removed by rotary evaporation. The crude product was purified by flash chromatography over silica gel (cyclohexane/EtOAc, 33:1 to 20:1) to give the protected alcohol as a yellowish oil (0.99 g, 3.62 mmol, 55%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.19-8.15 (m, 2H), 7.32-7.28 (m, 2H), 5.14 (ddq, J = 8.6, 5.8, 1.5 Hz, 1H), 2.71 (s, 1H), 2.26 (m, 2H), 2.00 (ddd, J = 13.6, 11.3, 5.2 Hz, 1H), 1.90 (ddd, J = 13.5, 11.5, 5.2 Hz, 1H), 1.70 (s, 3H), 1.68 (s, 3H), 1.62 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 161.5, 142.2, 132.8, 125.4, 123.1, 119.2, 83.7, 76.8, 76.1, 42.6, 26.8, 25.8, 23.1, 17.8.

HRMS-ESI calcd for C₁₆H₂₀NO₃ [*M*+H]⁺: 274.1443; found: 274.1432.

General procedure

A solution of the enyne (0.10 mmol) in anhydrous CH_2Cl_2 (0.33 mL) was added dropwise over 30 min to a solution of gold catalyst (0.002 mmol) and furan (0.20 mmol) in anhydrous CH_2Cl_2 (0.66 mL) at room temperature. Then, a drop of Et_3N was added, the solvent was evaporated under vacuum, and the crude product was purified by flash column chromatography using different gradients of cyclohexane and ethyl acetate to obtain the pure desired products.

(2Z,4Z)-5-(5-(2-Methoxypropan-2-yl)-2-methylcyclopent-1-en-1-yl)penta-2,4-dienoic acid (12a)

Yellow oil, yield 36% (gold catalyst E).

¹H NMR (400 MHz, CDCl₃) δ 7.28 (t, J = 11.8 Hz, 1H), 6.71 (td, J = 11.6, 1.0 Hz, 1H), 6.35 (d, J = 11.8 Hz, 1H), 5.66 (dt, J = 11.5, 1.3 Hz, 1H), 3.17 (s, 3H), 3.04-3.00 (m, 1H), 2.49-2.41 (m, 1H), 2.33-2.24 (m, 1H), 2.02-1.93 (m, 1H), 1.74-1.67 (m, 1H), 1.58 (s, 3H), 1.05 (s, 3H), 1.04 (s, 3H). The proton of the carboxylic acid was not observed.

¹³**C NMR** (126 MHz, CDCl₃) *δ* 171.7, 144.7, 143.1, 139.0, 134.1, 124.0, 115.6, 77.87, 57.8, 48.9, 38.1, 25.2, 23.0, 22.0, 16.5.

HRMS-ESI: *m/z*: calcd for C₁₅H₂₁O₃ [*M*-H]⁻: 249.1489, found: 249.1496.

(2Z,4Z)-5-(5-(2-Acetoxypropan-2-yl)-2-methylcyclopent-1-en-1-yl)penta-2,4-dienoic acid (12a')

Yellow oil, yield 19% (gold catalyst E). (Contaminated by some impurities that could not be separated).

^{HO₂C ^J ^I **H NMR** (500 MHz, CDCl₃) δ 7.31 (t, J = 11.3 Hz, 1H), 6.73 (td, J = 11.6, 1.0 Hz, 1H), 6.32-6.29 (m, 1H), 5.71 (dt, J = 11.5, 1.3 Hz, 1H), 3.51-3.48 (m, 1H), 2.52-2.46 (m, 1H), 2.37-2.29 (m, 1H), 2.06-2.00 (m, 2H), 1.96 (s, 3H), 1.62 (s, 3H), 1.43 (s, 3H), 1.35 (s, 3H). The proton of the carboxylic acid was not observed.}

¹³C NMR (126 MHz, CDCl₃) δ 170.6 (2C), 144.3, 143.8, 138.2, 133.3, 124.2, 115.8, 85.4, 58.0, 37.9, 25.1, 24.4, 22.8, 22.8, 16.4.

HRMS-ESI: *m/z*: calcd for C₁₆H₂₁O₄ [*M*-H]⁻: 277.1442, found: 277.1445.

(2Z,4Z)-5-(2-Methyl-5-(2-((4-nitrobenzyl)oxy)propan-2-yl)cyclopent-1-en-1-yl)penta-2,4-dienoic acid (12a'')

Yellow oil, yield 35% (gold catalyst E).

¹**H NMR** (500 MHz, CDCl₃) δ 8.19-8.17 (m, 2H), 7.50-7.48 (m, 2H), 7.26 (t, J =HO₂C 11.5 Hz, 1H), 6.73 (td, J = 11.6, 1.1 Hz, 1H), 6.37-6.31 (m, 1H), 5.67 (dt, J = 11.5, 1.3 Hz, 1H), 4.55-4.49 (m, 2H), 3.13-3.10 (m, 1H), 2.53-2.46 (m, 1H), 2.35-2.28 (m, 1H), 2.06-2.01 (m, 1H), 1.78-1.72 (m, 1H), 1.60 (s, 3H), 1.18 (s, 3H), 1.16 (s, 3H). The proton of the carboxylic acid was not observed.

¹³C NMR (126 MHz, CDCl₃) δ 171.7, 147.6, 147.2, 144.5, 143.5, 139.1, 133.8, 127.7, 124.0, 123.6, 115.9, 79.0, 62.7, 58.7, 38.0, 25.4, 23.6, 22.2, 16.5.

HRMS-ESI: *m*/*z*: calcd for C₂₁H₂₄NO₅ [*M*-H]⁻: 370.1655, found: 370.1660.

