Supporting Information

Identifying a Non-Chiral Ligand for the Efficient Chirality Transfer in Carbonylation of Propargylic Mesylates

Yuli Wang,[†] Wanli Zhang[†] and Shengming Ma*,^{†,‡}

[†] Shanghai Key Laboratory of Green Chemistry and Chemical Process, Department of

Chemistry, East China Normal University, 3663 North Zhongshan Lu, Shanghai

200062, P. R. China

^{*} State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 lingling Lu, Shanghai 200032, P. R.

China

Fax: (+86)21-62609305 E-mail: masm@sioc.ac.cn

General information	S2
Screening of ligands	S3
Experimental details and analytical data	S4-S17
¹ H, ¹³ C NMR and HPLC spectra of products	S18-S96

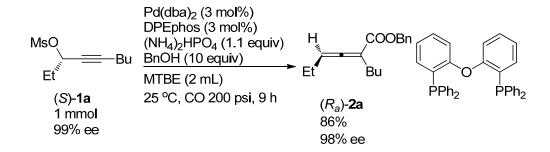

General Information. NMR spectra were taken with Bruker-300 spectrometer (300 MHz for ¹H NMR, 75.4 MHz for ¹³C NMR) and Bruker-400 spectrometer (400 MHz for ¹H NMR, 100 MHz for ¹³C NMR) in CDCl₃. Chemical shifts were recorded in ppm relative to the residue of CHCl₃ in CDCl₃ and coupling constants were reported in Hz. All reactions were carried out in oven-dried tubes. $(NH_4)_2$ HPO₄ was purchased from Sinopharm Chemical Reagent Co., Ltd; DPEphos was purchased from Acros Chemicals. MTBE was dried over sodium wire with benzophenone as indicator and distilled freshly before use. The enantioenriched propargylic mesylates were synthesized from the corresponding enantiopure propargylic alcohols, and used without further purification. Purification by column chromatography was performed using Haiyang (Shandong, China) silica gel (10-40 µ).

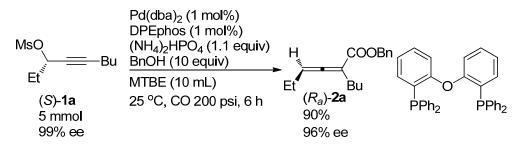
Table S1 Pressure effect in	DPEphos-assisted	carboxylation of	of enantioenriched
(S)-1a			

	DP ────Bu (NH ────Bn/ -1a MT	(dba) ₂ (3 mol%) Ephos (3 mol%) H ₄) ₂ HPO ₄ (1.1 equiv) OH (10 equiv) BE (2 mL) ℃, CO (X psi), 9 h (<i>R</i>)	COOBn PPh ₂ PPh ₂ Bu PPh ₂ PPh ₂ -2a DPEphos
Entry	X (psi)	Yield% of (R_a) -2a ^{a)}	Ee% of (R_a) -2a ^{b)}
1	15	75	87
2	40	74	86
3	60	79	95
4	80	76	96
5	100	74	97
6	200	82	97

^{a)} Isolated yield. ^{b)} ee value of the product as determined by HPLC.

Experimental details and analytical data

(1) Preparation of (R_a) -benzyl 2-butyl-2,3-hexadienoate $((R_a)$ -2a) (zwl-1-92)

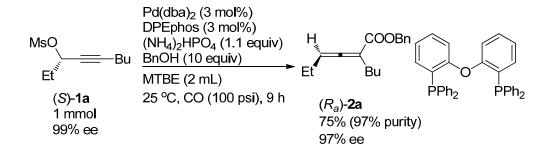

Typical procedure 1: To a flame-dried Schlenk tube were added $Pd(dba)_2$ (17.5 mg, 0.03 mmol) and DPEphos (16.6 mg, 0.03 mmol). Then the tube was degassed and refilled with Ar for three times to ensure the complete exclusion of air. Freshly distilled MTBE (1 mL) was subsequently added under argon. The resulting Pd(0) mixture was stirred for 1 hour at room temperature.

To a flame-dried tube filled with argon were added (S)-1a (218.2 mg, 1.0 mmol) / MTBE (0.5 mL), BnOH (1.0815 g, 10 mmol) / MTBE (0.5 mL) and (NH₄)₂HPO₄ (145.8 mg, 1.1 mmol). After the Pd(0) mixture was transferred by syringe to the tube, it was placed into the Parr reactor. The air in the reactor was replaced by CO gas three times sequentially, the Parr reactor was charged to 200 psi with CO gas. The mixture was stirred at room temperature till the reaction ended, then the gas was vented in the hood safely. The resulting mixture was diluted with Et₂O (10 mL), washed with brine (10 mL), and dried over Na₂SO₄. After filtration and concentration under reduced pressure, the crude product was purified by flash chromatography on silica gel to afford (R_a) -2a (223.3 mg, 86%) as an oil [eluent: petroleum ether (b.p. 60-90 $^{\circ}$ C)/ethyl ether = 250/1]: 98% ee (HPLC onditions: Regis (S,S) Whelk-O column, hexane/*i*-PrOH = 200/1, 0.5 mL/min, λ = 214 nm, $t_{\rm R}$ (minor) = 16.1 min, $t_{\rm R}$ (major) = 18.1 min); $[\alpha]_{D}^{25} = -38.5$ (c = 1.17, CHCl₃) [96% ee, $[\alpha]_{D}^{24} = -38.0$ (c = 1.17, CHCl₃)]^[1], ¹H NMR (300 MHz, CDCl₃): $\delta = 7.40-7.23$ (m, 5 H, Ar-H), 5.63-5.54 (m, 1 H, =CH), 5.22 (d, J = 12.6 Hz, 1 H, one proton from Bn), 5.14 (d, J = 12.9 Hz, 1 H, one proton from Bn), 2.32-2.18 (m, 2 H, CH₂), 2.18-2.05 (m, 2 H, CH₂), 1.50-1.27 (m, 4 H, 2 x CH₂), 1.04 (t, J = 7.2 Hz, 3 H, CH₃), 0.90 (t, J = 7.1 Hz, 3 H, CH₃); ¹³C NMR

(75 MHz, CDCl₃): δ = 209.8, 167.6, 136.4, 128.3, 127.8, 127.5, 101.1, 96.7, 66.1, 30.3, 28.1, 22.2, 21.3, 13.9, 13.2.

The following compounds $((R_a)-2\mathbf{b}-(R_a)-2\mathbf{l}$ and $(S_a)-2\mathbf{m})$ in Table 4 were prepared according to this **Typical Procedure 1**.

Reaction on gram scale:

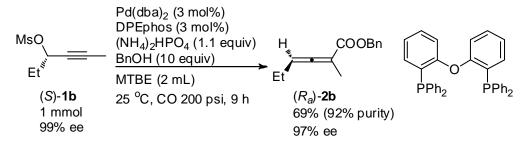


To a flame-dried Schlenk tube were added $Pd(dba)_2$ (28.8 mg, 0.05 mmol) and DPEphos (27.9 mg, 0.05 mmol). Then the tube was degassed and refilled with Ar for three times to ensure the complete exclusion of air. Freshly distilled MTBE (2 mL) was subsequently added under argon. The resulting Pd(0) mixture was stirred for 1 hour at room temperature.

To a flame-dried tube filled with argon were added (NH₄)₂HPO₄ (0.7260 g, 5.5 mmol), (*S*)-**1a** (1.1021 g, 5 mmol) / MTBE (4 mL), and BnOH (5.4088 g, 50 mmol) / MTBE (4 mL). After the Pd(0) mixture was transferred by syringe to the tube, it was placed into the Parr reactor. The air in the reactor was replaced by CO gas three times sequentially, the Parr reactor was charged to 200 psi with CO gas. The mixture was stirred at room temperature till the reaction ended, then the gas was vented in the hood safely. The resulting mixture was diluted with Et₂O (20 mL), washed with brine (20 mL), and dried over Na₂SO₄. After filtration and concentration under reduced pressure, the crude product was purified by flash chromatography on silica gel to afford (*R_a*)-**2a** (1.1750 g, 90%) as an oil [eluent: petroleum ether (b.p. 60-90 °C)/ethyl ether = 250/1]: 96% ee (HPLC onditions: Regis (*S*,*S*) Whelk-O column, hexane/*i*-PrOH = 200/1, 1.0 mL/min, λ = 214 nm, *t_R* (minor) = 11.3 min, *t_R* (major) = 13.0 min); [α]²¹_D = -37.8 (c = 1.21, CHCl₃) [96% ee, [α]²⁴_D = -38.0 (c = 1.17, CHCl₃)]^{[11}; ¹H NMR (300 MHz, CDCl₃): δ = 7.39-7.23 (m, 5 H, Ar-H), 5.63-5.54 (m, 1 H, =CH), 5.22 (d, *J* = 12.6 Hz, 1 H, one proton from Bn), 5.14 (d, *J* = 12.6 Hz, 1 H,

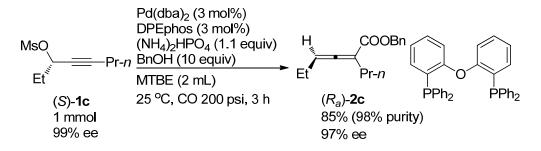
one proton from Bn), 2.32-2.18 (m, 2 H, CH₂), 2.18-2.06 (m, 2 H, CH₂), 1.49-1.23 (m, 4 H, 2 x CH₂), 1.04 (t, J = 7.4 Hz, 3 H, CH₃), 0.90 (t, J = 6.9 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃): $\delta = 209.8$, 167.6, 136.5, 128.4, 127.8, 127.5, 101.1, 96.7, 66.1, 30.3, 28.1, 22.2, 21.4, 13.9, 13.2.

(2) Preparation of (*R_a*)-benzyl 2-butyl-2,3-hexadienoate ((*R_a*)-2a) (wyl-17-64)

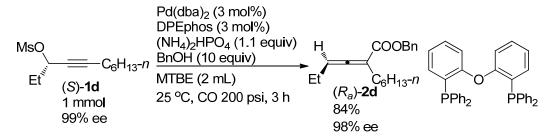

Typical procedure 2: To a flame-dried Schlenk tube were added $Pd(dba)_2$ (17.3 mg, 0.03 mmol) and DPEphos (16.8 mg, 0.03 mmol). Then the tube was degassed and refilled with Ar for three times to ensure the complete exclusion of air. Freshly distilled MTBE (1 mL) was subsequently added under argon. The resulting Pd(0) mixture was stirred for 1 hour at room temperature.

To a flame-dried tube filled with argon were added (NH₄)₂HPO₄ (144.9 mg, 1.1 mmol), (*S*)-**1a** (218.9 mg, 1.0 mmol) / MTBE (0.5 mL), and BnOH (1.0808 g, 10 mmol) / MTBE (0.5 mL). After the Pd(0) mixture was transferred by syringe to the tube, it was placed into the Parr reactor. The air in the reactor was replaced by CO gas three times sequentially, the Parr reactor was charged to 100 psi with CO gas. The mixture was stirred at room temperature till the reaction ended, then the gas was vented in the hood safely. The resulting mixture was diluted with Et₂O (10 mL), washed with brine (10 mL), and dried over Na₂SO₄. After filtration and concentration under reduced pressure, the crude product was purified by flash chromatography on silica gel to afford (*R_a*)-**2a** (201.3 mg, 75%, 97% purity) as an oil [eluent: petroleum ether (b.p. 60-90 °C)/ethyl ether = 250/1]: 97% ee (HPLC onditions: Regis (*S*,*S*) Whelk-O column, hexane/*i*-PrOH = 200/1, 1.0 mL/min, λ = 214 nm, *t_R* (minor) = 10.8 min, *t_R* (major) = 12.5 min); [α]¹⁹_D = -38.2 (c = 1.25, CHCl₃) [96% ee, [α]²⁴_D = -38.0 (c = 1.17, CHCl₃)]^{[11}; ¹H NMR (300 MHz, CDCl₃): δ = 7.40-7.25 (m, 5 H, Ar-H),

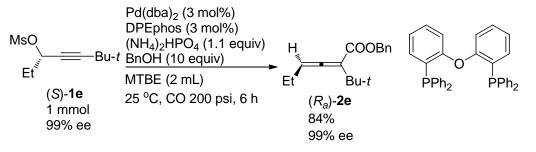
5.63-5.55 (m, 1 H, =CH), 5.22 (d, J = 12.9 Hz, 1 H, one proton from Bn), 5.15 (d, J = 12.9 Hz, 1 H, one proton from Bn), 2.32-2.18 (m, 2 H, CH₂), 2.18-2.06 (m, 2 H, CH₂), 1.48-1.28 (m, 4 H, 2 x CH₂), 1.04 (t, J = 7.4 Hz, 3 H, CH₃), 0.90 (t, J = 7.2 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃): $\delta = 209.8$, 167.5, 136.4, 128.3, 127.8, 127.5, 101.1, 96.7, 66.1, 30.2, 28.1, 22.2, 21.3, 13.8, 13.2.


The following compounds $((R_a)-2\mathbf{j}-(R_a)-2\mathbf{l} \text{ and } (S_a)-2\mathbf{n})$ in Table 4 were prepared according to this **Typical Procedure 2**.

