Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2014

Supplementary Information:

Design of a New Series of Chiral Phosphite–Olefin Ligands and Their Application in Asymmetric Catalysis

Yue-Na Yu, and Ming-Hua Xu*

Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road, Shanghai 201203, China <u>xumh@simm.ac.cn</u>

Table of contents

1. General 1
2. General procedure for the synthesis of ligands1
3. General procedures for Rh-catalyzed 1,2-additions of α-diketones
4. General procedures for Rh-catalyzed 1,2-additions of cyclic imines
5. Characterization data and HPLC of addition products
6. Copies of ¹ H NMR and ¹³ C NMR spectra 34-73

1. General

All reactions, unless otherwise noted, were run under an atmosphere of argon using standard Schlenk techniques. Microwave reactions were performed in a monomode microwave (MW) reactor (CEM Discovery-SP). NMR spectra were recorded at ambient temperature on a standard spectrometer operating at 300 MHz, 400 MHz and 500 MHz. Chemical shifts are reported in δ ppm referenced to an internal SiMe₄ standard for ¹H NMR and chloroform-*d* (δ 77.16) for ¹³C NMR. HRMS spectra were measured in EI or ESI mode, and the mass analyzer of the HRMS was Q-TOF for ESI and MAT-95 for EI. Enantiomeric excess values of all compounds were determined by HPLC analysis on chiral columns.

2. General procedure for the synthesis of ligands

Ligand L1:

To a 35 mL microwave reaction tube was added salicylaldehyde (0.5 g, 4.5 mmol), benzyl phosphonate (1.1g, 4.5 mmol), 15 mL of dry toluene, and *t*-BuOK (1.38 g, 12 mmol) in turn. The suspension was heated under microwave irridation (maximum power 150 W, ramp time 10 min, hold time 30 min at 120 °C). The mixture was allowed to cool to room temperature, quenched with water (5 mL), and then extracted with ethyl acetate. The extract was washed with water, brine, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to afford (*E*)-2-(2-Phenylethenyl)phenol as a pale yellow solid (0.41g, 51% yield).

A solution of (*R*)-BINOL (1 equiv) and PCl₃ (5 equiv) was stirred at 70 °C under argon overnight. The mixture was concentrated on a rotary evaporator and gave corresponding (*R*)-binol-PCl. To a suspension of sodium hydride (1.30 mmol, 1.1 equiv) in THF (*E*)-2-(2-Phenylethenyl)phenol (1.20 mmol, 1 equiv) was added at 0 °C under argon. After stirring for 30 mins, the mixture was added of freshly prepared (*R*)-binol-PCl (1.68 mmol, 1.4 equiv) in 2 ml dry THF. Subsequently, it was allowed to come to RT and the mixture was stirred for 3 h. The solvent was removed under vacuum and the residue was purified by silica gel column chromatography to afford the corresponding ligand L1 as white foam (447 mg, 73% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 8.6 Hz, 1H), 7.94 (d, *J* = 8.2 Hz, 1H), 7.88 (d, *J* = 7.9 Hz, 1H), 7.78 (d, *J* = 8.6 Hz, 1H), 7.69 (d, *J* = 6.7 Hz, 1H), 7.56 (d, *J* = 8.7 Hz, 1H), 7.51 – 7.21 (m, 15H), 7.20 – 7.05 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 149.4 (d, ²*J*_{CP}= 7.5 Hz), 147.7 (d, ⁴*J*_{CP} = 2.9 Hz), 147.2, 137.5, 133.0, 132.7, 131.8, 131.4, 130.7, 130.3 (d, ²*J*_{CP} = 16.0 Hz), 129.6, 128.9, 128.7, 128.6, 127.8, 127.2 (d, ²*J*_{CP} = 9.8 Hz), 126.9, 126.8, 126.7, 126.5, 125.4, 125.2, 124.6, 124.5 (d, ⁴*J*_{CP} = 2 Hz),

123.0, 122.9, 121.9 (d, ${}^{4}J_{CP}$ = 4.9 Hz), 120.4 (d, ${}^{2}J_{CP}$ = 13.7 Hz); ${}^{31}P$ NMR (200 MHz, CDCl₃) δ 145.4; HRMS (EI) for C₃₄H₂₃O₃P [M]⁺ calcd 510.1385, found 510.1383.

Ligand L2:

white foam, 492 mg, 80% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 8.8 Hz, 1H), 7.96 (d, J = 8.2 Hz, 1H), 7.92 (d, J = 8.2 Hz, 1H), 7.86 (d, J = 8.8 Hz, 1H), 7.57 (d, J = 8.8 Hz, 1H), 7.51 – 7.40 (m, 5H), 7.35 – 7.27 (m, 3H), 7.25 – 7.14 (m, 5H), 7.13 - 7.00 (m, 3H), 3.03 – 2.74 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 150.2 (d, ³ $J_{CP} = 7.7$ Hz), 147.9 (d, ³ $J_{CP} = 4.7$ Hz), 147.2, 141.9, 133.3, 133.0, 132.7, 131.8, 131.4, 130.9, 130.6, 130.1, 128.6, 128.4, 127.5, 127.2 (d, ² $J_{CP} = 10.1$ Hz), 126.5 (d, ² $J_{CP} = 16.1$ Hz), 125.9, 125.4, 125.2, 124.5, 123.1, 121.9, 119.9 (d, ³ $J_{CP} = 12.8$ Hz), 36.7, 32.9; ³¹P NMR (200 MHz, CDCl₃) δ 145.2; HRMS (EI) for C₃₄H₂₅O₃P [M]⁺ calcd 512.1541, found 512.1538.

Ligand L3

white foam, 348 mg, 60% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.00 – 7.85 (m, 3H), 7.80 (d, *J* = 8.7 Hz, 1H), 7.52 – 7.30 (m, 12H), 7.29 – 7.15 (m, 4H), 7.06 (d, *J* = 8.9 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 148.9 (d, ³*J* _{CP} = 7.6 Hz), 147.9 (d, ³*J* _{CP} = 4.8 Hz), 147.1 (d, ⁴*J* _{CP} = 2.0 Hz), 137.8, 134.1 (d, ⁴*J* _{CP} = 2.9 Hz), 132.9, 132.6, 131.7, 131.6, 131.4, 130.5, 130.1, 130.0, 128.8, 128.5 (d, ²*J* _{CP} = 7.5 Hz), 128.3, 127.5, 127.1 (d, ²*J* _{CP} = 11.8 Hz), 126.5, 126.3, 125.3, 125.1, 124.8, 124.5 (d, ³*J* _{CP} = 5.1 Hz), 122.8 (d, ⁴*J* _{CP} = 1.8 Hz), 121.9, 121.1 (d, ²*J* _{CP} = 11.2 Hz); ³¹P NMR (200 MHz, CDCl₃) δ 145.1; HRMS (EI) for C₃₂H₂₁O₃P [M]⁺ calcd 484.1228, found 484.1223.