(3Z,5Z)-5-Methyl-6-(2-methyl-5-(2-(4-nitrophenoxy)propan-2-yl)cyclopent-1-en-1-yl)hexa-3,5dien-2-one (12b)

OPNP Yellow oil, yield 32% (gold catalyst B).

¹**H NMR** (500 MHz, CDCl₃ δ 8.15-8.13 (m, 2H), 7.01-6.99 (m, 2H), 6.25 (dd, J =12.5, 1.3 Hz, 1H), 6.07 (brs, 1H), 5.99 (dd, J = 12.5, 1.1 Hz, 1H), 3.27-3.24 (m, 1H), 2.48-2.44 (m, 1H), 2.33-2.28 (m, 1H), 2.25 (s, 3H), 2.09-2.01 (m, 1H), 1.91 (s, 3H), 1.79-1.74 (m, 1H), 1.53 (s, 3H), 1.36 (s, 3H), 1.26 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 199.8, 162.0, 145.3, 142.4, 140.6, 134.3, 133.9, 133.2, 126.7, 125.4, 121.6, 85.9, 59.4, 37.9, 31.1, 25.7, 25.1, 23.5, 22.0, 16.9.

HRMS-ESI: *m/z*: calcd for C₂₂H₂₇NNaO₄ [*M*+Na]⁺: 392.1837, found: 392.1832.

(2Z,4E)-5-(2-Methyl-5-(2-(4-nitrophenoxy)propan-2-yl)cyclopent-1-en-1-yl)-1,4-diphenylpenta-2,4-dien-1-one (12c)

OPNP Yellow oil, yield 42% (gold catalyst E).

¹H NMR (500 MHz, CDCl₃) δ 8.00-7.99 (m, 2H), 7.59-7.57 (m, 2H), 7.43-7.42 (m, 1H), 7.30-7.27 (m, 2H), 7.09-7.05 (m, 5H), 6.85-6.83 (m, 2H), 6.73 (dd, J = 12.3, 1.3 Hz, 1H), 6.61 (dd, J = 12.3, 1.1 Hz, 1H), 6.26 (brs, 1H), 3.36-3.33 (m, 1H), 2.58-2.52 (m, 1H), 2.39-2.32 (m, 1H) 2.13-2.07 (m, 1H), 1.84-1.79 (m, 1H), 1,74 (s, 3H), 1.41 (s, 3H), 1.28 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 193.1, 161.8, 145.3, 142.4, 141.9, 139.8, 138.4, 138.1, 134.3, 132.5, 128.3, 128.3, 128.1, 127.6, 127.0, 126.8, 125.2, 121.7, 121.1, 85.9, 59.6, 38.0, 25.8, 25.5, 23.2, 17.1.

HRMS-ESI: *m/z*: calcd for C₃₂H₃₁NNaO₄ [*M*+Na]⁺: 516.2153, found: 516.2145.

(2Z,4Z)-5-(2-methyl-5-(2-(4-nitrophenoxy)propan-2-yl)cyclopent-1-en-1-yl)penta-2,4-dienoic acid (12d)

OPNP

Yellow oil, yield 82% (gold catalyst F).

¹**H** NMR (500 MHz, CDCl₃) δ 8.18-8.16 (m, 2H), 7.33 (td, J = 11.4, 1.1 Hz, HO₂C 1H), 7.04-7.02 (m, 2H), 6.76 (td, J = 11.6, 1.1 Hz, 1H), 6.42-6.40 (m, 1H), 5.72 (dt, J = 11.5, 1.3 Hz, 1H), 3.35-3.32 (m, 1H), 2.57-2.51 (m, 1H), 2.41-2.34 (m, 1H), 2.16-2.10 (m, 1H), 1.83-1.77 (m, 1H), 1.66 (s, 3H), 1.38 (s, 3H), 1.28 (s, 3H). The proton of the carboxylic acid was not observed.

¹³C NMR (126 MHz, CDCl₃) δ 171.1, 161.6, 144.1, 142.4, 138.3, 133.1, 125.2, 124.1, 121.6, 115.9, 85.5, 59.7, 37.7, 26.9, 25.4, 24.9, 23.0, 16.4.

HRMS-ESI: *m*/*z*: calcd for C₂₀H₂₂NO₅ [*M*-H]⁻: 356.1516, found: 356.1503.

Methyl (2Z,4Z)-5-(2-methyl-5-(2-(4-nitrophenoxy)propan-2-yl)cyclopent-1-en-1-yl)penta-2,4dienoate (12e)

Yellow oil, yield 57% (gold catalyst E).

¹**H** NMR (400 MHz, CDCl₃) δ 8.14-8.12 (m, 2H), 7.32 (t, J = 11.1 Hz, 1H), MeO₂C 7.01-6.99 (m, 2H), 6.62 (t, J = 12.0 Hz, 1H), 6.34-6.31 (m, 1H), 5.67 (dt, J =11.4, 1.4 Hz, 1H), 3.73 (s, 3H), 3.31-3.28 (m, 1H), 2.54-2.47 (m, 1H), 2.39-2.29 (m, 1H), 2.13-2.04 (m, 1H), 1.81-1.72 (m, 1H), 1.61 (s, 3H), 1.35 (s, 3H), 1.25 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.1, 161.8, 143.9, 142.5, 142.1, 137.5, 133.2, 125.3, 124.3, 121.7, 116.8, 85.7, 59.8, 51.3, 37.8, 25.5, 25.0, 23.2, 16.5.

HRMS-ESI: m/z: calcd for C₂₁H₂₅NNaO₅ [M+Na]⁺: 394.1644, found: 394.1625.

(3Z,5Z)-6-(2-Methyl-5-(2-(4-nitrophenoxy)propan-2-yl)cyclopent-1-en-1-yl)hexa-3,5-dien-2-one (12f)

Yellow oil, yield 56% (gold catalyst F).