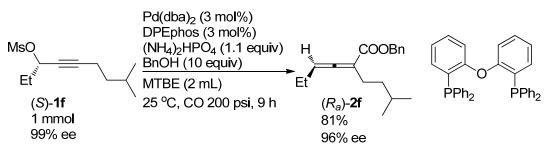
(3) Preparation of (*R_a*)-benzyl 2-methyl-2,3-hexadienoate ((*R_a*)-2b) (zwl-2-111)


Following **Typical procedure 1**. The reaction of Pd(dba)₂ (17.4 mg, 0.03 mmol), DPEphos (16.9 mg, 0.03 mmol) / MTBE (1 mL), (NH₄)₂HPO₄ (145.5 mg, 1.1 mmol), (*S*)-**1b** (176.0 mg, 1 mmol) / MTBE (0.5 mL), BnOH (1.0811 g, 10 mmol) / MTBE (0.5 mL) afforded (R_a)-**2b** (162.3 mg, 69%, 92% purity) as an oil: 97% ee (HPLC conditions: Regis (*S*,*S*) Whelk-O column, hexane/*i*-PrOH = 200/1, 1.0 mL/min, λ = 214 nm, t_R (minor) = 10.6 min, t_R (major) = 12.3 min); $[\alpha]^{22}_D$ = -62.4 (c = 1.40, CHCl₃) [90% ee, $[\alpha]^{20}_D$ = -65.6 (c = 1.17, CHCl₃)]^[1]; ¹H NMR (300 MHz, CDCl₃): δ = 7.41-7.22 (m, 5 H, Ar-H), 5.57-5.48 (m, 1 H, =CH), 5.22 (d, J = 12.3 Hz, 1 H, one proton from Bn), 5.14 (d, J = 12.6 Hz, 1 H, one proton from Bn), 2.18-2.05 (m, 2 H, CH₂ from Et), 1.89 (d, J = 3.0 Hz, 3 H, CH₃ from Me), 1.03 (t, J = 7.5 Hz, 3 H, CH₃ from Et); ¹³C NMR (75 MHz, CDCl₃): δ = 210.1, 167.8, 136.4, 128.4, 127.8, 127.5, 96.1, 95.6, 66.2, 21.2, 15.2, 13.2.

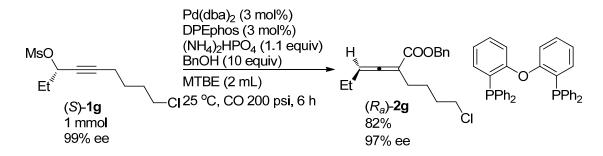
(4) Preparation of (R_a) -benzyl 2-propyl-2,3-hexadienoate $((R_a)$ -2c) (zwl-2-90)


Following **Typical procedure 1**. The reaction of Pd(dba)₂ (17.3 mg, 0.03 mmol), DPEphos (16.8 mg, 0.03 mmol) / MTBE (1 mL), (NH₄)₂HPO₄ (145.0 mg, 1.1 mmol), (*S*)-**1c** (205.0 mg, 1 mmol) / MTBE (0.5 mL), BnOH (1.0800 g, 10 mmol) / MTBE (0.5 mL) afforded (R_a)-**2c** (213.3 mg, 85%, 98% purity) as an oil: 97% ee (HPLC conditions: Regis (*S*,*S*) Whelk-O column, hexane/*i*-PrOH = 200/1, 1.0 mL/min, λ = 214 nm, t_R (minor) = 11.8 min, t_R (major) = 13.5 min); [α]²⁴_D = -44.3 (c = 1.22, CHCl₃) [97% ee, [α]²²_D = -44.2 (c = 1.08, CHCl₃)]^[1]; ¹H NMR (300 MHz, CDCl₃): δ = 7.40-7.22 (m, 5 H, Ar-H), 5.63-5.53 (m, 1 H, =CH), 5.21 (d, J = 12.3 Hz, 1 H, one proton from Bn), 5.14 (d, J = 12.3 Hz, 1 H, one proton from Bn), 2.32-2.17 (m, 2 H, CH₂), 2.17-2.05 (m, 2 H, CH₂), 1.55-1.40 (m, 2 H, CH₂), 1.04 (t, J = 7.2 Hz, 3 H, CH₃), 0.93 (t, J = 7.4 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ = 209.9, 167.6, 136.4, 128.4, 127.8, 127.5, 101.0, 96.7, 66.1, 30.5, 21.3, 13.6, 13.2.

(5) Preparation of (R_a) -benzyl 2-*n*-hexyl-2,3-hexadienoate $((R_a)$ -2d) (zwl-2-47)

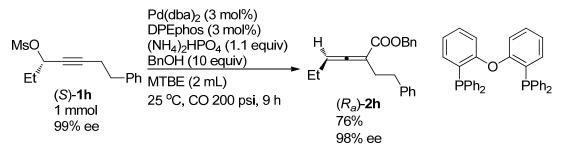

Following **Typical procedure 1**. The reaction of Pd(dba)₂ (17.4 mg, 0.03 mmol), DPEphos (16.8 mg, 0.03 mmol) / MTBE (1 mL), (NH₄)₂HPO₄ (145.3 mg, 1.1 mmol), (*S*)-**1d** (246.0 mg, 1 mmol) / MTBE (0.5 mL), BnOH (1.0814 g, 10 mmol) / MTBE (0.5 mL) afforded (R_a)-**2d** (240.1 mg, 84%) as an oil: 98% ee (HPLC conditions: Regis (*S*,*S*) Whelk-O column, hexane/*i*-PrOH = 200/1, 0.5 mL/min, λ = 214 nm, t_R (minor) = 12.1 min, t_R (major) = 13.8 min); $[\alpha]^{30}_D$ = -33.6 (c = 1.48, CHCl₃) [95% ee, $[\alpha]^{24}_D$ = -33.3 (c = 1.21, CHCl₃)]^[1]; ¹H NMR (300 MHz, CDCl₃): δ = 7.40-7.24 (m, 5 H, Ar-H), 5.63-5.54 (m, 1 H, =CH), 5.22 (d, J = 12.9 Hz, 1 H, one proton from Bn), 5.15 (d, J = 12.6 Hz, 1 H, one proton from Bn), 2.32-2.18 (m, 2 H, CH₂), 2.18-2.06 (m, 2 H, CH₂), 1.50-1.20 (m, 8 H, 4 x CH₂), 1.04 (t, J = 7.4 Hz, 3 H, CH₃), 0.88 (t, J = 6.9 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃): $\delta = 209.8$, 167.6, 136.5, 128.4, 127.8, 127.5, 101.2, 96.7, 66.1, 31.6, 28.8, 28.4, 28.1, 22.6, 21.4, 14.0, 13.3.

(6) Preparation of (R_a) -benzyl 2-*t*-butyl-2,3-hexadienoate $((R_a)$ -2e) (zwl-1-176)


Following **Typical procedure 1**. The reaction of Pd(dba)₂ (17.2 mg, 0.03 mmol), DPEphos (16.6 mg, 0.03 mmol) / MTBE (1 mL), (NH₄)₂HPO₄ (145.4 mg, 1.1 mmol), (*S*)-**1e** (218.5 mg, 1 mmol) / MTBE (0.5 mL), BnOH (1.0807 g, 10 mmol) / MTBE (0.5 mL) afforded (R_a)-**2e** (216.8 mg, 84%) as an oil: 99% ee (HPLC conditions: Regis (*S*,*S*) Whelk-O column, hexane/*i*-PrOH = 200:1, 0.3 mL/min, λ = 214 nm, t_R (minor) = 20.4 min, t_R (major) = 22.2 min); $[\alpha]^{22}_D$ = -43.1 (c = 1.70, CHCl₃) [97% ee, $[\alpha]^{23}_D$ = -38.4 (*c* = 1.01, CHCl₃)]^[1]; ¹H NMR (300 MHz, CDCl₃): δ = 7.37-7.22 (m, 5 H, Ar-H), 5.55 (t, *J* = 6.2 Hz, 1 H, =CH), 5.19 (d, *J* = 12.9 Hz, 1 H, one proton from Bn), 5.12 (d, *J* = 12.9 Hz, 1 H, one proton from Bn), 2.16-2.05 (m, 2 H, CH₂), 1.20 (s, 9 H, 3 x CH₃ from *t*-Bu), 1.03 (t, *J* = 7.5 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ = 208.6, 166.5, 136.5, 128.3, 127.7, 127.3, 110.0, 96.5, 65.6, 33.0, 29.5, 21.3, 13.0. (7) **Preparation of** (R_a)-benzyl 2-(3-methylbutyl)-2,3-hexadienoate ((R_a)-2f)

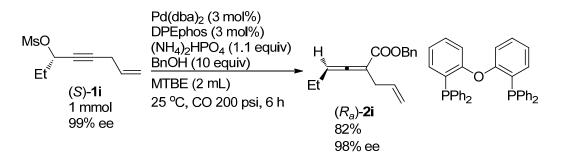
Following Typical procedure 1. The reaction of Pd(dba)₂ (17.3 mg, 0.03 mmol),

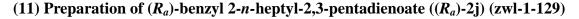
DPEphos (16.8 mg, 0.03 mmol) / MTBE (1 mL), (NH₄)₂HPO₄ (144.9 mg, 1.1 mmol), (*S*)-**1f** (232.0 mg, 1 mmol) / MTBE (0.5 mL), BnOH (1.0807 g, 10 mmol) / MTBE (0.5 mL) afforded (R_a)-**2f** (220.4 mg, 81%) as an oil: 96% ee (HPLC conditions: Regis (*S*,*S*) Whelk-O column, hexane/*i*-PrOH = 300/1, 0.7 mL/min, λ = 214 nm, t_R (minor) = 19.1 min, t_R (major) = 22.1 min); $[\alpha]^{24}_D$ = -34.9 (c = 1.24, CHCl₃) [94% ee, $[\alpha]^{22}_D$ = -33.0 (c = 1.01, CHCl₃)]^[1]; ¹H NMR (300 MHz, CDCl₃): δ = 7.40-7.23 (m, 5 H, Ar-H), 5.63-5.55 (m, 1 H, =CH), 5.22 (d, J = 12.6 Hz, 1 H, one proton from Bn), 5.15 (d, J = 12.9 Hz, 1 H, one proton from Bn), 2.29-2.18 (m, 2 H, CH₂), 2.18-2.06 (m, 2 H, CH₂), 1.66-1.51 (m, 1 H, CH), 1.37-1.24 (m, 2 H, CH₂), 1.04 (t, J = 7.4 Hz, 3 H, CH₃), 0.89 (d, J = 6.6 Hz, 6 H, 2 x CH₃); ¹³C NMR (75 MHz, CDCl₃): δ = 209.7, 167.6, 136.4, 128.3, 127.8, 127.5, 101.3, 96.8, 66.1, 37.2, 27.5, 26.4, 22.5, 21.3, 13.2. (8) **Preparation of** (R_a)-benzyl 2-(4-chlorobutyl)-2,3-hexadienoate ((R_a)-2g) (wyl-16-116)

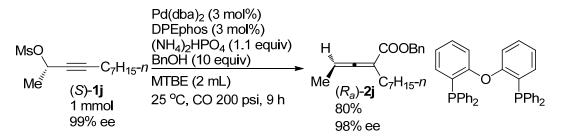


Following **Typical procedure 1**. The reaction of Pd(dba)₂ (17.4 mg, 0.03 mmol), DPEphos (16.7 mg, 0.03 mmol) / MTBE (1 mL), (NH₄)₂HPO₄ (145.0 mg, 1.1 mmol), (*S*)-**1g** (253.0 mg, 1 mmol) / MTBE (0.5 mL), BnOH (1.0807 g, 10 mmol) / MTBE (0.5 mL) afforded (R_a)-**2g** (240.2 mg, 82%) as an oil: 97% ee (HPLC conditions: Regis (*S*,*S*) Whelk-O column, hexane/*i*-PrOH = 200/1, 1.0 mL/min, λ = 214 nm, t_R (minor) = 16.8 min, t_R (major) = 18.8 min); $[\alpha]^{27}{}_D$ = -29.7 (c = 1.10, CHCl₃) [95% ee, $[\alpha]^{22}{}_D$ = -29.3 (c = 1.17, CHCl₃)]^{[11}; ¹H NMR (300 MHz, CDCl₃): δ = 7.40-7.23 (m, 5 H, Ar-H), 5.66-5.58 (m, 1 H, =CH), 5.22 (d, J = 12.6 Hz, 1 H, one proton from Bn), 5.15 (d, J = 12.6 Hz, 1 H, one proton from Bn), 3.53 (t, J = 6.8 Hz, 2 H, CH₂), 2.36-2.19 (m, 2 H, CH₂), 2.19-2.07 (m, 2 H, CH₂), 1.90-1.74 (m, 2 H, CH₂), 1.68-1.53 (m, 2 H, CH₂), 1.05 (t, J = 7.4 Hz, 3 H, CH₃ from Et); ¹³C NMR (75 MHz, CDCl₃): δ

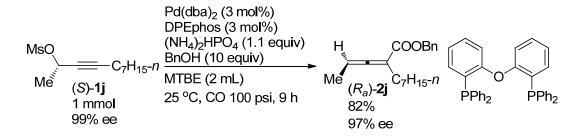
= 209.7, 167.4, 136.3, 128.4, 127.9, 127.5, 100.5, 97.2, 66.2, 44.7, 31.9, 27.6, 25.3, 21.3, 13.2.