Ligand L4

white foam, 470 mg, 70% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.8 Hz, 1H), 7.94 (d, J = 8.2 Hz, 1H), 7.86 – 7.70 (m, 7H), 7.58 (t, J = 8.3 Hz, 2H), 7.51 – 7.37 (m, 8H), 7.35 (d, J = 7.9 Hz, 1H), 7.32 – 7.23 (m, 4H), 7.19 (t, J = 7.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 149.5 (d, ² $J_{CP} = 8.0$ Hz), 147.7 (d, ³ $J_{CP} = 4.7$ Hz), 147.2 (d, ⁴ $J_{CP} = 1.5$ Hz), 135.1, 133.8, 133.3, 133.0, 132.7, 131.9, 131.4, 130.7, 130.3 (d, ² $J_{CP} = 20.3$ Hz), 129.6 (d, ³ $J_{CP} = 2.5$ Hz), 128.7, 128.6 (d, ⁴ $J_{CP} = 1.3$ Hz), 128.3 (d, ² J_{T}

 $_{CP}$ = 10.0 Hz), 127.8, 127.2, 127.1, 127.0, 126.7, 126.6, 126.4 (d, ${}^{3}J_{CP}$ = 2.5 Hz), 126.1, 125.4, 125.2, 124.7, 124.6 (d, *J* = 5.0 Hz), 124.0, 123.3, 123.0 (d, ${}^{4}J_{CP}$ = 1.9 Hz), 121.9, 120.5 (d, ${}^{2}J_{CP}$ = 14.1 Hz); ³¹P NMR (200 MHz, CDCl₃) δ 145.4; HRMS (EI) for C₃₈H₂₅O₃P [M]⁺ calcd 560.1541, found 560.1529.

Ligand L5

white foam, 437 mg, 65% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, J = 8.2 Hz, 1H), 7.97 (d, J = 8.7 Hz, 1H), 7.94 – 7.84 (m, 3H), 7.84 – 7.72 (m, 3H), 7.62 (d, J = 7.1 Hz, 1H), 7.57 – 7.30 (m, 12H), 7.30 – 7.17 (m, 4H);¹³C NMR (125 MHz, CDCl₃) δ 149.6 (d, ³ J_{CP} = 7.8 Hz), 147.7 (d, ³ J_{CP} = 4.6 Hz), 147.1 (d, ⁴ J_{CP} = 1.8 Hz), 135.1, 133.9, 133.0, 132.7, 131.8, 131.5, 131.3, 130.7, 130.1, 129.8 (d, ⁴ J_{CP} = 1.9 Hz), 128.8 (d, ² J_{CP} = 12.9 Hz), 128.5 (d, ³ J_{CP} = 6.3 Hz), 128.2, 127.5, 127. 2 (d, ⁴ J_{CP} = 3.8 Hz), 127.1, 127.5, 126.5, 126.3 (d, ² J_{CP} = 10.0 Hz), 126.1, 125.9 (d, ² J_{CP} = 11.3 Hz), 125.4, 125.1, 124.7, 124.5 (d, ³ J_{CP} = 6.0 Hz), 124.1, 123.9, 122.9 (d, ⁴ J_{CP} = 1.8 Hz), 121.8, 120.5 (d, ² J_{CP} = 13.7 Hz); ³¹P NMR (200 MHz, CDCl₃) δ 145.3; HRMS (EI) for C₃₈H₂₅O₃P [M]⁺ calcd 560.1541, found 560.1530.

Ligand L6

white foam, 440 mg, 70% yield; ; ¹H NMR (500 MHz, CDCl₃) δ 7.95 – 7.81 (m, 4H), 7.65 (d, *J* = 16.3 Hz, 1H), 7.59 – 7.48 (m, 4H), 7.46 – 7.33 (m, 5H), 7.32 – 7.20 (m, 5H), 7.12 (d, *J* = 7.1 Hz, 1H), 7.09 – 7.01 (m, 2H), 2.47 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 148.3 (d, ³*J* _{CP} = 6.9 Hz), 147.9 (d, ³*J* _{CP} = 5.3 Hz), 147.1 (d, ⁴*J* _{CP} = 1.3 Hz), 137.6, 132.9, 132.7, 131.8, 131.4, 131.0 (d, ³*J* _{CP} = 3.8 Hz), 130.9, 130.6 (d, ²*J* _{CP} = 12.3 Hz), 130.1, 128.8, 128.5, 127.9, 127.2, 126.9, 126.4 (d, ²*J* _{CP} = 13.6 Hz), 125.3, 125.2, 125.0, 124.5 (d, ³*J* _{CP} = 5.1 Hz), 124.20, 123.9, 123.0 (d, ⁴*J* _{CP} = 2.0 Hz), 121.9 (d, ²*J* _{CP} = 11.9 Hz), 18.121 (d, ⁴*J* _{CP} = 3.0 Hz); ³¹P NMR (202 MHz, CDCl₃) δ 148.0; HRMS (EI) for C₃₅H₂₅O₃P [M]⁺ calcd 524.1541, found 524.1551.

Ligand L7

white foam, 516 mg, 65% yield; 1H NMR (300 MHz, CDCl3) δ 8.05 (d, J = 12.6 Hz, 4H), 7.69 (s, 4H), 7.51 (s, 5H), 7.33 (dd, J = 27.0, 10.3 Hz, 9H), 7.13 (s, 4H), 6.96 (d, J = 15.4 Hz, 3H), 6.78 (s, 1H), 5.66 (d, J = 7.8 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 149.1 (d, ³ $J_{CP} = 10.0$ Hz), 145.3 (d, ³ $J_{CP} = 4.3$ Hz), 144.7 (d, ⁴ $J_{CP} = 1.9$ Hz), 138.4, 137.7, 137.2, 135.0, 134.9, 132.6, 132.4, 131.7, 131.4, 130.8, 130.6, 130.4, 130.0, 129.9, 129.7 (d, ⁴ $J_{CP} = 2.5$ Hz), 128.7, 128.5, 128.2, 127.7 (d, ³ $J_{CP} = 4.7$ Hz), 127.5, 127.2 (d, ³ $J_{CP} = 2.8$ Hz), 126.8, 126.4 (d, ² $J_{CP} = 15.2$ Hz), 125.9, 125.7, 125.5, 124.4, 122.6, 120.6 (d, ² $J_{CP} = 11.2$ Hz); ³¹P NMR (200 MHz, CDCl₃) δ 143.2; HRMS (EI) for C₄₆H₃₁O₃P [M]⁺ calcd 662.2011, found 662.2012.