¹**H NMR** (500 MHz, CDCl₃) δ 8.14-8.12 (m, 2H), 7.32 (t, J = 11.8 Hz, 1H), 7.01-6.99 (m, 2H), 6.46 (t, J = 11.5 Hz, 1H), 6.36-6.34 (m, 1H), 6.01 (dt, J = 11.4, 1.4 H)Hz, 1H), 3.31-3.28 (m, 1H), 2.55-2.48 (m, 1H), 2.38-2.31 (m, 1H), 2.24 (s, 3H), 2.12-2.05 (m, 1H), 1.81-1.76 (m, 1H), 1.62 (s, 3H), 1.35 (s, 3H), 1.25 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 199.2, 161.8, 144.2, 139.7, 138.5, 133.3, 125.4, 125.3, 125.1, 124.2, 121.7, 85.7, 59.8, 37.9, 31.9, 25.5, 25.0, 23.3, 16.5.

HRMS-ESI: *m/z*: calcd for C₂₁H₂₅NNaO₄ [*M*+Na]⁺: 378.1688, found: 378.1676.

(4Z,6Z)-2,2-Dimethyl-7-(2-methyl-5-(2-(4-nitrophenoxy)propan-2-yl)cyclopent-1-en-1-yl)hepta 4,6-dien-3-one (12g)

OPNP Yellow oil, yield 62% (gold catalyst E).

¹**H NMR** (500 MHz, CDCl₃) δ 8.13-8.11 (m, 2H), 7.30 (t, J = 11.6 Hz, 1H), 7.01-6.99 (m, 2H), 6.52 (t, J = 11.5 Hz, 1H), 6.31-6.27 (m, 2H), 3.30-3.27 (m, 1H), 2.51-2.47 (m, 1H), 2.36-2.31 (m, 1H), 2.11-2.04 (m, 1H), 1.82-1.76 (m, 1H), 1.61 (s, 3H), 1.34 (s, 3H), 1.26 (s, 3H), 1.16 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 206.5, 161.7, 143.7, 142.3, 140.3, 137.5, 133.2, 125.3, 125.2, 121.5, 120.0, 85.6, 59.6, 43.8, 37.7, 26.5, 25.4, 24.8, 23.3, 16.4.

HRMS-ESI: *m/z*: calcd for C₂₄H₃₁NNaO₄ [*M*+Na]⁺: 420.2151, found: 420.2145.

(2Z,4Z)-5-(2-Methyl-5-(2-(4-nitrophenoxy)propan-2-yl)cyclopent-1-en-1-yl)-1-phenylpenta-2,4dien-1-one (12h)

OPNP

Yellow oil, yield 59% (gold catalyst E).

¹H NMR (500 MHz, CDCl₃) δ 8.16-8.32 (m, 2H), 7.98-7.95 (m, 2H), 7.59-7.55 (m, 1H), 7.50-7.45 (m, 2H), 7.42-7.35 (m, 1H), 7.05-7.02 (m, 2H), 6.76-6.74 (m, 2H), 6.43-6.39 (m, 1H), 3.37-3.31 (m, 1H), 2.60-2.50 (m, 1H), 2.44-2.31 (m, 1H), 2.17-2.06 (m, 1H), 1.86-1.76 (m, 1H), 1.69 (s, 3H), 1.39 (s, 3H), 1.30 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 191.6, 161.8, 144.2, 141.6, 139.1, 138.5, 133.5, 132.7, 128.7, 128.4, 125.5, 125.4, 121.7, 121.3, 85.7, 59.9, 37.9, 27.1, 25.6, 25.0, 23.3, 16.6.

HRMS-ESI: *m/z*: calcd for C₂₆H₂₇NNaO₄ [*M*+Na]⁺: 440.1843, found: 440.1832.

(3Z,5Z)-3-methyl-6-(2-methyl-5-(2-(4-nitrophenoxy)propan-2-yl)cyclopent-1-en-1-yl)hexa-3,5dien-2-one (12i)

Yellow oil, 88% (Gold(I) catalyst **E**).

¹**H** NMR (500 MHz, CDCl₃) δ 8.17-8.15 (m, 2H), 7.04-7.03 (m, 2H), 6.78 (t, *J* = 11.4 Hz, 1H), 6.29 (dt, *J* = 11.6, 1.4 Hz, 1H), 6.14 (d, *J* = 11.2 Hz, 1H), 3.32-3.29 (m, 1H), 2.57-2.51 (m, 1H), 2.41-2.36 (m, 1H), 2.33 (s, 3H), 2.13-2.07 (m, 1H), 2.14 (m, 1H), 1.21 (m, 2H) = 1.21 (m, 2H)

2.04 (s, 3H), 1.86-1.81 (m, 1H), 1.65 (s, 3H), 1.38 (s, 3H), 1.31 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 202.0, 161.8, 143.0, 142.3, 134.5, 134.3, 134.0, 133.2, 125.2, 125.1, 121.5, 85.7, 59.6, 37.6, 30.2, 25.4, 24.8, 23.5, 21.6, 16.3.

HRMS-ESI: *m/z*: calcd for C₂₂H₂₇NNaO₄ [*M*+Na]⁺: 392.1832, found: 392.1832.

Reaction of Cycloheptatrienes with Furans

1-(2-Methyl-3H-cyclopenta[a]naphthalen-3-yl)propan-2-one (19a)

A solution of 1-(cyclohepta-2,4,6-trien-1-yl)naphthalene⁹ **17a** (0.1 mmol, 22 mg), 2,5-dimethylfuran **2a** (0.5 mmol, 48 mg) and gold catalyst **E** (3.7 mg, 5 mol%) in DCE (0.5 mL) was heated at 100 °C in a sealed tube overnight (12 h). The reaction mixture was cooled down to room temperature, and the solvent removed in *vacuo*. The crude product was purified by preparative TLC to give compound **19a** together with a regioisomer (13 mg, 59%, ratio 3:1) as a yellow oil. The two isomers can be separated partially by careful preparative TLC.