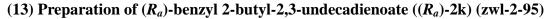

(9) Preparation of (R_a) -benzyl 2-(2-phenylethyl)-2,3-hexadienoate $((R_a)$ -2h)

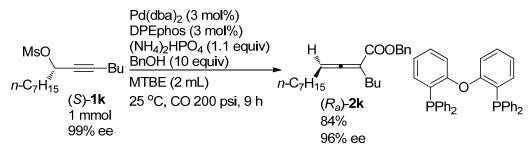



Following **Typical procedure 1**. The reaction of Pd(dba)₂ (17.3 mg, 0.03 mmol), DPEphos (16.6 mg, 0.03 mmol) / MTBE (1 mL), (NH₄)₂HPO₄ (145.5 mg, 1.1 mmol), (*S*)-**1h** (266.4 mg, 1 mmol) / MTBE (0.5 mL), BnOH (1.0813 g, 10 mmol) / MTBE (0.5 mL) afforded (R_a)-**2h** (232.2 mg, 76%) as an oil: 98% ee (HPLC conditions: Regis (*S*,*S*) Whelk-O column, hexane/*i*-PrOH = 300/1, 1.0 mL/min, λ = 214 nm, t_R (minor) = 26.0 min, t_R (major) = 29.0 min); $[\alpha]^{26}_D$ = -14.4 (c = 1.50, CHCl₃) [92% ee, $[\alpha]^{24}_D$ = -13.8 (*c* = 1.48, CHCl₃)]^[1]; ¹H NMR (300 MHz, CDCl₃): δ = 7.45-7.10 (m, 10 H, Ar-H), 5.59-5.50 (m, 1 H, =CH), 5.22 (d, *J* = 12.9 Hz, 1 H, one proton from Bn), 5.15 (d, *J* = 12.6 Hz, 1 H, one proton from Bn), 2.83-2.68 (m, 2 H, CH₂), 2.68-2.47 (m, 2 H, CH₂), 2.10-1.96 (m, 2 H, CH₂), 0.96 (t, *J* = 7.4 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ = 209.9, 167.2, 141.4, 136.3, 128.4, 128.3, 128.2, 127.8, 127.5, 125.8, 100.3, 97.0, 66.1, 34.3, 30.2, 21.2, 13.1.

(10) Preparation of (R_a) -benzyl 2-(2-proprylenyl)-2,3-hexadienoate $((R_a)$ -2i) (zwl-2-142)

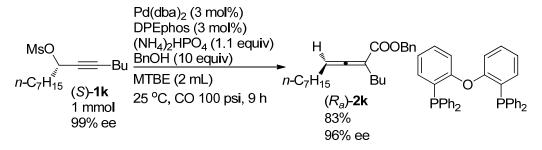

Following **Typical procedure 1**. The reaction of Pd(dba)₂ (17.3 mg, 0.03 mmol), DPEphos (16.8 mg, 0.03 mmol) / MTBE (1 mL), (NH₄)₂HPO₄ (145.0 mg, 1.1 mmol), S11 (*S*)-**1i** (202.0 mg, 1 mmol) / MTBE (0.5 mL), BnOH (1.0809 g, 10 mmol) / MTBE (0.5 mL) afforded (R_a)-**2i** (198.7 mg, 82%) as an oil: 98% ee (HPLC conditions: Regis (*S*,*S*) Whelk-O column, hexane/*i*-PrOH = 200/1, 1.0 mL/min, λ = 214 nm, t_R (minor) = 12.9 min, t_R (major) = 15.0 min); $[\alpha]^{21}_D$ = -41.7 (c = 1.57, CHCl₃) [91% ee, $[\alpha]^{26}_D$ = -38.0 (c = 1.21, CHCl₃)]^[1]; ¹H NMR (300 MHz, CDCl₃): δ = 7.40-7.25 (m, 5 H, Ar-H), 5.91-5.75 (m, 1 H, CH=), 5.67-5.59 (m, 1 H, =CH), 5.22 (d, J = 12.9 Hz, 1 H, one proton from Bn), 5.15 (d, J = 12.9 Hz, 1 H, one proton from Bn), 5.15 (d, J = 12.9 Hz, 1 H, one proton from Bn), 5.13-4.99 (m, 2 H, =CH₂), 3.09-2.93 (m, 2 H, CH₂), 2.18-2.06 (m, 2 H, CH₂), 1.03 (t, J = 7.4 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ = 210.1, 167.0, 136.3, 135.2, 128.3, 127.8, 127.5, 116.0, 99.6, 97.1, 66.2, 33.1, 21.2, 13.1.



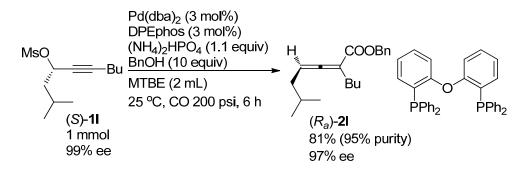

Following **Typical procedure 1**. The reaction of Pd(dba)₂ (17.3 mg, 0.03 mmol), DPEphos (17.0 mg, 0.03 mmol) / MTBE (1 mL), (NH₄)₂HPO₄ (145.5 mg, 1.1 mmol), (*S*)-**1j** (246.6 mg, 1 mmol) / MTBE (0.5 mL), BnOH (1.0820 g, 10 mmol) / MTBE (0.5 mL) afforded (R_a)-**2j** (229.3 mg, 80%) as an oil: 98% ee (HPLC conditions: Regis (*S*,*S*) Whelk-O column, hexane/*i*-PrOH = 200/1, 0.5 mL/min, λ = 214 nm, t_R (minor) = 14.2 min, t_R (major) = 17.0 min); $[\alpha]^{26}{}_D$ = -29.8 (c = 1.24, CHCl₃) [93% ee, $[\alpha]^{23}{}_D$ = -27.0 (c = 1.15, CHCl₃)]^[1]; ¹H NMR (300 MHz, CDCl₃): δ = 7.43-7.23 (m, 5 H, Ar-H), 5.56-5.44 (m, 1 H, =CH), 5.18 (s, 2 H, CH₂ from Bn), 2.32-2.13 (m, 2 H, CH₂), 1.76 (d, J = 7.2 Hz, 3 H, CH₃), 1.52-1.16 (m, 10 H, 5 x CH₂), 0.88 (t, J = 6.3 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ = 210.7, 167.5, 136.4, 128.4, 127.8, 127.6, 100.0, 89.7, 66.1, 31.8, 29.1, 29.0, 28.4, 28.0, 22.6, 14.1, 13.3.

(12) Preparation of (*R_a*)-benzyl 2-*n*-heptyl-2,3-pentadienoate ((*R_a*)-2j) (wyl-17-62)

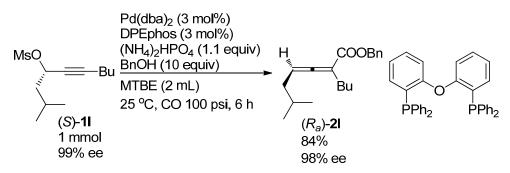
Following **Typical procedure 2**. The reaction of Pd(dba)₂ (17.3 mg, 0.03 mmol), DPEphos (16.7 mg, 0.03 mmol) / MTBE (1 mL), (NH₄)₂HPO₄ (145.5 mg, 1.1 mmol), (*S*)-**1j** (246.9 mg, 1 mmol) / MTBE (0.5 mL), BnOH (1.0807 g, 10 mmol) / MTBE (0.5 mL) afforded (R_a)-**2j** (234.8 mg, 82%) as an oil: 97% ee (HPLC conditions: Regis (*S*,*S*) Whelk-O column, hexane/*i*-PrOH = 200/1, 1.0 mL/min, λ = 214 nm, t_R (minor) = 10.2 min, t_R (major) = 12.2 min); $[\alpha]^{19}{}_D$ = -29.5 (c = 0.97, CHCl₃) [93% ee, $[\alpha]^{23}{}_D$ = -27.0 (c = 1.15, CHCl₃)]^{[11}; ¹H NMR (300 MHz, CDCl₃): δ = 7.40-7.25 (m, 5 H, Ar-H), 5.55-5.45 (m, 1 H, =CH), 5.18 (s, 2 H, CH₂ from Bn), 2.32-2.14 (m, 2 H, CH₂), 1.76 (d, J = 6.9 Hz, 3 H, CH₃), 1.50-1.15 (m, 10 H, 5 x CH₂), 0.88 (t, J = 6.8 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 210.7, 167.6, 136.4, 128.4, 127.8, 127.6, 99.9, 89.7, 66.1, 31.8, 29.1, 29.0, 28.4, 28.0, 22.6, 14.1, 13.3.



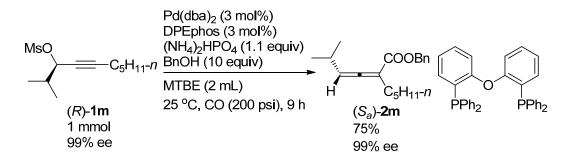
Following **Typical procedure 1**. The reaction of Pd(dba)₂ (17.3 mg, 0.03 mmol), DPEphos (16.8 mg, 0.03 mmol) / MTBE (1 mL), (NH₄)₂HPO₄ (145.0 mg, 1.1 mmol), (*S*)-**1k** (288.6 mg, 1 mmol) / MTBE (0.5 mL), BnOH (1.0809 g, 10 mmol) / MTBE (0.5 mL) afforded (R_a)-**2k** (276.1 mg, 84%) as an oil: 96% ee (HPLC conditions: Regis (*S*,*S*) Whelk-O column, hexane/*i*-PrOH = 200/1, 1.0 mL/min, λ = 214 nm, t_R (minor) = 10.3 min, t_R (major) = 11.9 min); $[\alpha]^{21}_D$ = -43.3 (c = 1.06, CHCl₃) [94% ee, $[\alpha]^{24}_D$ = -42.6 (c = 1.32, CHCl₃)]^[1]; ¹H NMR (300 MHz, CDCl₃): δ = 7.40-7.21 (m, 5 H, Ar-H), 5.58-5.47 (m, 1 H, =CH), 5.21 (d, J = 12.9 Hz, 1 H, one proton from Bn),

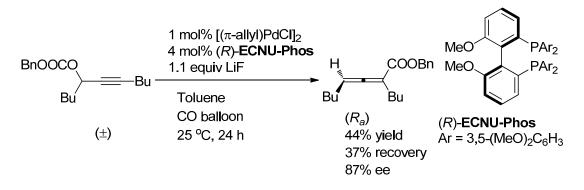

5.15 (d, J = 12.9 Hz, 1 H, one proton from Bn), 2.33-2.15 (m, 2 H, CH₂), 2.10 (q, J = 7.1 Hz, 2 H, CH₂), 1.51-1.12 (m, 14 H, 7 x CH₂), 0.90 (t, J = 7.4 Hz, 3 H, CH₃), 0.88 (t, J = 7.4 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃): $\delta = 210.0$, 167.6, 136.4, 128.4, 127.8, 127.6, 100.4, 95.1, 66.1, 31.7, 30.3, 29.05, 28.97, 28.2, 28.1, 22.6, 22.2, 14.1, 13.9.

(14) Preparation of (*R_a*)-benzyl 2-butyl-2,3-undecadienoate ((*R_a*)-2k) (wyl-17-61)


Following **Typical procedure 2**. The reaction of Pd(dba)₂ (17.4 mg, 0.03 mmol), DPEphos (16.6 mg, 0.03 mmol) / MTBE (1 mL), (NH₄)₂HPO₄ (145.0 mg, 1.1 mmol), (*S*)-**1k** (288.9 mg, 1 mmol) / MTBE (0.5 mL), BnOH (1.0811 g, 10 mmol) / MTBE (0.5 mL) afforded (R_a)-**2k** (272.5 mg, 83%) as an oil: 96% ee (HPLC conditions: Regis (*S*,*S*) Whelk-O column, hexane/*i*-PrOH = 200/1, 1.0 mL/min, λ = 214 nm, t_R (minor) = 9.3 min, t_R (major) = 11.1 min); $[\alpha]^{21}_D$ = -43.3 (c = 1.03, CHCl₃) [94% ee, $[\alpha]^{24}_D$ = -42.6 (c = 1.32, CHCl₃)]^[1]; ¹H NMR (300 MHz, CDCl₃): δ = 7.40-7.24 (m, 5 H, Ar-H), 5.56-5.47 (m, 1 H, =CH), 5.21 (d, J = 12.9 Hz, 1 H, one proton from Bn), 5.15 (d, J = 13.2 Hz, 1 H, one proton from Bn), 2.30-2.15 (m, 2 H, CH₂), 2.10 (q, J = 7.2 Hz, 2 H, CH₂), 1.49-1.17 (m, 14 H, 7 x CH₂), 0.90 (t, J = 7.2 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ = 210.0, 167.6, 136.4, 128.3, 127.8, 127.6, 100.4, 95.1, 66.1, 31.7, 30.3, 29.04, 28.96, 28.2, 28.1, 22.6, 22.2, 14.1, 13.9.