Ligand L8

white foam, 453 mg, 74% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.97 – 7.80 (m, 3H), 7.76 (d, J = 8.8 Hz, 1H), 7.44 – 7.27 (m, 11H), 7.26 – 7.10 (m, 5H), 7.03 (d, J = 8.8 Hz, 1H), 5.81 (s, 1H), 5.36 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 149.2 (d, ³ $_{J CP}$ = 7.3 Hz), 147.8 (d, ³ $_{J CP}$ = 4.7 Hz), 147.1 (d, ⁴ $_{J CP}$ = 2.0 Hz), 146.1, 140.7, 134.6, 132.9, 132.6, 131.9, 131.7, 131.3, 130.4, 129.8, 129.2, 128.5, 128.4 (d, ² $_{J CP}$ = 8.8 Hz), 127.9, 127.1 (d, ² $_{J CP}$ = 15.0 Hz), 127.0, 126.4, 126.2, 125.2, 125.0, 124.8, 124.5 (d, ³ $_{J CP}$ = 5.0 Hz), 122.9 (d, ⁴ $_{J CP}$ = 2.2 Hz), 121.9, 121.4 (d, ² $_{J CP}$ = 8.8 Hz), 117.2; ³¹P NMR (200 MHz, CDCl₃) δ 143.6; HRMS (EI) for C₃₄H₂₃O₃P [M]⁺ calcd 510.1385, found 510.1377.

Ligand L9

white foam, 427 mg, 82% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.99 (d, J = 8.7 Hz, 1H), 7.96 – 7.86 (m, 3H), 7.56 (dd, J = 8.7, 1.0 Hz, 2H), 7.49 – 7.36 (m, 5H), 7.34 – 7.17 (m, 4H), 7.16 – 7.07 (m, 1H), 7.00 (dd, J = 17.7, 11.1 Hz, 1H), 5.75 (dd, J = 17.7, 1.3 Hz, 1H), 5.29 (dd, J = 11.1, 1.3 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 149.2 (d, ³ $J_{CP} = 7.1$ Hz), 147.8 (d, ³ $J_{CP} = 4.8$ Hz), 147.1 (d, ⁴ $J_{CP} = 1.5$ Hz), 133.0, 132.7, 131.8, 131.4, 131.1, 130.7, 130.1, 130.0, 129.8 (d, ⁴ $J_{CP} = 2.5$ Hz), 129.0, 128.5 (d, ³ $J_{CP} = 7.6$ Hz), 127.2 (d, ² $J_{CP} = 12.5$ Hz), 126.7, 126.5 (d, ² $J_{CP} = 19.6$ Hz), 125.4, 125.2, 124.6, 124.5 (d, ³ $J_{CP} = 5.0$ Hz), 123.0 (d, ⁴ $J_{CP} = 1.8$ Hz), 121.9 (d, ⁴ $J_{CP} = 3.7$ Hz), 120.5 (d, ² $J_{CP} = 12.2$ Hz), 115.8; ³¹P NMR (200 MHz, CDCl₃) δ 144.4; HRMS (EI) for C₂₈H₁₉O₃P [M]⁺ calcd 434.1072, found 434.1071.

Ligand L10

white foam, 785 mg, 67% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.95 (d, J = 8.8 Hz, 1H), 7.89 (d, J = 8.2 Hz, 1H), 7.83 (d, J = 8.5 Hz, 1H), 7.77 (d, J = 8.8 Hz, 1H), 7.67 (d, J = 7.9 Hz, 1H), 7.60 (d, J = 8.0 Hz, 2H), 7.56 – 7.47 (m, 3H), 7.46 – 7.30 (m, 11H), 7.29 – 7.03 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 149.4 (d, ³ $J_{CP} = 7.6$ Hz), 147.7 (d, ³ $J_{CP} = 4.4$ Hz), 147.1 (d, ⁴ $J_{CP} = 1.7$ Hz), 140.8, 140.4, 136.6, 133.0, 132.7, 131.8, 131.4, 130.7, 130.2, 129.8, 129.5 (d, ⁴ $J_{CP} = 1.9$ Hz), 129.0, 128.7, 128.6 (d, ³ $J_{CP} = 3.8$ Hz), 127.3 (d, ³ $J_{CP} = 6.3$ Hz), 127.0, 126.7, 126.5 (d, ² $J_{CP} = 13.8$ Hz), 125.4, 125.2, 124.6, 124.5 (d, ² $J_{CP} = 6.3$ Hz), 123.0 (d, ⁴ $J_{CP} = 2.5$ Hz), 122.9, 121.9 (d, ³ $J_{CP} = 6.4$ Hz), 120.4 (d, ² $J_{CP} = 13.7$ Hz); ³¹P NMR (200 MHz, CDCl₃) δ 145.6; HRMS (EI) for C₄₀H₂₇O₃P [M]⁺ calcd 586.1698, found 586.1712.

3. General procedures for Rh-catalyzed 1,2-additions of α-diketones

Under an argon atmosphere, a solution of α -diketone (10, 0.25 mmol), [Rh(coe)₂Cl]₂ (1.5 mol%, 2.7 mg, 0.0075 mmol of Rh), ligand L1 (3 mol%, 3.8 mg, 0.0075 mmol), and arylboronic acid (0.5 mmol) in 1.0 mL of toluene was stirred at room temperature for 30 min. To this mixture was added aqueous K₃PO₄ (83 ul, 2.5 M). After being stirred at room temperature overnight, the mixture was concentrated under reduced pressure. The residue was purified by silica gel column chromatography to afford the corresponding addition product 11.

4. General procedures for Rh-catalyzed 1,2-additions of cyclic imines

Under an argon atmosphere, a solution of cyclic imine (12, 0.25 mmol), $[Rh(coe)_2Cl]_2$ (2.5 mol%, 4.5 mg, 0.0125 mmol of Rh), ligand L4 or L10 (5 mol% 0.0125 mmol), and boronic acid in 1.0 mL of dioxane was stirred at room temperature for 30 min. To this mixture were added aqueous K₃PO₄ (83 ul, 2.5 M). After being stirred at room temperature or designated temperature for 3-6 hours, the reaction mixture was passed through a pad of silica gel with EtOAc and the solvent was removed under vacuum. The residue was purified by silica gel column chromatography to afford the corresponding addition product 13.