Major isomer:

¹**H** NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 8.1 Hz, 1H), 7.87 (d, J = 8.1 Hz, 1H), 7.64 (d, J = 8.3 Hz, 1H), 7.56 - 7.42 (m, 3H), 7.08 (d, J = 0.7 Hz, 1H), 4.05 - 3.93 (m, 1H), 2.95 (dd, J = 17.2, 5.4 Hz, 1H), 2.68 (dd, J = 17.2, 7.9 Hz, 1H), 2.19 (s, 3H), 2.17 (d, J = 1.5 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 207.5, 149.1, 144.1, 140.5, 132.9, 128.3, 127.1, 125.4, 125.0, 124.6, 124.1, 123.9, 121.6, 48.5, 44.2, 30.7, 15.5.

Minor isomer:

¹**H** NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 7.0 Hz, 1H), 7.87 (d, J = 8.1 Hz, 1H), 7.79 (d, J = 8.4 Hz, 1H), 7.49 (ddd, J = 8.3, 6.8, 1.2 Hz, 1H), 7.43 (d, J = 8.4 Hz, 1H), 7.39 (ddd, J = 8.1, 6.8, 1.3 Hz, 1H), 3.71 (s, 2H), 3.70 (s, 2H), 2.24 (s, 3H), 2.18 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 206.4, 143.1, 141.4, 138.3, 131.3, 130.8, 129.8, 128.9, 127.2, 126.2, 124.3, 123.3, 118.1, 41.7, 41.6, 29.0, 14.3.

HRMS-ESI: calculated for C₁₇H₁₆NaO [*M*+Na]⁺: 259.1093; found: 259.1096.

1-Phenyl-2-(2-phenyl-3*H*-cyclopenta[*a*]naphthalen-3-yl)ethan-1-one (19b)

The solution of 1-(cyclohepta-2,4,6-trien-1-yl)naphthalene **17a** (0.1 mmol, 22 mg), 2,5-diphenylfuran **2b** (0.2 mmol, 44 mg) and gold complex **E** (3.7 mg, 5 mol%) in DCE (0.5 mL) was heated at 120 °C in

⁹ Arylcycloheptatrienes were prepared according to the procedure reported in the following references: (a) Solorio-Alvarado, C. R.; Wang, Y.; Echavarren, A. M. *J. Am. Chem. Soc.* **2011**, *133*, 11952–11955. (b) Wang, Y.; McGonigal, P. R.; Herlé, B.; Besora, M.; Echavarren, A. E. *J. Am. Chem. Soc.* **2014**, *136*, 801–809.

a sealed tube for 2 h. The reaction mixture was cooled down to room temperature, and the solvent removed in *vacuo*. The crude product was purified by preparative TLC to give compound **19b** (31 mg, 88%) as a yellow oil.

¹**H** NMR (500 MHz, CDCl₃) δ 8.22 (dd, J = 8.0, 0.8 Hz, 1H), 7.96 (dd, J = 8.4, 1.3 Hz, 2H), 7.90 (dd, J = 8.3 Hz, 1H), 7.80 (s, 1H), 7.69-7.64 (m, 3H), 7.61 (d, J = 8.3 Hz, 1H), 7.58-7.55 (m, 2H), 7.51-7.42 (m, 5H), 7.34 (t, J = 7.4 Hz, 1H), 5.09-4.95 (m, 1H), 3.50 (dd, J = 18.1, 2.5 Hz, 1H), 3.10 (dd, J = 18.1, 10.5 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 199.2, 151.1, 145.9, 139.8, 136.9, 134.9, 133.3, 133.0, 129.0, 128.6, 128.5, 128.2, 127.7, 127.6, 126.9, 125.8, 125.4, 125.3, 124.4, 123.8, 122.4, 45.2, 40.9.

HRMS-ESI: calculated for $C_{27}H_{20}NaO[M+Na]^+$: 383.1406; found: 383.1412.

(2E,4E)-5-(Naphthalen-1-yl)-1-phenylpenta-2,4-dien-1-one (20a)

The solution of 1-(cyclohepta-2,4,6-trien-1-yl)naphthalene **17a** (0.1 mmol, 22 mg), 2-phenylfuran **2i** (0.2 mmol, 29 mg) and gold catalyst **E** (3.7 mg, 5 mol%) in DCE (0.5 mL) was heated at 120 °C in a sealed tube for 2 h. The reaction mixture was cooled down to room temperature, and the solvent removed in *vacuo*. The crude product was purified by preparative TLC to give compounds **20a** (20 mg, 51%) as a yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 8.19 (dd, *J* = 8.5, 1.1 Hz, 1H), 8.07-8.02 (m, 2H), 7.92-7.74 (m, 5H), 7.64-7.50 (m, 6H), 7.21-7.09 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 190.6, 145.0, 138.6, 138.2, 133.8, 133.3, 132.7, 131.2, 129.6, 129.5, 128.8, 128.6, 128.4, 126.7, 126.1, 125.7, 125.5, 124.2, 123.3.

HRMS-APCI: calculated for C₂₁H₁₇O [M+H]⁺: 285.1274; found: 285.1272.