(15) Preparation of (*R_a*)-benzyl 2-butyl-6-methyl-2,3-heptadienoate ((*R_a*)-2l) (wyl-16-154)

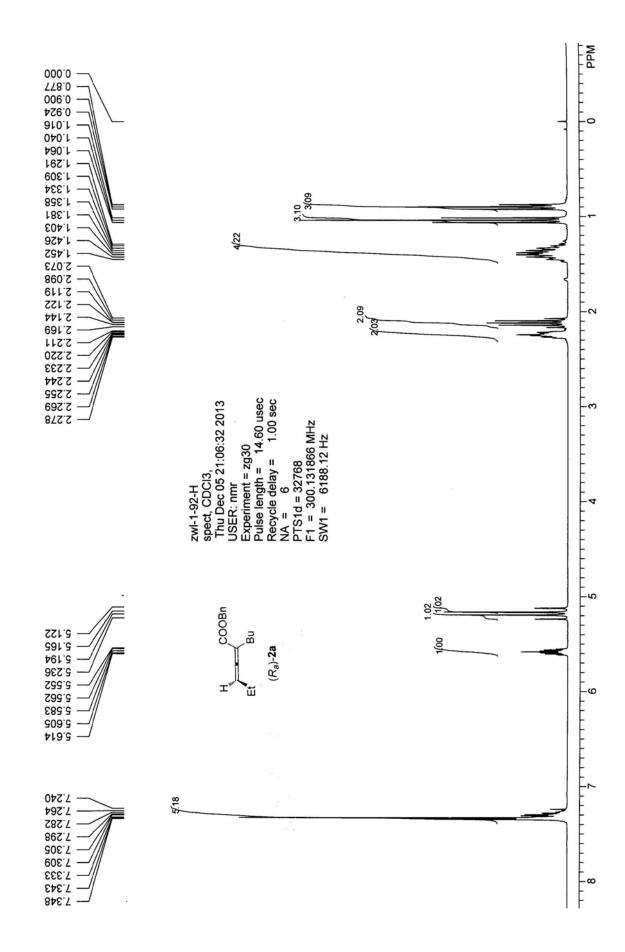

Following **Typical procedure 1**. The reaction of Pd(dba)₂ (17.4 mg, 0.03 mmol), DPEphos (16.7 mg, 0.03 mmol) / MTBE (1 mL), (NH₄)₂HPO₄ (145.6 mg, 1.1 mmol), (*S*)-**11** (246.6 mg, 1 mmol) / MTBE (0.5 mL), BnOH (1.0817 g, 10 mmol) / MTBE (0.5 mL) afforded (R_a)-**21** (243.7 mg, 81%, 95% purity) as an oil: 97% ee (HPLC conditions: Regis (*S*,*S*) Whelk-O column, hexane/*i*-PrOH = 400/1, 0.5 mL/min, λ = 214 nm, t_R (minor) = 14.9 min, t_R (major) = 16.9 min); [α]²²_D = -42.2 (c = 1.75, CHCl₃) [97% ee, [α]²⁴_D = -42.5 (c = 1.13, CHCl₃)]^[1]; ¹H NMR (300 MHz, CDCl₃): δ = 7.41-7.21 (m, 5 H, Ar-H), 5.51-5.41 (m, 1 H, =CH), 5.19 (d, J = 12.3 Hz, 1 H, one proton from Bn), 5.13 (d, J = 12.6 Hz, 1 H, one proton from Bn), 2.30-2.18 (m, 2 H, CH₂), 1.99 (t, J = 7.2 Hz, 2 H, CH₂), 1.78-1.60 (m, 1 H, CH), 1.50-1.25 (m, 4 H, 2 x CH₂), 0.97-0.77 (m, 9 H, 3 x CH₃); ¹³C NMR (75 MHz, CDCl₃): δ = 210.3, 167.6, 136.3, 128.3, 127.8, 99.7, 93.5, 66.2, 37.4, 30.2, 28.4, 28.2, 22.14, 22.09, 13.8. (**16) Preparation of** (R_a)-benzyl 2-butyl-6-methyl-2,3-heptadienoate ((R_a)-21)

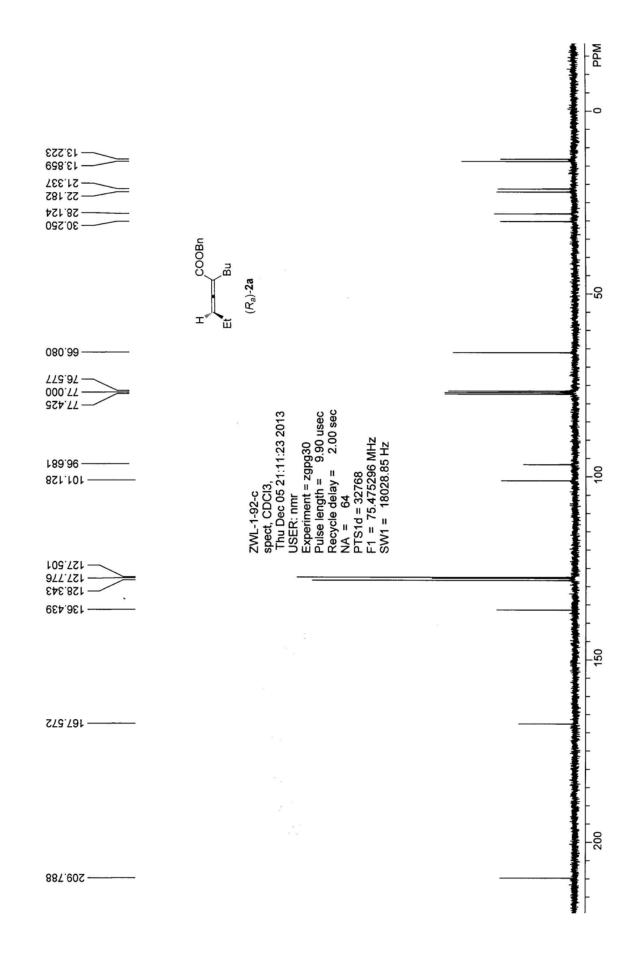

Following **Typical procedure 2**. The reaction of Pd(dba)₂ (17.2 mg, 0.03 mmol), DPEphos (16.6 mg, 0.03 mmol) / MTBE (1 mL), (NH₄)₂HPO₄ (146.0 mg, 1.1 mmol), (S)-**11** (247.0 mg, 1 mmol) / MTBE (0.5 mL), BnOH (1.0820 g, 10 mmol) / MTBE (0.5 mL) afforded (R_a)-**21** (240.3 mg, 84%) as an oil: 98% ee (HPLC conditions: Regis (S,S) Whelk-O column, hexane/*i*-PrOH = 400/1, 1.0 mL/min, λ = 214 nm, t_R (minor) = 9.4 min, t_R (major) = 10.7 min); $[\alpha]^{19}{}_D$ = -42.2 (c = 1.32, CHCl₃) [97% ee, $[\alpha]^{24}{}_D$ = -42.5 (c = 1.13, CHCl₃)]^[1]; ¹H NMR (300 MHz, CDCl₃): δ = 7.40-7.24 (m, 5 H, Ar-H), 5.51-5.41 (m, 1 H, =CH), 5.20 (d, J = 12.3 Hz, 1 H, one proton from Bn), 5.14 (d, J = 12.6 Hz, 1 H, one proton from Bn), 2.30-2.15 (m, 2 H, CH₂), 2.00 (t, J = 7.2 Hz, 2 H, CH₂), 1.77-1.61 (m, 1 H, CH), 1.50-1.27 (m, 4 H, 2 x CH₂), 0.97-0.82 (m, 9 H, 3 x CH₃); ¹³C NMR (75 MHz, CDCl₃): δ = 210.3, 167.6, 136.3, 128.3, 127.8, 99.7, 93.5, 66.2, 37.4, 30.2, 28.4, 28.2, 22.2, 22.1, 13.9.

(17) Preparation of (*S_a*)-benzyl 2-pentyl-5-methyl-2,3-hexadienoate ((*S_a*)-2m) (zwl-1-158)

Following **Typical procedure 1**. The reaction of Pd(dba)₂ (17.3 mg, 0.03 mmol), DPEphos (16.8 mg, 0.03 mmol) / MTBE (1 mL), (NH₄)₂HPO₄ (145.5 mg, 1.1 mmol), (*R*)-**1m** (246.5 mg, 1 mmol) / MTBE (0.5 mL), BnOH (1.0808 g, 10 mmol) / MTBE (0.5 mL) afforded (*S_a*)-**2m** (214.9 mg, 75%) as an oil: 99% ee (HPLC conditions: Regis (*S*, *S*) Whelk-O column, hexane/*i*-PrOH = 200/1, 0.5 mL/min, λ = 214 nm, *t_R* (minor) = 19.9 min, *t_R* (major) = 21.9 min); $[\alpha]^{21}_{D}$ = -39.3 (c = 1.22, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ = 7.40-7.22 (m, 5 H, Ar-H), 5.58-5.50 (m, 1 H, =CH), 5.23 (d, *J* = 12.9 Hz, 1 H, one proton from Bn), 5.12 (d, *J* = 13.2 Hz, 1 H, one proton from Bn), 2.52-2.34 (m, 1 H, CH), 2.33-2.15 (m, 2 H, CH₂), 1.52-1.23 (m, 6 H, 3 x CH₂), 1.05 (d, *J* = 6.9 Hz, 6 H, 2 x CH₃), 0.88 (t, *J* = 6.9 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ = 208.8, 167.5, 136.4, 128.3, 127.8, 127.5, 102.2, 101.6, 66.1, 31.3, 28.3, 28.1, 27.8, 22.4, 22.34, 22.31, 14.0; MS (ESI *m/z*): 341 (M+Na+MeOH)⁺, 325 (M+K)⁺, 309 (M+Na)⁺, 287 (M+H)⁺; IR (neat): ν = 2967, 1956, 1711, 1253, 1193, 1121, 1057 cm⁻¹; HRMS calcd. for C₁₉H₂₆O₂ [M⁺]: 286.1933, found: 286.1935.

(18) Preparation of (*R*_a)-benzyl 2-butyl-2,3-octadienoate (wyl-16-65)



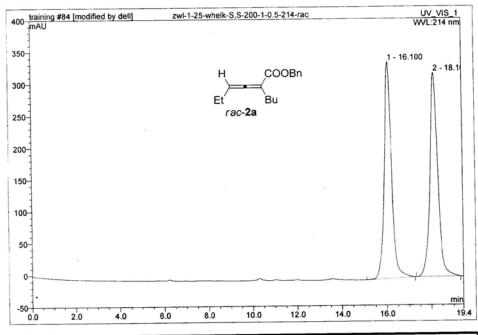

To a flame-dried Schlenk bottle (50 mL) were added $[(\pi-allyl)PdCl]_2$ (3.8 mg, 0.01 mmol) and (R)-ECNU-Phos (33.3 mg, 0.04 mmol). After addition of each of chemical, the bottle was degassed and refilled with Ar for three times to ensure the complete exclusion of air. Then freshly distilled toluene (2 mL) was added under argon. The resulting mixture was stirred for 1 hour at room temperature, which was followed by the addition of anhydrous LiF (28.5 mg, 1.1 mmol) (kept in a glove box) and (\pm) -1a (302.6 mg, 1.0 mmol)/toluene (3 mL) sequentially. The mixture was then frozen with a liquid nitrogen bath, degassed to remove the argon inside completely, and refilled with CO by a balloon of CO (about 1 L) for three times. Then the resulting mixture was stirred at 25 °C for 24 h. After that, the resulting mixture was diluted with 20 mL of Et₂O, washed with brine (20 mL), and dried over anhydrous Na₂SO₄. The resulting mixture was filtered through a short pad of silica gel (1.5 cm) eluted with Et₂O (20 mL), and concentrated. The residue was purified by chromatography on silica gel to afford (R_a)-benzyl 2-butyl-2,3-octadienoate (126.8 44%; 37% recovery determined by $^{1}\mathrm{H}$ NMR spectrum using mg, 1,3,5-trimethylbenzene as internal standard) as an oil [eluent: petroleum ether (b.p. 60-90 °C)/ethyl ether = 250/1]: 87% ee (Regis (S,S) Whelk-O column, hexane/*i*-PrOH = 200/1, 1.0 mL/min, λ = 214 nm, $t_{\rm R}$ (minor) = 12.5 min, $t_{\rm R}$ (major) = 14.6 min); $[\alpha]^{30}$ = -21.4 (c = 1.10, CHCl₃); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.42-7.23$ (m, 5 H, Ar-H), 5.56-5.46 (m, 1 H, =CH), 5.21 (d, J = 12.6 Hz, 1 H, one proton from Bn), 5.14 (d, J =12.6 Hz, 1 H, one proton from Bn), 2.34-2.15 (m, 2 H, CH_2), 2.10 (q, J = 7.0 Hz, 2 H, CH₂), 1.50-1.24 (m, 8 H, 4 x CH₂), 0.90 (t, J = 7.1 Hz, 3 H, CH₃), 0.87 (t, J = 7.2 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ = 210.0, 167.6, 136.4, 128.3, 127.8, 127.6, 100.4, 95.0, 66.1, 31.0, 30.2, 28.1, 27.7, 22.2, 22.0, 13.9, 13.8; MS (ESI m/z): 341 S17

 $(M+Na+MeOH)^+$, 309 $(M+Na)^+$; IR (neat): v = 2970, 2925, 2903, 1957, 1711, 1262, 1054 cm⁻¹; HRMS calcd. for C₁₉H₂₆O₂ [M⁺]: 286.1933, found: 286.1932.