5. Characterization data and HPLC of addition products

(R)-2-hydroxy-2-(4-methoxyphenyl)-1,2-diphenylethan-1-one (11a)

white solid, 93% yield, 94% ee; 7.88 – 7.57 (m, 2H), 7.56 – 7.10 (m, 10H), 6.84 (d, J = 6.1 Hz, 2H), 4.99 (s, 1H), 3.76 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 201.0, 159.3, 142.2, 135.2, 134.1, 133.0, 130.9, 129.7, 128.4, 128.3, 128.2, 128.1, 113.8, 84.8, 55.3; HPLC: Chiral OZ-H column (250 mm); detected at 220

nm; hexane/i-propanol = 95/5; flow = 0.7 mL/min; Rentention time: 19.7 min (maj), 21.9 min.

Results							
Peak No.	Peak ID	Ret Time	Height	Area	Conc.		
1		19.748	528537.375	17489778.000	96.9634		
2		21.913	15090.246	547724.750	3.0366		
Total			543627.621	18037502.750	100.0000		

(R)-2-hydroxy-1,2-diphenyl-2-(p-tolyl)ethan-1-one (11b)

OZ-H column (250 mm); detected at 220 nm; hexane/*i*-propanol = 95/5; flow = 0.5 mL/min; Rentention time: 18.4 min (maj), 20.4 min.

(R)-2-([1,1'-biphenyl]-4-yl)-2-hydroxy-1,2-diphenylethan-1-one (11c)

HO,

white solid, 83% yield, 93% ee; ¹H NMR (300 MHz, CDCl₃) δ 7.80 – 7.71 (m, 2H), 7.58 (dd, J = 8.2, 2.5 Hz, 4H), 7.53 – 7.39 (m, 7H), 7.39 – 7.22 (m, 6H), 5.03 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 200.8, 142.0, 141.0, 140.9, 140.4, 135.2, 133.1, 130.9, 128.9, 128.8, 128.5, 128.3, 128.3, 128.2, 127.6, 127.1, 127.1, 85.1;

Chiral AD-H column (250 mm); detected at 220 nm; hexane/*i*-propanol = 70/30; flow =0.7 mL/min; Rentention time: 10.8 min, 13.6 min (maj).

(S)-1,2-bis(4-bromophenyl)-2-hydroxy-2-(4-methoxyphenyl)ethan-1-one (11d)

white solid, 87% yield, 94% ee; ¹H NMR (300 MHz, CDCl₃) δ 7.60 (d, *J* = 8.6 Hz, 2H), 7.49 – 7.37(m, 4H), 7.28 – 7.15 (m, 4H), 6.85 (d, *J* = 8.8 Hz, 2H), 4.79 (s, 1H), 3.77 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 199.5, 159.7, 141.0, 133.6, 133.5, 132.4, 131.7, 130.0, 129.4, 128.6, 122.6, 114.1, 84.6,

55.4; HPLC: Chiral OZ-H column (250 mm); detected at 220 nm; hexane/*i*-propanol = 95/5; flow = 0.5 mL/min; Rentention time: 20.2 min, 22.7min(maj); HRMS (ESI) for $C_{21}H_{16}Br_2O_3Na [M+Na]^+$ calcd , 496.9364, found 496.9366.

(S)-1,2-bis(4-fluorophenyl)-2-hydroxy-2-(p-tolyl)ethan-1-one (11e)

white solid, 90% yield, 94% ee; ¹H NMR (300 MHz, CDCl₃) δ 7.85 – 7.74 (m, 2H), 7.40 – 7.29 (m, 2H), 7.23 (d, *J* = 8.2 Hz, 2H), 7.14 (d, *J* = 8.0 Hz, 2H), 7.04 – 6.88 (m, 4H), 4.83 (s, 1H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 199.0, 165.5 (d, ¹*J*_{CF} = 255.0 Hz), 162.5 (d, ¹*J*_{CF} = 246 Hz), 138.9, 138.4, 138.0

(d, ${}^{3}J_{CF} = 3.1$ Hz), 133.8, 133.7, 131.2 (d, ${}^{3}J_{CF} = 2.5$ Hz), 130.2, 130.1, 129.4, 128.0, 115.4 (d, ${}^{2}J_{CF} = 22.0$), 115.4 (d, ${}^{2}J_{CF} = 22.0$), 84.6, 21.2. HPLC: Chiral AD-3 column (250 mm); detected at 220 nm; hexane/*i*-propanol = 95/5; flow = 0.7 mL/min; Rentention time: 28.7 min (maj), 30.8 min.

(R)-2-hydroxy-2-(4-methoxyphenyl)-1,2-bis(4-(trifluoromethyl)phenyl)ethan-1-one (11f)

CF₃ solid, 96% yield, 95% ee; ¹H NMR (300 MHz, CDCl₃) δ 7.84 (d, J = 8.1Hz, 2H), 7.65 – 7.46 (m, 6H), 7.24 (d, J = 8.8 Hz, 2H), 6.89 (d, J = 8.9 Hz, 2H), 4.53 (s, 1H), 3.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 199.6, 159.9, 145.6, 138.1, 134.3(q, ² $J_{CF} = 32.6$ Hz),133.2, 131.1, 130.6 (q, ² $J_{CF} = 32.4$ Hz), 129.2, 128.5, 125.6 (q, ³ $J_{CF} = 3.5$ Hz), 125.4 (q, ³ $J_{CF} = 3.4$ Hz), 124.0 (q, ¹ $J_{CF} = 271$ Hz), 123.5 (q, ¹ $J_{CF} = 271$ Hz), 114.3, 85.1, 55.4; HPLC: Chiral AD-3 column (250 mm); detected at 220 nm; hexane/*i*-propanol = 90/10; flow = 0.7 mL/min; Rentention time: 13.9 min (maj), 15.9 min; HRMS (ESI) for C₂₃H₁₆F₆O₃Na [M+Na]⁺ calcd ,477.0901, found 477.0890.

(S)-2-(4-(tert-butyl)phenyl)-2-hydroxy-1,2-bis(4-(trifluoromethyl)phenyl)ethan-1-one (11g)

solid, 93% yield, 90% ee; ¹H NMR (300 MHz, CDCl₃) δ 7.86 (d, J = 8.2 Hz, 2H), 7.67 – 7.49 (m, 6H), 7.40 (d, J = 8.4 Hz, 2H), 7.24 (d, J = 8.5 Hz, 2H), 4.49 (s, 1H), 1.32 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 199.5, 151.9, 145.3, 138.1, 138.0, 134.2 (q, ² $_{JCF} = 32.0$ Hz), 131.0, 130.4(q, ² $_{JCF} = 32.0$

Hz), 128.4, 127.4, 125.8, 125.4 (q, ${}^{3}J_{CF} = 3.0$ Hz), 125.2 (q, ${}^{3}J_{CF} = 3.5$ Hz), 124.0 (q, ${}^{1}J_{CF} = 271$ Hz), 123.5 (q, ${}^{1}J_{CF} = 271$ Hz), 85.1, 34.6, 31.2; HPLC: Chiral AD-3 column (250 mm); detected at 220 nm; hexane/*i*-propanol = 97/3; flow = 0.7 mL/min; Rentention time: 19.1 min (maj), 21.9 min; HRMS (ESI) for C₂₆H₂₁F₆O₂ [M-H]⁻ calcd 479.1446, found 479.1465.