(2E,4E)-1-(2-Bromophenyl)-5-(naphthalen-1-yl)penta-2,4-dien-1-one (20b)

The solution of 1-(cyclohepta-2,4,6-trien-1-yl)naphthalene **17a** (0.1 mmol, 22 mg), 2-(2-bromophenyl)furan¹⁰ **2j** (0.2 mmol, 45 mg) and gold catalyst **E** (3.7 mg, 5 mol%) in DCE (0.5 mL) was heated at 120 °C in a sealed tube for 2 h. The reaction mixture was cooled down to room temperature, and the solvent removed in *vacuo*. The crude product was purified by preparative TLC to give compounds **20b** (27 mg, 75%) as a yellow oil.

¹**H** NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 7.8 Hz, 1H), 7.92-7.86 (m, 2H), 7.83-7.74 (m, 2H), 7.69 (d, J = 8.0 Hz, 1H), 7.60-7.48 (m, 3H), 7.47-7.44 (m, 2H), 7.40-7.32 (m, 2H), 7.10 (ddd, J = 15.2, 11.1, 0.7 Hz, 1H), 6.71 (d, J = 15.3 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 194.9, 146.9, 141.2, 139.1, 133.8, 133.4, 133.0, 131.3, 131.1, 129.9, 129.7, 129.2, 129.1, 128.8, 127.4, 126.7, 126.2, 125.6, 124.4, 123.2, 119.5.

HRMS-APCI: calculated for C₂₁H₁₆OBr [*M*+H]⁺: 363.0379; found: 363.0373.

¹⁰ Compound prepared according to the procedure reported in the following reference: Becht, J. A.; Ngouela, S.; Wagner, A.; Mioskowski, C. *Tetrahedron* **2004**, *60*, 6853–6857.

(2*E*,4*E*)-1,5-diphenylpenta-2,4-dien-1-one (20c)

$$\begin{array}{c} Ph \\ \hline \\ \hline \\ Ph \\ \hline \\ Ph \\ \hline \\ O \end{array} \qquad \begin{array}{c} E (5 \text{ mol}\%) \\ \hline \\ DCE, 120 \text{ °C}, 2 \text{ h} \end{array} \begin{array}{c} Ph \\ \hline \\ \\ O \end{array} \end{array}$$

The solution of 7-phenylcyclohepta-1,3,5-triene **17b** (0.15 mmol, 25 mg), 2-phenylfuran¹¹ **2i** (0.3 mmol, 43 mg) and gold catalyst **E** (3.7 mg, 5 mol%) in DCE (0.5 mL) was heated at 120 °C in a sealed tube for 2 h. The reaction mixture was cooled down to room temperature, and the solvent removed in *vacuo*. The crude product was purified by preparative TLC to give compounds **20c** (18 mg, 51%) as a yellow oil.

The spectroscopic data are in agreement with those reported in the literature.¹²

¹**H NMR** (400 MHz, CDCl₃) δ 8.01 (dd, *J* = 8.4, 1.4 Hz, 2H), 7.69-7.58 (m, 2H), 7.55-7.48 (m, 4H), 7.43-7.34 (m, 3H), 7.12 (d, *J* = 15.0 Hz, 1H), 7.08-6.92 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 190.5, 144.9, 141.9, 138.2, 136.1, 132.7, 129.2, 128.9, 128.6, 128.4, 127.3, 127.0, 125.5.

(Z)-(2-(Naphthalen-1-yl)-1-phenylvinyl)phenyl)(phenyl)methanone (21)

The solution of 1-(cyclohepta-2,4,6-trien-1-yl)naphthalene **17a** (0.3 mmol, 65 mg), 1,3diphenylisobenzofuran **2k** (0.1 mmol, 27 mg) and gold catalyst **E** (3.7 mg, 5 mol%) in DCE (0.5 mL) was heated at 120 °C in a sealed tube for 2 h. The reaction mixture was cooled down to room temperature, and the solvent removed in *vacuo*. The crude product was purified by preparative TLC to give compound **21** (23 mg, 56%) as a yellow solid.

m.p.: 141-144 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.94-7.89 (m, 1H), 7.67-7.62 (m, 1H), 7.59-7.56 (m, 1H), 7.47-7.44 (m, 3H), 7.39-7.15 (m, 14H), 7.04 (dd, *J* = 8.2, 7.3 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 196.2, 143.4, 142.9, 141.1, 139.5, 136.1, 134.9, 133.3, 132.5, 132.4, 132.1, 130.1, 129.7, 129.1, 128.1, 128.1, 127.8, 127.5, 127.4, 127.3, 126.8, 126.2, 125.8, 125.5, 125.1, 124.4.

HRMS-APCI: calculated for C₃₁H₂₃O [*M*+H]⁺: 411.1743; found: 411.1741.

X Ray structures

3-(2-Oxo-2-phenylethyl)-2,4-diphenylcyclopenta-1,4-dien-1-yl benzoate (4d)

¹¹ Prepared according to the reference: Kuhl, N.; Hopkinson, M. N.; Glorius, F. Angew. Chem. Int. Ed. 2012, 51, 8230–8234.

¹² Pinto, D. C. G. A.; Silva, A. M. S.; Lévai, A.; Cavaleiro, J. A. S.; Patonay, T. and Elguero, J. *Eur. J. Org. Chem.*, 2000, 2593–2599.