Reference:

1. Wang, Y.; Ma, S. Adv. Synth. Catal. 2013, 355, 741.

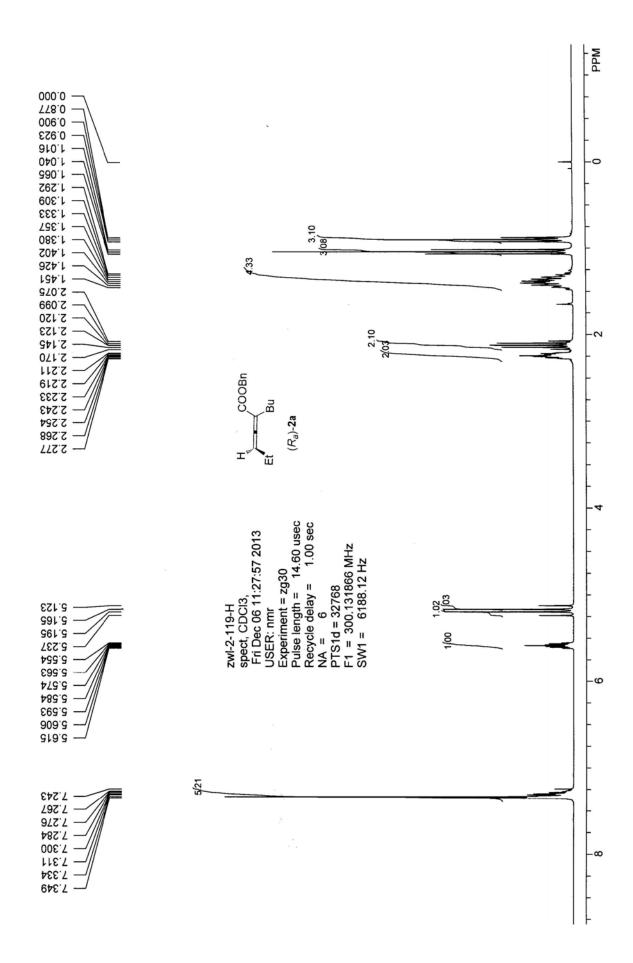
Page 1-1 2013-12-3 1:58 下午

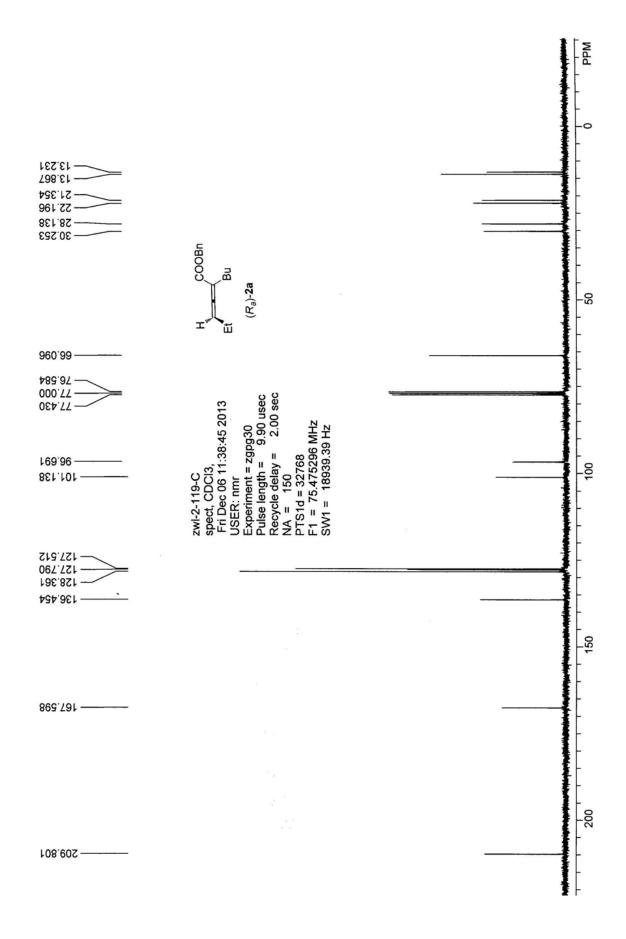

Sample Name: Vial Number: Sample Type: Control Program:	zwi-1-92-whelk-S, 81 unknown zwi-allenoate	S-200-1-0.5-214		Injection Channel: Waveleng Bandwidt	gth: th:	20.0 UV_VIS_1 214 n.a.
Quantif. Method: Recording Time: Run Time (min):	test 2013-3-16 14:56 20.27			Dilution F Sample V Sample A	Veight:	1.0000 1.0000 1.0000
1,200 training #81	2	wl-1-92-whelk-S,S-20	0-1-0.5-214			UV_VIS_1 WVL:214 nm
1,000-			H Et		١n	2 - 18.073
800-			(R _a)	-2a		
600-						
400-						
200-						
0	······				1 - 16.1	83
-200 -2.0	4.0 6.0	8.0 10.0	12.0	14.0	16.0	

NO.	min	Feak Name	mAU	mAU*min	%	Amount	Type
1	16.13	n.a.	16.606	5.302	1.00	n.a.	BMB
2	18.07	n.a.	1042.303	526.108	99.00	n.a.	BMB
Total:			1058.909	531.410	100.00	0.000	

default/Integration

Chromeleon (c) Dionex 1996-2006 Version 6.80 SR5 Build 2413 (137116) Operator:dell Timebase:U-3000 Sequence:training

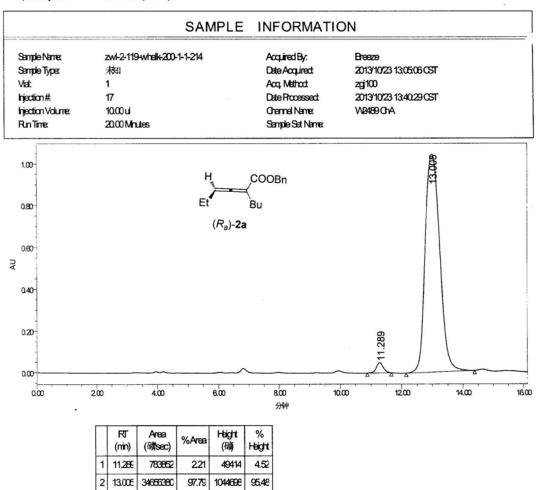

84 zwl-1-25-whelk-S,S-200-1-0.5-214-rac					
Sample Name: Vial Number:	zwl-1-25-whelk-S,S-200-1-0.5-214-rac 84 unknown	Injection Volume: Channel: Wavelength:	20.0 UV_VIS_1 214		
Sample Type: Control Program:	zwi-allenoate	Bandwidth: Dilution Factor:	n.a. 1.0000		
Quantif. Method: Recording Time: Run Time (min):	test 2013-3-16 15:59 19.44	Sample Weight: Sample Amount:	1.0000 1.0000		



No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area %	Amount	Туре
1	16.10	n.a.	340.382	129.324	49.69	n.a.	BMB*
2	18.16	n.a.	320.346	130.924	50.31	n.a.	BMB*
Total:			660.728	260.248	100.00	0.000	

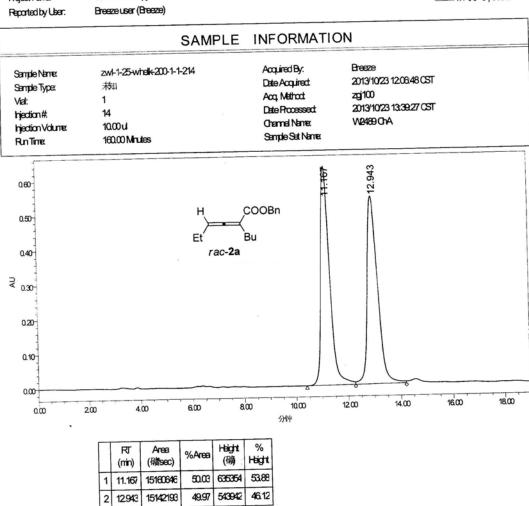
Chromeleon (c) Dionex 1996-2006 Version 6.80 SR5 Build 2413 (137116)

default/Integration

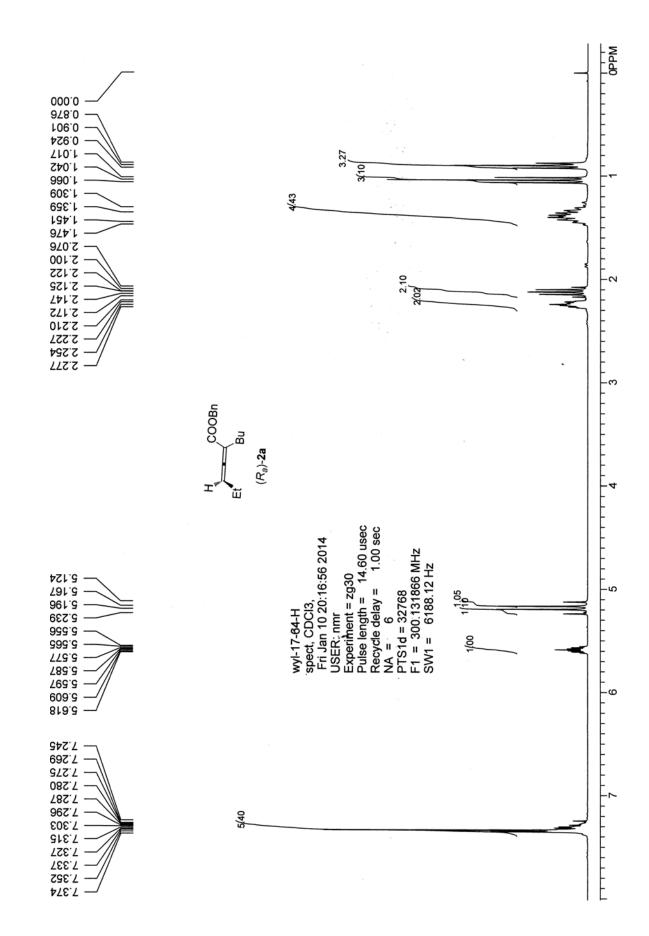


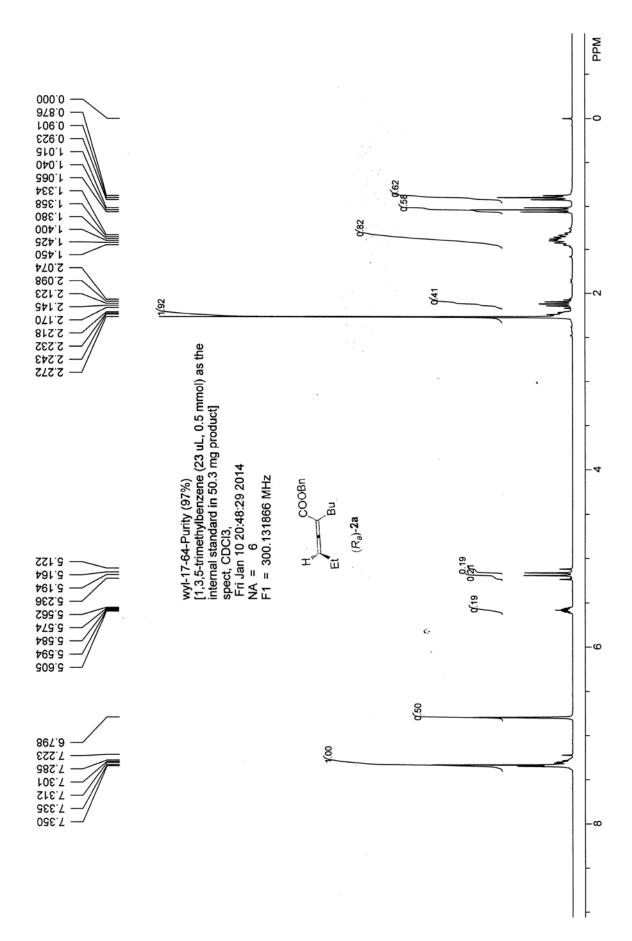
中国科学院上海有机化学研究所

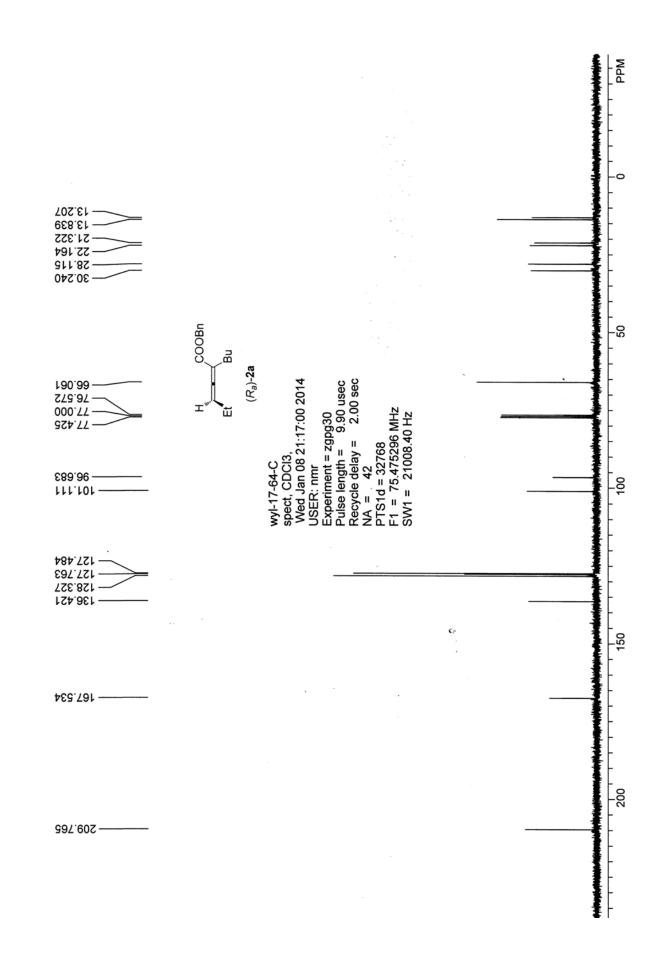
defaults for copy Breeze user (Breeze)