(S)-2-hydroxy-2-(p-tolyl)-1,2-bis(4-(trifluoromethyl)phenyl)ethan-1-one (11h)

solid, 94% yield, 95% ee; ¹H NMR (300 MHz, CDCl₃) δ 7.84 (d, J = 8.0 Hz, 2H), 7.65 – 7.47 (m, 6H), 7.28 – 7.13 (m, 4H), 4.48 (s, 1H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 199.5, 145.5, 139.0, 138.2, 138.1, 134.3 (q, ² $J_{CF} = 32.6$ Hz), 131.1, 130.6 (q, ² $J_{CF} = 32.4$ Hz), 129.7, 128.6, 127.8, 125.5 (q, ³ $J_{CF} = 3.6$ Hz), 125.4 (q, ³ $J_{CF} = 3.6$ Hz), 124.0 (q, ¹ $J_{CF} = 3.6$ Hz), 125.4 (q, ³ $J_{CF} = 3.6$ Hz), 124.0 (q, ¹ $J_{CF} = 3.6$ Hz), 125.4 (q, ³ $J_{CF} = 3.6$ Hz), 124.0 (q, ¹ $J_{CF} = 3.6$ Hz), 125.4 (q, ³ $J_{CF} = 3.6$ Hz), 124.0 (q, ¹ $J_{CF} = 3.6$ Hz), 125.4 (q, ³ $J_{CF} = 3.6$ Hz), 124.0 (q, ¹ $J_{CF} = 3.6$ Hz), 125.4 (q, ³ $J_{CF} = 3.6$ Hz), 124.0 (q, ¹ $J_{CF} = 3.6$ Hz), 125.4 (q, ³ $J_{CF} = 3.6$ Hz), 124.0 (q, ¹ $J_{CF} = 3.6$ Hz), 125.4 (q, ³ $J_{CF} = 3.6$ Hz), 124.0 (q, ¹ $J_{CF} = 3.6$ Hz), 125.4 (q, ³ $J_{CF} = 3.6$ Hz), 124.0 (q, ¹ $J_{CF} = 3.6$ Hz), 125.4 (q, ³ $J_{CF} = 3.6$ Hz), 124.0 (q, ¹ $J_{CF} = 3.6$ Hz), 125.4 (q, ^{3} $J_{CF} = 3.6$ Hz), 124.0 (q, ¹ $J_{CF} = 3.6$ Hz), 125.4 (q, ³ $J_{CF} = 3.6$ Hz), 124.0 (q, ¹ $J_{CF} = 3.6$ Hz), 125.4 (q, ³ $J_{CF} = 3.6$ Hz), 124.0 (q, ¹ $J_{CF} = 3.6$ Hz), 125.4 (q, ³ $J_{CF} = 3.6$ Hz), 124.0 (q, ¹ $J_{CF} = 3.6$ Hz), 125.4 (q, ³ $J_{CF} = 3.6$ Hz), 124.0 (q, ¹ $J_{CF} = 3.6$ Hz), 125.4 (q, ³ $J_{CF} = 3.6$ Hz), 124.0 (q, ¹ $J_{CF} = 3.6$ Hz), 125.2 (q, ³ $J_{CF} = 3.6$ Hz), 124.0 (q, ³ $J_{CF} = 3.6$ Hz), 125.2 (q,}

=271 Hz), 123.5 (q, ${}^{1}J_{CF}$ =271 Hz), 85.3, 21.2; HPLC: Chiral OZ-H column (250 mm); detected at 220 nm; hexane/*i*-propanol = 99/1; flow = 0.5 mL/min; Rentention time: 15.0 min, 18.1min (maj); HRMS (ESI) for C₂₃H₁₅F₆O₂ [M-H]⁻ calcd 437.0976, found 437.0980.

(R)-2-hydroxy-2-(m-tolyl)-1,2-bis(4-(trifluoromethyl)phenyl)ethan-1-one (11i)

solid, 94% yield, 93% ee; ¹H NMR (300 MHz, CDCl₃) δ 7.85 (d, J = 8.1 Hz, 2H), 7.71 – 7.43 (m, 6H), 7.33 – 7.15 (m, 3H), 7.11 (d, J = 7.6 Hz, 1H), 4.45 (s, 1H), 2.34 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 199.6, 145.4, 141.1, 139.0, 138.1, 134.3 (q, ² $J_{CF} = 32.9$ Hz), 131.1, 130.6 (q, ² $J_{CF} = 32.5$

Hz), 129.8, 128.9, 128.6, 128.4, 125.5 (q, ${}^{3}J_{CF} = 3.5$ Hz), 125.4 (q, ${}^{3}J_{CF} = 3.5$ Hz), 124.9, 124.0 (q, ${}^{1}J_{CF} = 271.1$ Hz), 123.5 (q, ${}^{1}J_{CF} = 271.3$ Hz), 85.4, 21.7; HPLC: Chiral OZ-H column (250 mm); detected at 220 nm; hexane/*i*-propanol = 97/3; flow = 0.5 mL/min; Rentention time: 8.4 min, 10.2 min (maj); HRMS (ESI) for C₂₃H₁₆F₆O₂Na [M+Na]⁺ calcd 461.0952, found 461.0942.

(R)-2-hydroxy-2-(naphthalen-2-yl)-1,2-bis(4-(trifluoromethyl)phenyl)ethan-1-one (11j)

solid, 93% yield, 94% ee; ¹H NMR (300 MHz, CDCl₃) δ 7.96 – 7.82 (m, 4H), 7.81 – 7.72 (m, 2H), 7.62 (d, J = 8.5 Hz, 2H), 7.59 – 7.39 (m, 7H), 4.58 (s, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 199.5, 145.4, 138.4, 138.0, 134.4 (q, ² J_{CF} = 32.5 Hz), 133.2, 133.0, 131.1, 130.7 (q, ² J_{CF} = 32.5 Hz), 129.0, 128.7, 128.6, 127.8, 127.3, 127.0, 126.7, 125.6 (q, ³ J_{CF} = 3.3 Hz),

125.4 (q, ${}^{3}J_{CF} = 3.3$ Hz), 125.3, 125.1, 124.0 (q, ${}^{1}J_{CF} = 271.4$ Hz), 123.5 (q, ${}^{1}J_{CF} = 271.4$ Hz), 85.6; HPLC: Chiral AD-3 column (250 mm); detected at 220 nm; hexane/*i*-propanol = 95/5; flow = 0.5 mL/min; Rentention time: 31.8 min (maj), 41.4 min; HRMS (ESI) for C₂₆H₁₆F₆O₂Na [M+Na]⁺ calcd 497.0952, found 497.0943.