Table 1. Crystal data and structure refinement for 4d (CCDC 1000511)

Empirical formula C32 H24 O3 Formula weight 456.51 Temperature 100(2) K Wavelength 0.71073 Å Crystal system Monoclinic Space group Cc Unit cell dimensions $a = 5.5702(14) \text{ Å}a = 90.00 ^{\circ}.$ $b = 24.243(6) \text{ Å } b = 93.744(10) \circ.$ $c = 17.573(5) \text{ Å } g = 90.00 ^{\circ}.$ Volume 2368.1(11) Å3 Ζ 4 Density (calculated) 1.280 Mg/m3 Absorption coefficient 0.081 mm-1 F(000) 960 Crystal size 0.40 x 0.04 x 0.02 mm3 Theta range for data collection 2.04 to 28.11 °. Index ranges -6 <=h<=7 ,-31 <=k<=31 ,-23 <=l<=23 Reflections collected 15211 Independent reflections 5364 [R(int) = 0.0633] Completeness to theta =28.11 $^{\circ}$ 99.6% Absorption correction Empirical Max. and min. transmission 0.9984 and 0.9683 Full-matrix least-squares on F2 Refinement method Data / restraints / parameters 5364 / 2 / 318 Goodness-of-fit on F2 0.986

Final R indices [I>2sigma(I)] R1 = 0.0547, wR2 = 0.1105 R indices (all data) R1 = 0.1013, wR2 = 0.1281 Flack parameter x = 0.8(14)Largest diff. peak and hole 0.203 and -0.262 e.Å-3

(Z)-(2-(2-(naphthalen-1-yl)-1-phenylvinyl)phenyl)(phenyl)methanone (21)

Table 1. Crystal data and structure refinement for 21 (CCDC	C1000512)
---	-----------

Empirical formula	C31 H22 O		
Formula weight	410.49		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P2(1)/c		
Unit cell dimensions	a = 11.2685(19) Å	a= 90.00 °.	
	b = 9.1961(15) Å	b = 92.368(6) °.	
	c = 20.509(4) Å	g = 90.00 °.	
Volume	2123.5(6) Å ³		
Z	4		
Density (calculated)	1.284 Mg/m ³		
Absorption coefficient	0.076 mm ⁻¹		

F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta =25.09 ° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Largest diff. peak and hole 864 0.51 x 0.15 x 0.10 mm³ 1.81 to 25.09 °. -13 $\leq h \leq 13$, -10 $\leq k \leq 10$, -24 $\leq l \leq 24$ 17032 3760 [R(int) = 0.0843] 99.7% Empirical 0.9925 and 0.9623 Full-matrix least-squares on F² 3760 / 0 / 289 1.070 R1 = 0.0614, wR2 = 0.1395 R1 = 0.1103, wR2 = 0.1581 0.330 and -0.234 e.Å⁻³

1.01 € 1.14 € 1.02 € 3.37 ¥ 1.05<u>-</u> 1.05-I **1**−66.0 6.51-£ 1.00-≖ 8.0 7.5 7.0 4.0 3.0 2.5 10.5 10.0 9.5 9.0 8.5 6.5 6.0 5.5 5.0 4.5 3.5 2.0 1.5 1.0 0.5 0.0 -0.5 77 3333 CDCl3 77 0148 CDCl3 76 6978 CDCl3 ~149.1318 -144.0854 -144.0854 132.0566 132.0566 122.1318 127.1416 127.1416 127.1416 127.1416 127.1416 127.1416 127.1416 127.1219176 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

WYH-8-135.10.fid ResearchGroup Echavarren ICIQ_1H12p8s CDCl3 /opt/topspin ywang 118

Computational details

All reported calculations were performed by the means of the Gaussian 09 suite of programs.¹³ Density Functional Theory (DFT) was applied using the Meta-Hybrid Generalised Gradient Approximation (MH-GGA) M06 functional.¹⁴ The SDD basis set and ECP was used to describe Au¹⁵ while 6-31+G(d) was used for all remaining atoms.¹⁶ Full geometry optimizations were performed in 1,2-dichloroethane, through an implicit solvent PCM model.¹⁷ The nature of the stationary points as minima or transition states was confirmed by inspection of frequencies. All reported energies are free energies in solution, computed at 298 K and 1 atm.

¹³ Gaussian09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.

¹⁴ Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215-241.

¹⁵ D. Andrae, U. Haussermann, M. Dolg, H. Stoll, H. Preuss, *Theor. Chim. Acta*, 1990, **77**, 123-141.

¹⁶ a) W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257-2258. (b)
M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. Defrees and J. A. Pople, *J. Chem. Phys.*, 1982, 77, 3654-3665. (c) T. Clark, J. Chandrasekhar, G. W. Spitznagel, and P. v. R. Schleyer, *J. Comput. Chem.*, 1983, 4, 294-301.

¹⁷ S. Miertus, E. Scrocco and J. Tomasi, *Chem. Phys.* 1981, **55**, 117-129.

Cartesian coordinates

42			
22b +	2a, Energy:	-737432.2450	085
С	-0.74314	-0.18408	-1.11178
С	-1.84125	-0.95712	-0.66797
С	-3.03279	-1.02603	-1.43782
С	-1.77473	-1.70138	0.53820
Ċ	-4 08504	-1 83090	-1 04425
Ĥ	-3 09814	-0 44234	-2.35652
C	-2 83809	-2 49052	0.94168
н	-0.86220	-1 64753	1 13310
C	-3 98737	-2 55816	0 14827
н	-4 98717	-1 89260	-1 64889
н	-2 78083	-3.06085	1 86673
и П	-2.78085	-3.00085	0.46000
II C	-4.01914	-3.18700	1 22282
C	-5.15028	1.2/3/9	1.22203
C	-1.91003	1.39273	1.70401
C	-1.0/300	1.9/900	0.79951
C	-1.85448	2.19097	-0.31361
0	-3.124/8	1.///02	-0.04948
H	-1.63/66	1.07677	2.78546
H	-0.02844	2.25674	0.89345
С	-1.63585	2.91987	-1.58218
Н	-2.02612	3.94532	-1.52091
Н	-0.56381	2.97794	-1.80395
Н	-2.14340	2.42773	-2.42221
С	-4.44266	0.76293	1.71475
Н	-4.35707	0.48745	2.77110
Н	-5.23422	1.51667	1.61252
Н	-4.76334	-0.12863	1.15437
Н	-0.94503	0.34194	-2.05384
Au	1.18423	-0.15347	-0.39254
Р	3.41717	-0.13120	0.40441
С	3.59200	0.56956	2.08028
Н	3.00649	-0.02243	2.79292
Н	4.64671	0.56132	2.38560
Н	3.22136	1.60105	2.09490
С	4.59331	0.82816	-0.60649
H	5 59899	0 76448	-0 17031
Н	4 61819	0 43020	-1 62711
Н	4 28444	1 87873	-0.64732
C	4 18754	-1 77982	0.53001
н	5 20170	-1 68879	0.94107
Н	3 58930	-7.47349	1 18471
н	<i>A</i> 24144	-2.42545	-0.46187
11 12	4.24144	-2.24233	-0.40107
42 TS1 I	Enorate 727	1121 2002665	
151, 1 C	0 81752	0.02207	0 87077
C	1 82816	-0.02397	-0.0/0//
C	1.03040	0.71788	-0.31/33
C	3.02382 1.60000	1.01400	-1.2/920
C	1.08808	1./8000	0.39000
	3.99303	1.9008/	-0.9/800
Н	3.16207	0.33/07	-2.12314
C	2.66224	2./1980	0.90030