 Rinted: 2013/10/23 13:41:59 FRC

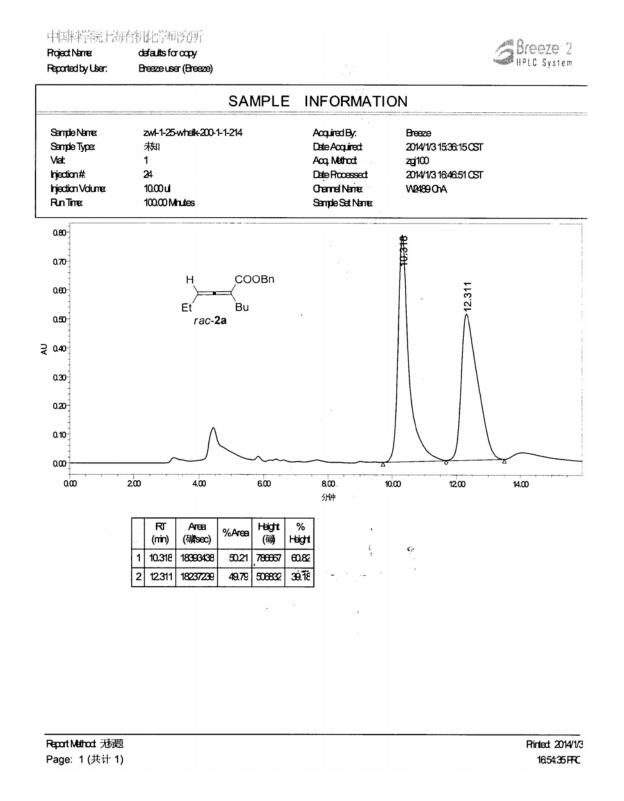
中国科学院上海有机化学研究所

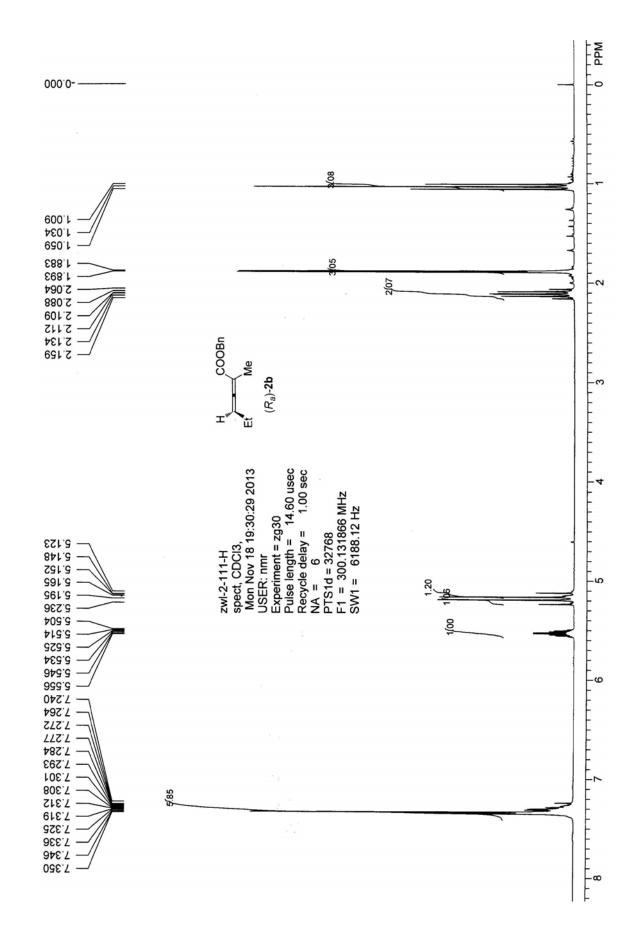

Roject Name

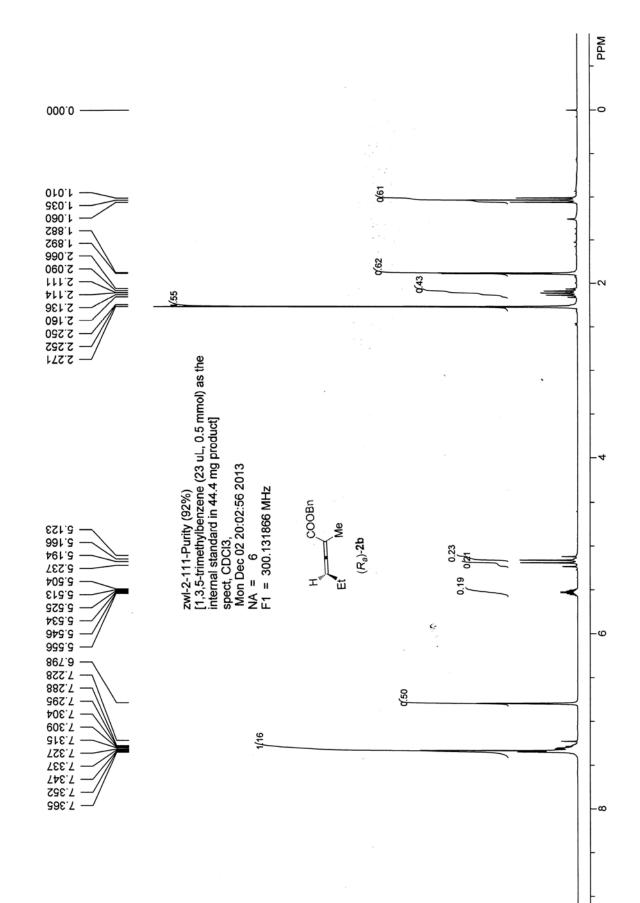

defaults for copy

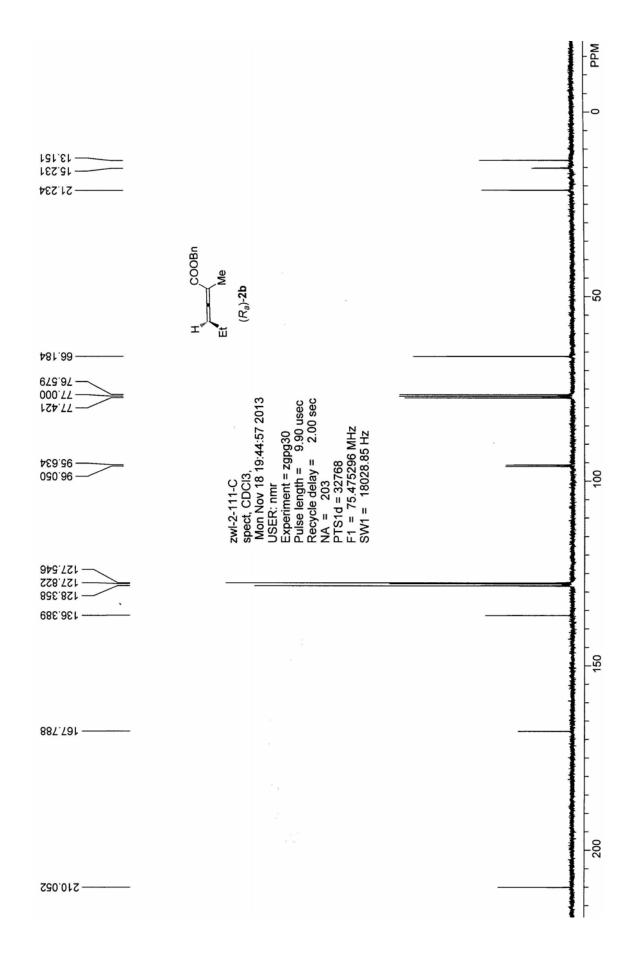


 Rintedt 2013/10/23 13:41:35 FFC

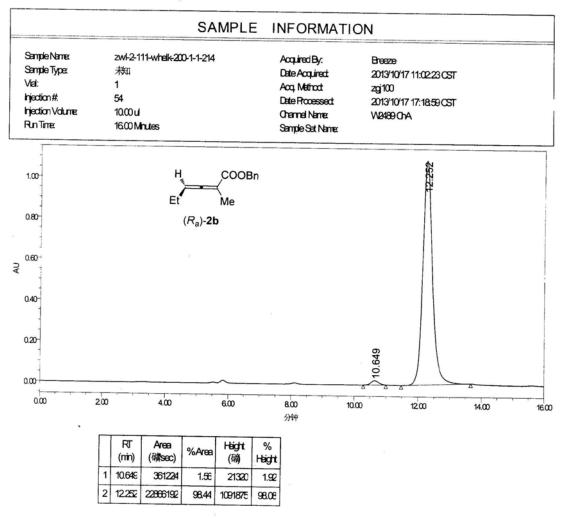

中国科学院上海有机化学和穷所


Roject Name: defaults for copy Reported by User: Breeze user (Breeze)




eported by User:	Breeze user (Breeze)				
	S	SAMPLE	INFORMATIO	NC	
Sample Name: Sample Type: Vial: njection #: njection Volume: Run Time:	wyl-17-64-whalk-200-1-1- , 未知 1 22 10.00 ul 100.00 Minutes	214	Acquired By: Date Acquired Acq. Method Date Rocessed Channel Name Sample Sat Name	Breeze 2014/1/3 14:57:26 CST zgi 100 2014/1/3 16:48:20 CST W2489 CrA	
0.40			COOBn Bu	501	
0.20		A		10.793	<u> </u>
0.00	2.00 4.00	6.00	8.00 10.00 分钟	12.00	14.00 16.00
	1 10.793 217533	Area Height 9 (1) Height 9 1.65 14194 2 8.35 556822 97.	4 5		

ųμ Page: 1 (共计 1) 165357 FFC

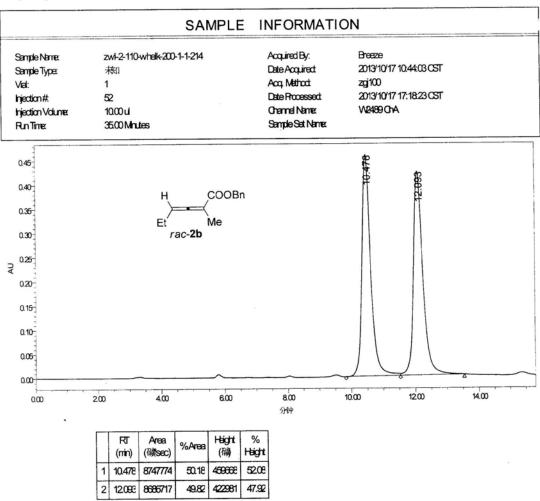


中国科学院上海有机化学研究所

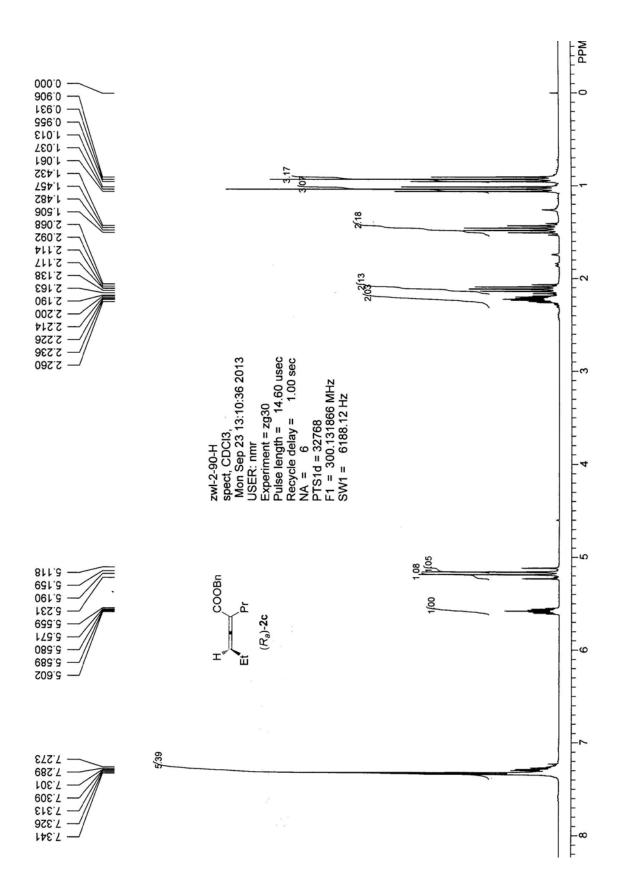
Project Name: Reported by User:

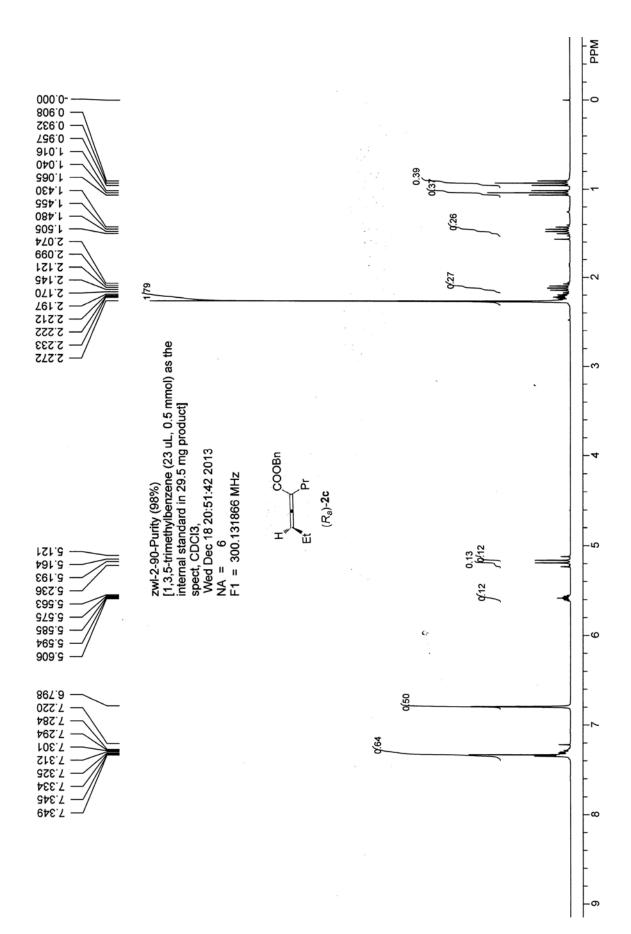
defaults for copy Breeze user (Breeze)

Rinted: 2013/10/17 17:45:44 FFC

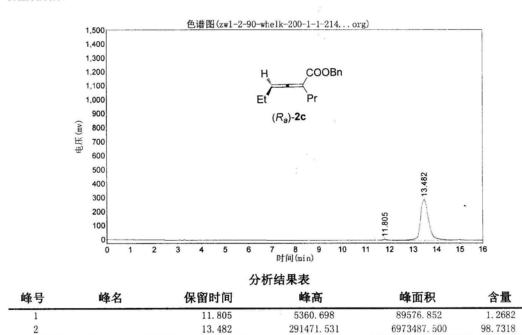

中国科学院上海有机化学研究所

Project Name: defaults for copy


Reported by User:


Breeze user (Breeze)

Report Methoat 地题 Page: 1 (共计1) Rinted: 2013/10/17 17:45:57 FRC



zw1-2-90-whe1k-200-1-1-214

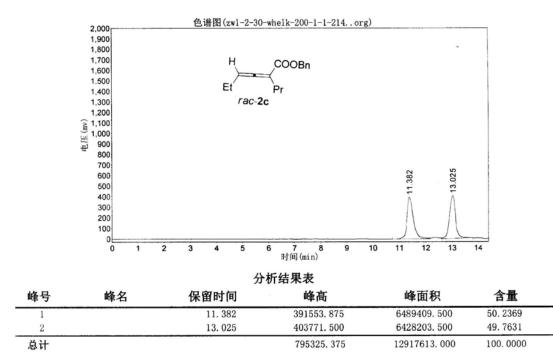
实验时间: 2013/9/24,10:59:21 报告时间: 2013/9/24,11:25:35 谱图文件:D:\zhuguangjiong\zw1\20130924\zw1-2-90-whelk-200-1-1-214...org

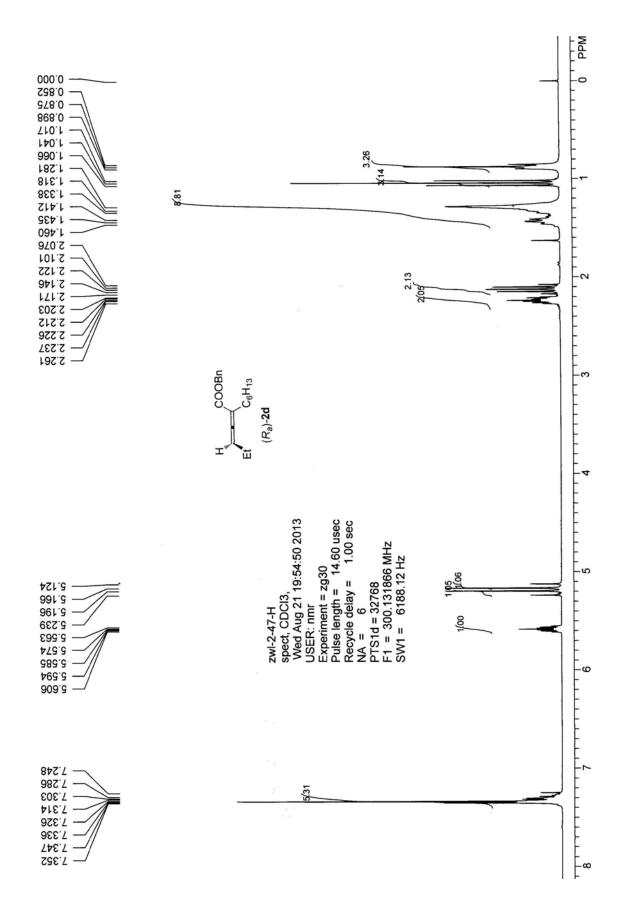
实验内容简介:

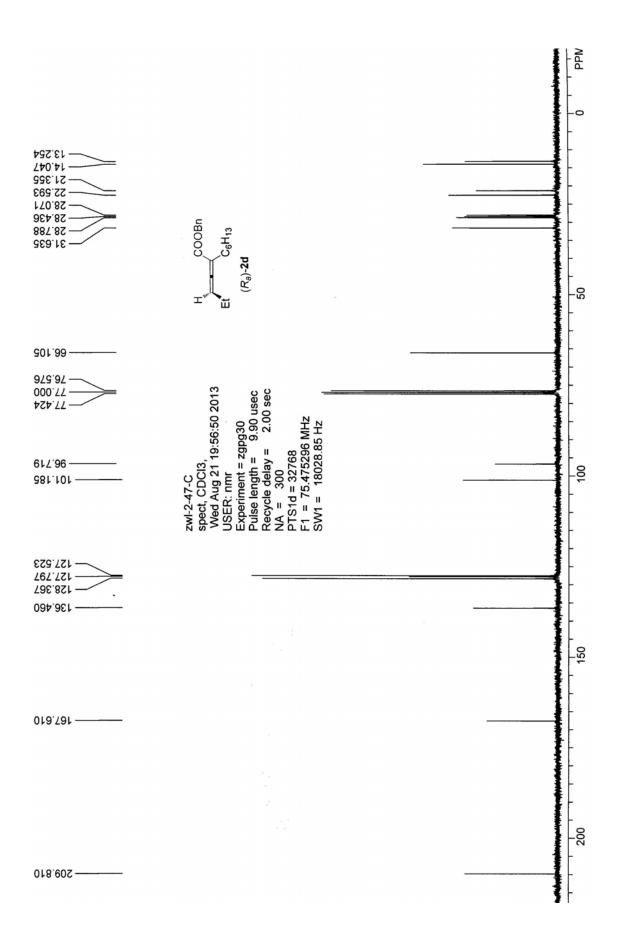
总计

296832. 229

PDF 文件使用 "pdfFactory Pro" 试用版本创建 www.fineprint.cn


100.0000


7063064.352

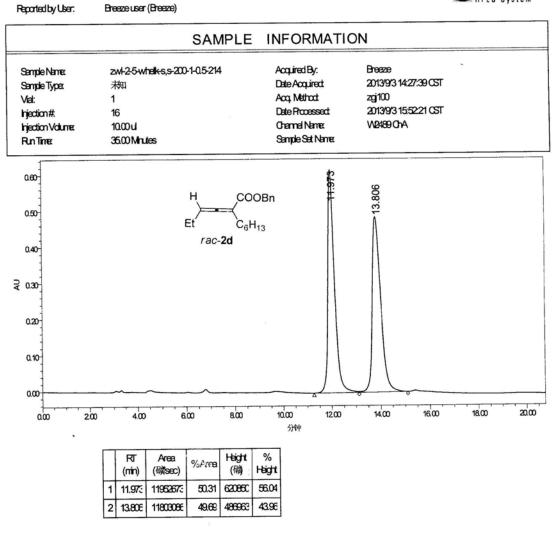

zw1-2-30-whe1k-200-1-1-214

实验时间: 2013/9/24,10:26:45 报告时间: 2013/9/24,11:26:41 谱图文件:D:\zhuguangjiong\zwl\20130924\zwl-2-30-whelk-200-1-1-214..org

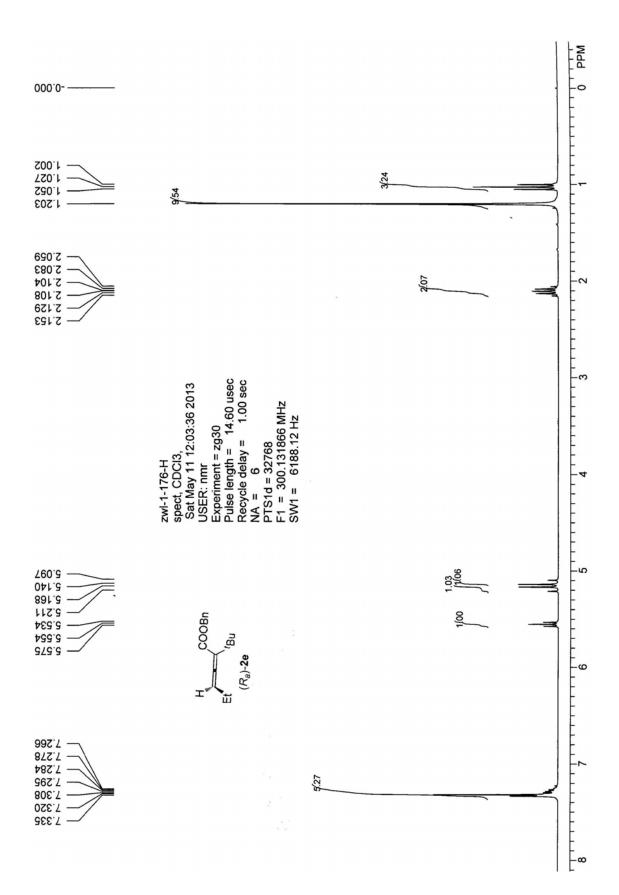
实验内容简介:

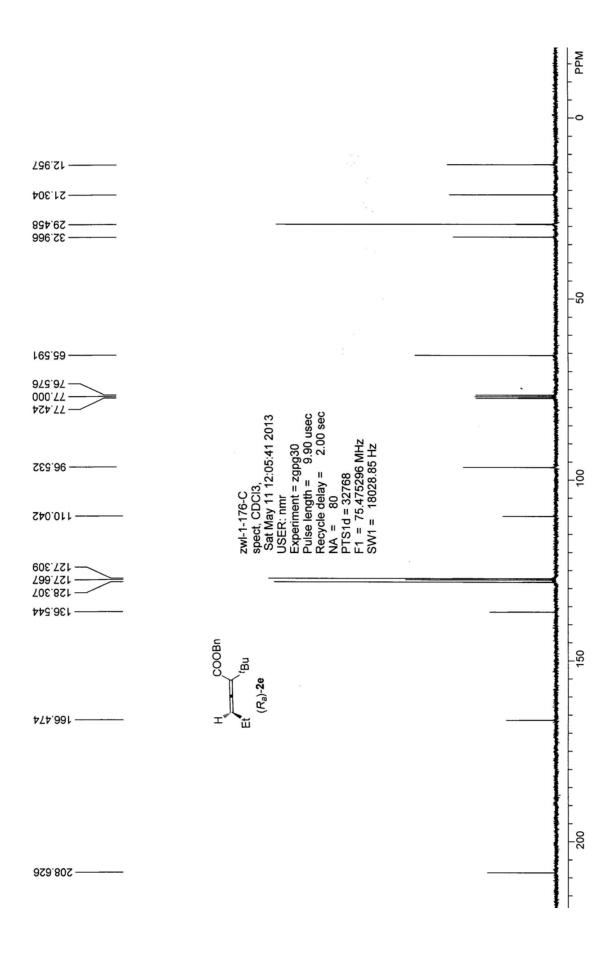
Project Name: defaults for copy Breeze user (Breeze)

Reported by User:


		SAMPLE	E INFOR	MATIO	N		
Sample Name: Sample Type: Vial: Injection#: Injection Volume: Run Time:	zwl-2-47-whalk-s,s- 秋知 1 19 10.000 ul 35.00 Mhutes	200-1-0,5-214	Acquired By Date Acquin Acq. Methoc Date Process Channel Nar Sample Sat I	ect t sect me:	Breeze 2013/93 15:1223 (2g)100 2013/93 15:51:22 (W2489 ChA		
0.40 0.36 0.30 0.25 ₹ 0.20 0.15 0.15 0.10 0.05	H Et (F	COOBn C ₆ H ₁₃ R _a)-2d		212.058	53-143		
0.00 200	4.00	6.00 8.00) 10.00 分钟	12.00	14.00	16.00	18.00
	RT Area (min) (磺sec)	%Area Height (确)	% Height				
	1 12.058 125130	1.20 8004	1.84				
[2 13.765 10323491	98.80 426883	98.16				

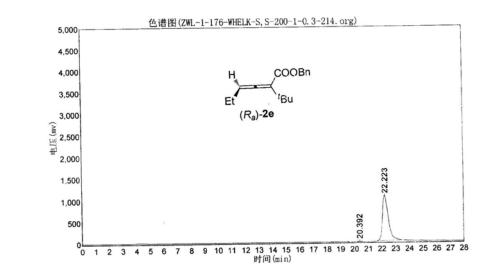
Report Method: 无规题 Page: 1 (共计 1)


Rinted: 2013/9/3 15:53:13 FFC



Roject Name: defaults for copy

Report Methodt 无题 Page: 1 (共计1) Rinted 2013/9/3 15:52:33 FRC



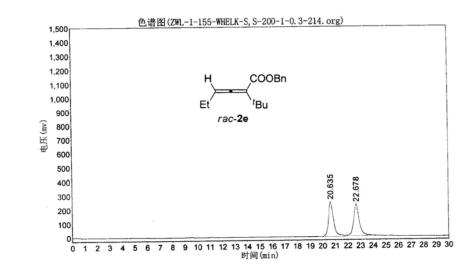
zw1-1-176-whe1k-s, s-200-1-0.3-214

.