(S)-2-hydroxy-2-phenyl-1,2-bis(4-(trifluoromethyl)phenyl)ethan-1-one (11k)

solid, 91% yield, 95% ee; ¹H NMR (300 MHz, CDCl₃) δ 7.84 (d, J = 8.2 Hz, 2H), 7.70 – 7.48 (m, 6H), 7.46 – 7.30 (m, 5H), 4.55 (s, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 199.5, 145.4, 141.1, 138.0, 134.4 (q, ² $J_{CF} = 32.5$ Hz), 131.1, 130.7 (q, ² $J_{CF} = 32.5$ Hz), 129.0, 129.0, 128.6, 127.8, 125.6 (q, ³ $J_{CF} = 3.3$ Hz), 125.4 (q, ³ $J_{CF} = 3.3$ Hz), 124.0 (q, ¹ $J_{CF} = 271.2$ Hz), 123.5 (q,

 ${}^{1}J_{CF}$ =271.2 Hz), 85.4; HPLC: Chiral OZ-H column (250 mm); detected at 220 nm; hexane/*i*-propanol = 99/1; flow = 0.5 mL/min; Rentention time: 14.2 min, 17.6 min (maj); HRMS (ESI) for C₂₂H₁₃F₆O₂ [M-H]⁻ calcd 423.0820, found 423.0838.

(R)-2-(4-chlorophenyl)-2-hydroxy-1,2-bis(4-(trifluoromethyl)phenyl)ethan-1-one (111)

CF₃ solid, 94% yield, 96% ee; ¹H NMR (300 MHz, CDCl₃) δ 7.85 (d, J = 8.1Hz, 2H), 7.70 – 7.57 (m, 4H), 7.51 (d, J = 8.2 Hz, 2H), 7.42 – 7.21 (m, 4H), 4.56 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 199.0, 145.1, 139.6, 137.7, 135.1, 134.6 (q, ² $J_{CF} = 32.7$ Hz), 131.1, 130.7 (q, ² $J_{CF} = 32.7$ Hz), 129.3, 129.2, 128.4, 125.8 (q, ³ $J_{CF} = 3.6$ Hz), 125.5 (q, ³ $J_{CF} = 3.3$ Hz), 124.0 (q, ¹ $J_{CF} = 271.0$ Hz), 123.5 (q, ¹ $J_{CF} = 271.0$ Hz), 85.0; HPLC: Chiral AD-3 column (250 mm); detected at 220 nm; hexane/*i*-propanol = 97/3; flow = 0.5 mL/min; Rentention time: 36.1 min (maj), 39.7 min; HRMS (ESI) for C₂₂H₁₂ClF₆O₂ [M-H]⁻ calcd 457.0430, found 457.0449.

5	10	15	20	25 Firme(min)	30	35	40	45	
			Page	ulte					
			Res	uits					

Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		36.102	517665.531	26694500.000	97.9505	
2		39.703	16262.043	558542.688	2.0495	
Total			533927.574	27253042.688	100.0000	

(R)-2-(4-bromophenyl)-2-hydroxy-1,2-bis(4-(trifluoromethyl)phenyl)ethan-1-one (11m)

(S)-2-([1,1'-biphenyl]-4-yl)-2-hydroxy-1,2-bis(4-(trifluoromethyl)phenyl)ethan-1-one (11n)

solid, 95% yield, 94% ee; ¹H NMR (300 MHz, CDCl₃) δ 7.89 (d, J = 8.1 Hz, 2H), 7.69 – 7.50 (m, 10H), 7.48 – 7.29 (m, 5H), 4.57 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 199.4, 145.4, 141.8, 140.1, 140.0, 138.0, 134.4 (q, ² $J_{CF} = 33.0$ Hz), 131.1, 130.7 (q, ² $J_{CF} = 32.0$ Hz), 129.1, 128.6, 128.3, 128.0, 127.6, 127.2, 125.7 (q, ³ $J_{CF} = 3.3$ Hz), 125.4 (q, ³ $J_{CF} = 4.0$ Hz), 124.0 (q,

 ${}^{1}J_{CF}$ =271 Hz), 123.5 (q, ${}^{1}J_{CF}$ =271 Hz), 85.3; HPLC: Chiral AD-3 column (250 mm); detected at 220 nm; hexane/*i*-propanol = 97/3; flow = 0.7 mL/min; Rentention time: 26.9 min (maj), 31.7 min; HRMS (ESI) for C₂₈H₁₇F₆O₂ [M-H]⁻ calcd 499.1133, found 499.1153.

439217.703

27583144.000

100.0000

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		26.932	202211.750	11782496.000	96.9314
2		31.665	5138.808	373007.313	3.0686
Total			207350.558	12155503.313	100.0000

(*R*,*E*)-4-styryl-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (13a)

O __S[€]N

Ő

oil, 87% yield, 92% ee; ¹H NMR (300 MHz, CDCl₃) δ 7.49 - 7.37 (m, 2H), 7.36 -7.24 (m, 3H), 7.20 – 7.05 (m, 2H), 6.99 – 6.88 (m, 1H), 6.79 (dd, J = 15.7, 2.8 Hz, `NH 1H), 6.23 (dd, J = 15.7, 8.6 Hz, 1H), 5.38 (td, J = 8.4, 3.5 Hz, 1H), 5.04 - 4.82 (m, `Ph 1H); ¹³C NMR (100 MHz, CDCl₃) δ 151.1, 136.9, 135.3, 130.0, 129. 1, 129. 0,

128.0, 127.1, 125.5, 124.2, 121.3, 119.0, 60.2; HPLC: Chiral AY-H column (250 mm); detected at 220 nm; hexane/i-propanol = 80/20; flow = 0.7 mL/min; Rentention time: 19.1 min, 34.4 min (maj); HRMS (ESI) for $C_{15}H_{12}NO_3S$ [M-H]⁻ calcd 286.0538, found 286.0551.