Η	0.78311	1.70827	1.19465
С	3.81546	2.81021	0.11208
Н	4.89577	2.03087	-1.58569
Н	2.53147	3.38574	1.75095
Н	4.57762	3.54955	0.35280
С	3.56097	-1.32853	0.71548
С	2.66324	-1.13958	1.74480
Ċ	1.42578	-1.60709	1.28049
Č	1.60314	-2.02222	-0.03597
0	2.94088	-1.89801	-0.33949
Ĥ	2 88961	-0 69277	2 70586
Н	0 47950	-1 62349	1 81145
C	0.83027	-2.96507	-0.88191
Ĥ	1 09581	-4 00386	-0 64405
Н	-0 24346	-2 83566	-0 70356
н	1 02930	-2 80280	-1 94798
C	5 01295	-1 08482	0.60190
Н	5 58176	-1 96687	0.92738
Н	5 29295	-0.86674	-0 43441
Н	5 30833	-0.24103	1 23551
н	1 04249	-0.53991	-1 81194
Δ11	-1 17457	0.05164	-0.29441
p	-3 46751	0.18842	0.227441
C	-3 89546	-0.47585	1 92606
н	-3 33780	0.05947	2 70291
ц	4 07180	0.35846	2.70291
н Ц	3 63632	1 53035	1 07826
Γ	-5.05052	-1.55955	0.85571
с ц	-4.58800	-0.09352	-0.83571
п п	-5.02895	-0.37400	-0.52502
н Ц	-4.48400	-0.28802	-1.80878
Γ	-4.55772	-1.70003	-0.87709
с u	-4.11908	1.89182	0.50959
н Ц	-5.16519	2 48004	1 04448
н Ц	-3.30940	2.40994	0.67747
п 12	-3.99/11	2.33232	-0.0//4/
42 23h	Energy: 727	177 2102128	
230, C	0.00286	15726	0 77572
C	0.99280	-0.13730	-0.77372
C	2 / 2725	1.11321	1 31/0/
C	2.43733	1.61098	-1.31494
C	2 00251	2 00503	0.92297
с u	2 52201	2.99303	-0.98238
п С	2.32301	1.40991	-2.52051
с u	2.24440	2.82477	1.20333
п С	2 00227	1.14343	0.21110
	5.00257	3.30329	0.51110
п u	5.07824 2.15520	3.31/03	-1./3/03
п U	2.13339	J.22014	2.2/4/2
п С	3.313/2	4.42998 1.57514	0.3/419
C	J.71/88 2 12502	-1.3/314	0.30900
C	5.12502 1.82252	-1.00343	1.32843
C	1.82333	-1.49440	1.2208/
	1.48348	-1.40010	-0.21420
U H	2.95599	-1.48093	-0.05/82
п	5.333//	-1.09093	2.32113

Н	1.01737	-1.49938	1.95902
С	0.99788	-2.69705	-0.81307
Н	1.71697	-3.50425	-0.63475
Н	0.04927	-2.98415	-0.34282
Н	0.83295	-2.58486	-1.89032
С	5.39371	-1.63632	0.29520
Н	5.73176	-2.52651	0.84136
Н	5.78223	-1.64907	-0.72545
Н	5.79472	-0.76817	0.83609
Н	0.95320	-0.25590	-1.87012
Au	-1 11651	-0 11186	-0 24432
P	-3 40781	0.06358	0 25263
C	-3 88582	-0 57268	1 89405
Н	-3 34133	-0.03371	2 67751
Н	-4 96493	-0.43799	2.07731
н	-3 64284	-1.63865	1 96691
C	1 /0803	0.82786	0.00568
с u	5 54680	-0.82780	-0.90308
н Ц	-3.34089	-0.09885	1 02000
11	-4.30191	-0.43021	-1.92009
П	-4.23190	-1.8930/	-0.90029
	-4.04207	1.//23/	0.23008
Н	-5.1144/	1.//55/	0.4/4/9
Н	-3.50600	2.3/696	0.9/589
H 42	-3.89195	2.21662	-0./5424
42 TC2	F 727	444 0071744	
182,	Energy: -/3/	444.99/1/44	0.7(0.20
C	0.98486	-0.15590	-0./6929
C	1.65828	1.12051	-0.36643
C	2.42371	1.815//	-1.31140
C	1.56226	1.65814	0.92472
C	3.0/368	3.00333	-0.9811/
H	2.51357	1.41152	-2.32114
C	2.22013	2.83777	1.26302
H	0.94639	1.15526	1.67286
C	2.97818	3.51773	0.31028
Н	3.65959	3.52543	-1.73664
Н	2.12688	3.23631	2.27257
Н	3.48548	4.44516	0.57155
С	3.91200	-1.55933	0.32888
С	3.11592	-1.58627	1.54564
С	1.81487	-1.48305	1.24017
С	1.47842	-1.39496	-0.20213
0	3.24738	-1.48735	-0.72938
Н	3.54230	-1.67482	2.53982
Н	1.00675	-1.48835	1.97015
С	0.99913	-2.69566	-0.79781
Н	1.72064	-3.49963	-0.61475
Н	0.05029	-2.98457	-0.32916
Н	0.83674	-2.58780	-1.87590
С	5.38807	-1.61523	0.31870
Н	5.72783	-2.50230	0.86886
Н	5.77941	-1.63010	-0.70084
Н	5.78448	-0 74377	0 85766
		0.71577	0.05700
Н	0.94853	-0.25836	-1.86344

Р	-3.41937	0.05270	0.24633
С	-3.89956	-0.57961	1.88865
Н	-3.35916	-0.03597	2.67171
Η	-4.97956	-0.44829	2.03849
Н	-3.65294	-1.64443	1.96587
С	-4.50321	-0.84668	-0.91183
Н	-5.55333	-0.72043	-0.61653
Н	-4.36574	-0.45805	-1.92722
Н	-4.25323	-1.91359	-0.90807
С	-4.06034	1.75931	0.22214
Н	-5.13279	1.75927	0.45792
Н	-3.52787	2.36819	0.96130
Н	-3.90852	2.20048	-0.76931
42			
24b-A	uL , Ei	nergy: -73730	3.5951507
С	1.05073	-0.30471	-1.00904
С	1.75097	0.91674	-0.55623
С	2.57060	1.57015	-1.48554
С	1.64946	1.44347	0.73884
С	3.29610	2.70133	-1.12290
Н	2.65220	1.17215	-2.49752
С	2.36376	2.58195	1.09702
Н	0.99621	0.96923	1.47245
С	3.19506	3.21042	0.17009
Н	3.93798	3.18802	-1.85519
Н	2.26590	2.98402	2.10417
Н	3.75525	4.10010	0.45280
С	3.84855	-1.39768	0.50625
C	2.72168	-1.71541	1.42121
C	1.43801	-1.73916	1.03957
C	0.94994	-1.50980	-0.34044
0	3.78663	-1.64173	-0.69044
Н	2.96563	-1.89336	2.46962
Н	0.67638	-2.00101	1.77896
С	0.51315	-2.76121	-1.04595
H	1.40536	-3.38101	-1.21995
Н	-0.17696	-3.35329	-0.43107
Н	0.04049	-2.54782	-2.01151
С	5.04854	-0.76629	1.14171
Н	5.49952	-1.46323	1.86238
Н	5.78819	-0.49467	0.38333
Н	4.75270	0.12491	1.71337
Н	0.84991	-0.34843	-2.08514
Au	-1.12657	-0.22854	-0.23078
Р	-3.32123	0.36243	0.31851
С	-3.62315	0.45137	2.11109
H	-2.94488	1.18022	2.56799
Н	-4.66130	0.75777	2.29564
Н	-3.44974	-0.52855	2.56905
C	-4.57942	-0.78553	-0.32111
Ĥ	-5.57959	-0.42837	-0.04209
Н	-4.50975	-0.84672	-1.41257
Н	-4.42217	-1.78498	0.09913
C	-3 79847	1 99686	-0 32360
Ĥ	-4.82959	2.22236	-0.02093

Η	-3.12776	2.76576	0.07511
Η	-3.73273	2.00367	-1.41697
42			
25 , I	Energy: -73743	37.1632709	
С	1.65086	0.11776	0.33183
Au	-0.73651	-0.29554	-0.07705
Р	-3.03231	-0.30633	0.04280
С	-3.81559	-1.56029	-1.01455
Н	-3.47935	-2.56000	-0.71860
Н	-4.90646	-1.49775	-0.90846
Н	-3.54471	-1.39076	-2.06216
С	-3.65076	-0.63161	1.72145
Η	-3.28622	0.13998	2.40847
Η	-4.74877	-0.62351	1.71666
Η	-3.29708	-1.60854	2.06840
С	-3.77393	1.27978	-0.44415
Η	-3.50904	1.51628	-1.48049
Η	-4.86641	1.21707	-0.35359
Η	-3.40115	2.07831	0.20676
Η	1.44279	-0.31773	1.31626
С	1.46101	1.59488	0.23094
С	1.24751	2.27210	-0.97614
С	1.50496	2.33530	1.41879
С	1.09076	3.65551	-0.99229
Н	1.19450	1.72299	-1.91704
С	1.34457	3.71787	1.40081
Н	1.66254	1.81825	2.36589
С	1.13935	4.38467	0.19434
Η	0.92650	4.16370	-1.94117
Η	1.38110	4.27567	2.33522
Η	1.01571	5.46596	0.17850
С	2.48917	-2.69435	0.21737
С	1.45182	-2.35826	-0.56838
С	1.58944	-0.92905	-0.92721
С	2.87354	-0.52688	-0.28702
0	3.36406	-1.65747	0.41207
Н	0.64953	-3.01763	-0.88132
Н	1.32584	-0.53767	-1.91007
С	3.97424	0.27125	-0.90689
Н	4.57550	-0.37450	-1.55716
Н	3.58697	1.10088	-1.50555
Н	4.62500	0.68716	-0.12740
С	2.84978	-3.96015	0.88776
Н	2.11883	-4.74017	0.65356
Η	3.84337	-4.29705	0.56472
Η	2.88688	-3.82975	1.97693