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		19.100	24273.293	1644258.000	3.7622
2		34.440	299166.906	42060640.000	96.2378
Total			323440.199	43704898.000	100.0000

(*R*,*E*)-4-(4-methylstyryl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (13b)

oil, 93% yield, 87% ee; ¹H NMR (300 MHz, CDCl₃) δ 7.37 – 7.24 (m, 3H), 7.23 – 7.07 (m, 4H), 6.96 (d, J = 8.2 Hz, 1H), 6.77 (d, J = 15.7 Hz, 1H), 6.18 (dd, J = 15.7, 8.6 Hz, 1H), 5.37 (t, J = 8.4 Hz, 1H), 4.95 (d, J = 8.2 Hz, 1H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.9, 139.1, 136.8, 132.5, 129.9,

129.6, 128.0, 127.0, 125.4, 123.0, 121.4, 118.8, 60.2, 21.4; HPLC: Chiral IC-H column (250 mm); detected at 220 nm; hexane/*i*-propanol = 90/10; flow = 0.7 mL/min; Rentention time: 33.0 min, 37.9 min (maj); HRMS (ESI) for $C_{16}H_{14}NO_3S$ [M-H]⁻ calcd 300.0694, found 300.0708.

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		33.040	24018.639	1729827.375	6.7784
2		37.907	256896.781	23789740.000	93.2216
Total			280915.420	25519567.375	100.0000

(*R*,*E*)-6-methyl-4-styryl-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (13c)

oil, 92% yield, 93% ee; ¹H NMR (300 MHz, CDCl₃) δ 7.43 (d, J = 6.6 Hz, 2H), 7.39 – 7.25 (m, 3H), 7.08 (d, J = 8.2 Hz, 1H), 6.96 (s, 1H), 6.82 (dd, J = 14.2, 12.1 Hz, 2H), 6.25 (dd, J = 15.7, 8.6 Hz, 1H), 5.34 (s, 1H), 4.99 (s, 1H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.8, 136.6, 135.4, 135.3, 130.5, 128.9, 128.1, 127.1,

124.3, 120.8, 118.6, 60.1, 20.9; HPLC: Chiral IC-H column (250 mm); detected at 220 nm; hexane/*i*-propanol = 90/10; flow = 0.7 mL/min; Rentention time: 43.4 min, 48.1 min (maj); HRMS (ESI) for $C_{16}H_{16}NO_3S$ [M+H]⁺ calcd 302.0851, found 302.0846.

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		43.417	15515.896	1169031.625	3.3143
2		48.093	345340.969	34103084.000	96.6857
Total			360856.864	35272115.625	100.0000

(R,E)-7-methoxy-4-styryl-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (13d)

oil, 64% yield, 91% ee; ¹H NMR (300 MHz, CDCl₃) δ 7.72 - 7.15 (m, 6H), 7.06 (d, *J* = 8.6 Hz, 1H), 6.75 (dd, *J* = 24.9, 12.2 Hz, 2H), 6.50 (s, 1H), 6.23 (dd, *J* = 15.6, 8.6 Hz, 1H), 5.33 (d, *J* = 8.2 Hz, 1H), 3.76 (d, *J* = 2.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.6, 151.7, 136.5, 135.4, 128.9, 128.6,

127.0, 124.4, 113.0, 112.3, 103.6, 59.8, 55.7; HPLC: Chiral IC-H column (250 mm); detected at 220 nm; hexane/*i*-propanol = 90/10; flow = 0.7 mL/min; Rentention time: 49.9 min, 56.3 min (maj); HRMS (ESI) for $C_{16}H_{16}NO_4S$ [M+H]⁺ calcd 318.0800, found 318.0798.

Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		50.280	15634.077	1680818.000	48.4337	
2		57.758	13717.068	1789531.875	51.5663	
Total			29351.146	3470349.875	100.0000	

Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		49.910	3125.923	407561.469	4.6562	_
2		56.330	72110.406	8345512.000	95.3438	
Total			75236.329	8753073.469	100.0000	_

(*R*,*E*)-8-methyl-4-styryl-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (13e)

O S NI

O´

`NH

oil, 89% yield, 94% ee; ¹H NMR (300 MHz, CDCl₃) δ 7.50 - 7.41 (m, 2H), 7.41 -7.28 (m, 3H), 7.18 (dd, J = 6.4, 1.1 Hz, 1H), 7.12 – 7.01 (m, 2H), 6.82 (d, J = 15.7 Hz, 1H), 6.28 (dd, J = 15.7, 8.5 Hz, 1H), 5.40 (d, J = 8.5 Hz, 1H), 5.02 (s, 1H), Ρh 2.24 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.4, 136.5, 135.4, 131.3, 128.9,

128.3, 127.0, 125.4, 124.8, 124.4, 121.1, 60.1, 15.5; HPLC: Chiral IC-H column (250 mm); detected at 220 nm; hexane/i-propanol = 90/10; flow = 0.7 mL/min; Rentention time: 32.1 min, 35.3 min (maj); HRMS (ESI) for $C_{16}H_{16}NO_3S [M+H]^+$ calcd 302.0851, found 302.0842.

(R)-4-phenyl-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (13f)

oil, 97% yield, 98% ee; ¹H NMR (300 MHz, CDCl₃) δ 7.75 – 7.10 (m, 6H), 7.07 - 6.90 (m, 2H), 6.72 (d, *J* = 7.1 Hz, 1H), 5.78 (s, 1H), 4.93 (s, 1H); HPLC: Chiral IC-H column (250 mm); detected at 220 nm; hexane/*i*-propanol = 90/10; flow = 0.7 mL/min; Rentention time: 24.6 min (maj), 29.5 min.

	Results							
Peak No.	Peak ID	Ret Time	Height	Area	Conc.			
1		25.090	8107.287	353069.719	51.5894			
2		29.758	6544.003	331314.781	48.4106			
Total			14651.290	684384.500	100.0000			

(R)-4-(naphthalen-2-yl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (13g)

oil, 96% yield, 95% ee; ¹H NMR (300 MHz, CDCl₃) δ 8.06 – 7.72 (m, 4H), 7.66 – 7.43 (m, 2H), 7.18 – 7.40 (m, 2H), 7.02 (t, *J* = 8.2 Hz, 2H), 6.79 (t, *J* = 8.3 Hz, 1H), 6.00 (s, 1H), 5.18 (s, 1H); HPLC: Chiral IC-H column (250 mm); detected at 220 nm; hexane/*i*-propanol = 70/30; flow = 0.7 mL/min; Rentention time: 11.6

min (maj), 17.9 min.

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		11.303	885204.000	18280686.000	50 3 50 8
2		17.102	550278.000	18025938.000	49.6492
Total			1435482.000	36306624.000	100.0000

(R)-4-(m-tolyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (13h)

oil, 93% yield, 97% ee; ¹H NMR (300 MHz, CDCl₃) δ 7.31 (t, J = 7.5 Hz, 2H), 7.22 (d, J = 7.7 Hz, 1H), 7.17 – 6.95 (m, 4H), 6.81 (d, J = 7.8 Hz, 1H), 5.83 (d, J = 8.7 Hz, 1H), 4.89 (d, J = 8.5 Hz, 1H), 2.36 (s, 3H); HPLC: Chiral IC-H column (250 mm); detected at 220 nm; hexane/i-propanol = 90/10; flow = 0.7 mL/min;

Rentention time: 23.1 min (maj), 27.6 min.

O S _{_}0

`NH

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		23.105	158649.813	6522257.500	98.2652
2		27.557	2916.841	115147.297	1.7348
Total			161566.653	6637404.797	100.0000

(R)-4-(4-methoxyphenyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (13i)

oil, 94% yield, 95% ee; ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.28 (m, 1H), 7.27 – 7.19 (m, 2H), 7.14 – 7.02 (m, 2H), 6.98 – 6.87 (m, 2H), 6.83 (dd, *J* = 7.8, 1.1 Hz, 1H), 5.85 (d, *J* = 7.7 Hz, 1H), 4.80 (d, *J* = 7.7 Hz, 1H), 3.83 (s, 3H); HPLC: Chiral AD-H column (250 mm); detected at 220 nm; hexane/*i*-propanol = 80/20; flow =

0.6 mL/min; Rentention time: 18.6 min, 22.7 min (maj).

Results						
Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		18.595	9861.221	256356.391	2.3656	_
2		22.670	337637.688	10580612.000	97.6344	
Total			347498.908	10836968.391	100.0000	

(R)-4-(p-tolyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (13j)

oil, 97% yield, 95% ee; ¹H NMR (300 MHz, CDCl₃) δ 7.37 – 7.16 (m, 5H), 7.15 – 6.91 (m, 2H), 6.80 (d, J = 7.6 Hz, 1H), 5.83 (d, J = 7.9 Hz, 1H), 4.90 (d, J = 7.7 Hz, 1H), 2.37 (s, 3H); HPLC: Chiral AD-H column (250 mm); detected at 220 nm; hexane/*i*-propanol = 90/10; flow = 0.7 mL/min; Rentention time: 22.6 min, 24.5 min

(maj)

Z Z4.3 Total

238570.963

7672771.469

100.0000

(R)-4-(4-chlorophenyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (13k)

oil, 95% yield, 97% ee; ¹H NMR (300 MHz, CDCl₃) δ 7.54 - 7.21 (m, 5H), 7.10 (t, *J* = 7.3 Hz, 1H), 7.00 (d, *J* = 8.2 Hz, 1H), 6.79 (d, *J* = 7.8 Hz, 1H), 5.85 (d, *J* = 7.4 Hz, 1H), 5.06 (d, J = 7.3 Hz, 1H); HPLC: Chiral AD-H column (250 mm); CI detected at 220 nm; hexane/i-propanol = 90/10; flow = 0.7 mL/min; Rentention

time: 21.3 min, 23.3 min (maj).

O S S

`NH

Ó

		-			
1	21.257	3332.613	112275.992	1.5161	
2	23.323	210872.609	7293079.000	98.4839	
Total		214205.222	7405354.992	100.0000	

(R)-6-methyl-4-phenyl-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (13l)

oil, 98% yield, 98% ee; ¹H NMR (300 MHz, CDCl₃) ¹H NMR (300 MHz, CDCl₃) δ 7.42 (d, J = 2.0 Hz, 3H), 7.36 – 7.28 (m, 2H), 7.09 (d, J = 8.2 Hz, 1H), 6.89 (d, J = 8.4 Hz, 1H), 6.58 (s, 1H), 5.82 (s, 1H), 4.92 (s, 1H), 2.19 (s, 3H).; HPLC: Chiral AD-H column (250 mm); detected at 220 nm; hexane/*i*-propanol = 80/20; flow = 0.7 mL/min;

Rentention time: 11.2 min (maj), 12.9 min.

(R)-8-methyl-4-phenyl-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (13m)

oil, 96% yield, 98% ee; ¹H NMR (300 MHz, CDCl₃) δ 7.46 – 7.38 (m, 3H), 7.38 – 7.28 (m, 2H), 7.15 (d, *J* = 7.4 Hz, 1H), 6.95 (t, *J* = 7.6 Hz, 1H), 6.62 (d, *J* = 7.7 Hz, 1H), 5.86 (s, 1H), 4.95 (s, 1H), 2.23 (s, 3H); HPLC: Chiral IC-H column (250 mm); detected at 220 nm; hexane/*i*-propanol = 80/20; flow = 0.7 mL/min; Rentention

time: 12.5 min (maj), 13.8 min.

Total

230020.042

5058421.500

100.0000

(S)-4-(thiophen-3-yl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (13n)

O´

O ∑S[€]O oil, 83% yield, 99% ee; ¹H NMR (300 MHz, CDCl₃) δ 7.50 – 7.38 (m, 2H), 7.38 – 7.29 ŇΗ (m, 1H), 7.12 (t, J = 7.6 Hz, 1H), 7.06 (d, J = 8.3 Hz, 1H), 7.02 (dd, J = 4.9, 1.4 Hz, 1H), 6.94 (d, J = 7.8 Hz, 1H), 6.05 (d, J = 8.7 Hz, 1H), 4.79 (d, J = 8.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 151.2, 138.1, 130.0, 128.4, 128.0, 126.7, 126.1, 125.4,

121.8, 119.0, 57.1; HPLC: Chiral AY-H column (250 mm); detected at 220 nm; hexane/i-propanol = 80/20; flow = 0.7 mL/min; Rentention time: 17.9 min, 48. 1min (maj); HRMS (ESI) for C₁₁H₈NO₃S₂ [M-H]⁻ calcd 265.9946, found 265.9958.

Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		17.348	45098.605	2344647.750	48.3263	
2		52.615	10396.484	2507055.500	51.6737	
Total			55495.090	4851703.250	100.0000	

S33

6. Copies of ¹H NMR, ¹³C NMR and ³¹P NMR spectra

6.01 6.01 7.35 7.35 7.35 7.35 7.79 7.75

S35

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20

8 8 22 8 9 22 8 9 20

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1

749.23 447.49 447.14 147.14 132.71 132.71 132.71 132.71 132.71 132.71 132.71 132.71 132.73 132.73 132.73 132.73 132.85 122.13 123.13 12

220 210 200 190 190 170 150 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

-4.564

11m

--2.34

ò

so

.50

88 96**6666666** 89 9675288333343 88 96757288333343

<3.76 3.75