实验时间: 2013-05-15,9:40:01 报告时间: 2013-05-15,16:31:07 谱图文件:D:\zhuguangjiong\zwl\20130515\ZWL-1-176-WHELK-S,S-200-1-0.3-214.org

实验内容简介: whelk-s,s 200+1 0.3ml/min 214nm

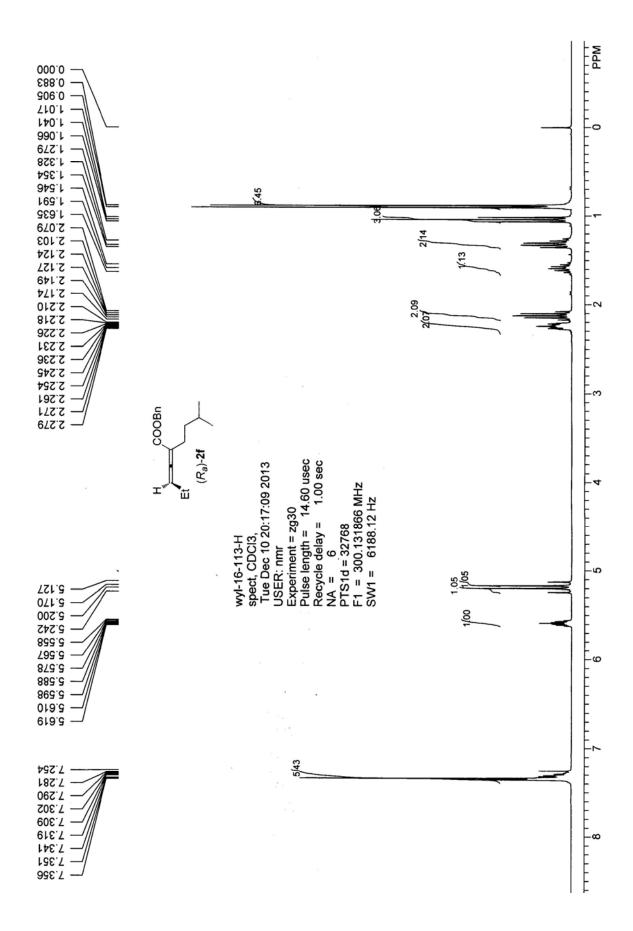
分析结果表

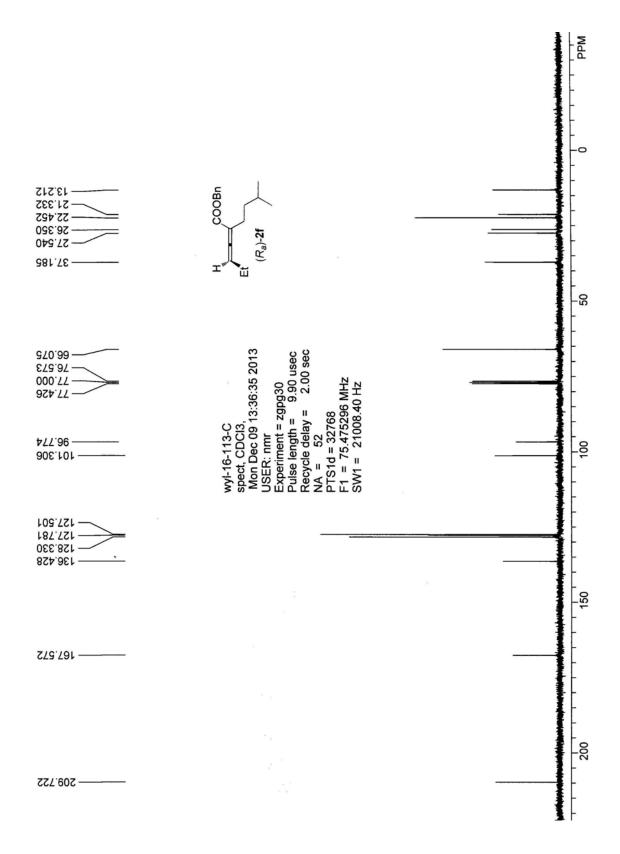

峰号	峰名	保留时间	峰高	峰面积	含量
1 2		20. 392 22. 223	8943. 304 1052257. 500	230134. 391 31587076. 000	0. 7233 99. 2767
 总计			1061200.804	31817210. 391	100.0000

zwl-1-155-whelk-s, s-200-1-0. 3-214

实验时间: 2013-05-15,9:02:14 **报告时间:** 2013-05-15,16:29:23 谱图文件:D:\zhuguangjiong\zwl\20130515\ZWL-1-155-WHELK-S,S-200-1-0.3-214.org

实验内容简介: whelk-s,s 200+1 0.3ml/min 214nm

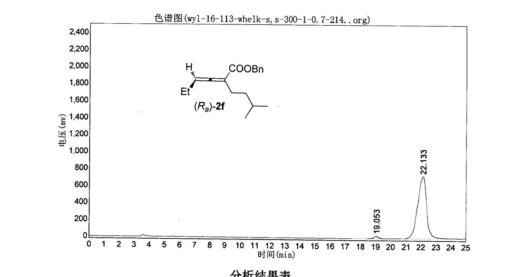

•



分析结果表							
峰号	峰名	保留时间	峰高	峰面积	含量		
1		20.635	247871.281	7089518.000	50.0137		
2		22.678	227785.813	7085625.000	49.9863		
 总计			475657.094	14175143.000	100.0000		

PDF 文件使用 "pdfFactory Pro" 试用版本创建 www.fineprint.cn

.

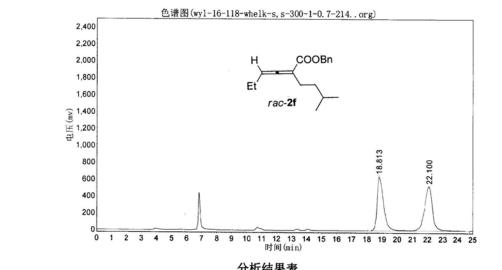


wyl-16-113-whelk-s, s-300-1-0, 7-214

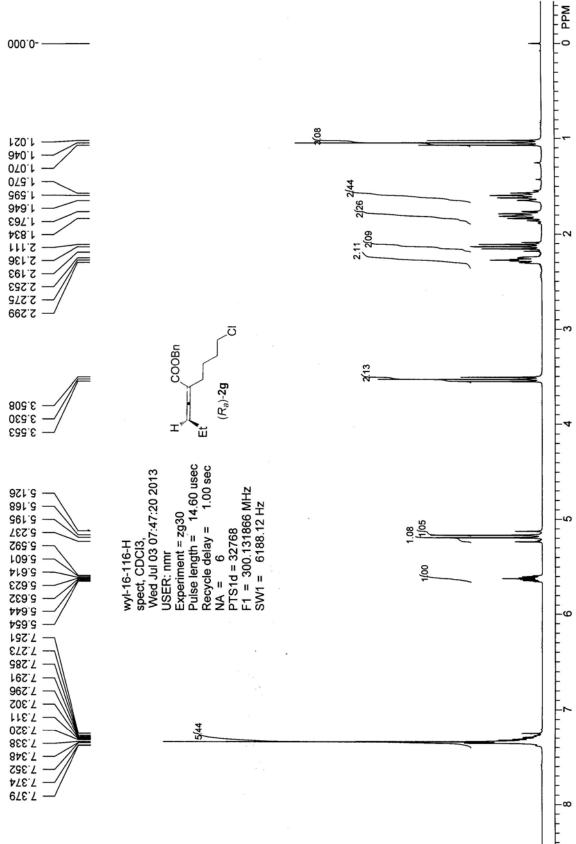
实验时间: 2013-06-13,15:48:06 报告时间: 2013-06-13,16:47:35 谱图文件:D:\zhuguangjiong\wyl\20130613\wyl-16-113-whelk-s,s-300-1-0.7-214..org

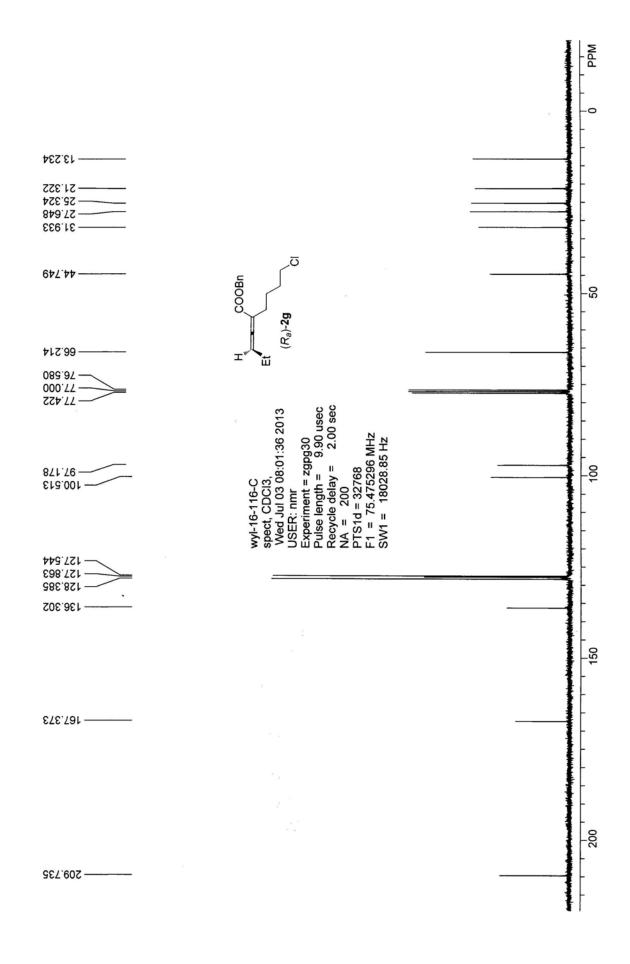
实验内容简介: whelk-s,s 300+1 0.7ml/min 214nm

•



万仞纪未衣						
峰号	峰名	保留时间	峰高	峰面积	含量	
1		19.053	24829.750	618617.000	1.9914	
2		22.133	729771.188	30445266.000	98.0086	
总计			754600. 938	31063883.000	100.0000	


wyl-16-118-whelk-s, s-300-1-0.7-214


实验时间: 2013-06-13,15:20:35 报告时间: 2013-06-13,16:45:34 谱图文件:D:\zhuguangjiong\wyl\20130613\wyl-16-118-whelk-s,s-300-1-0.7-214..org

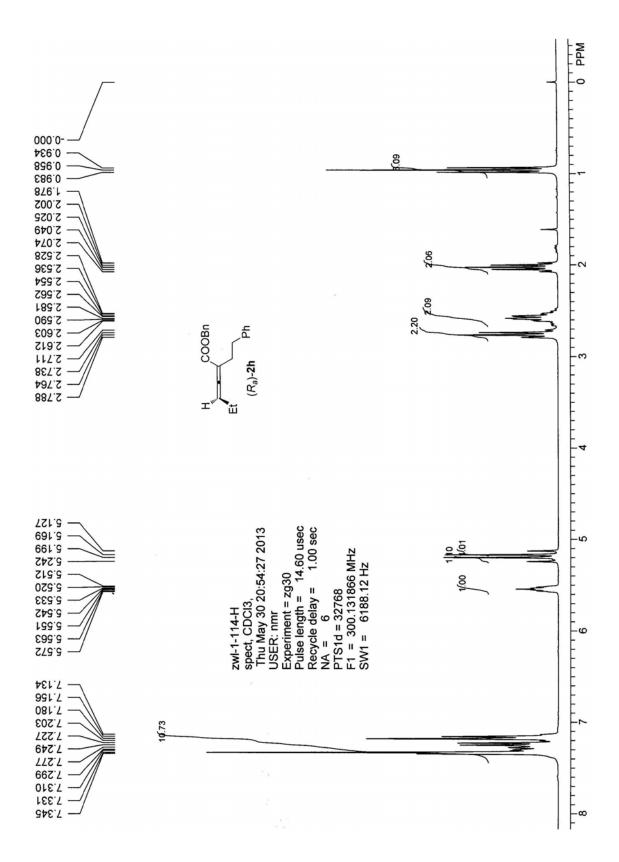
实验内容简介: whelk-s,s 300+1 0.7ml/min 214nm

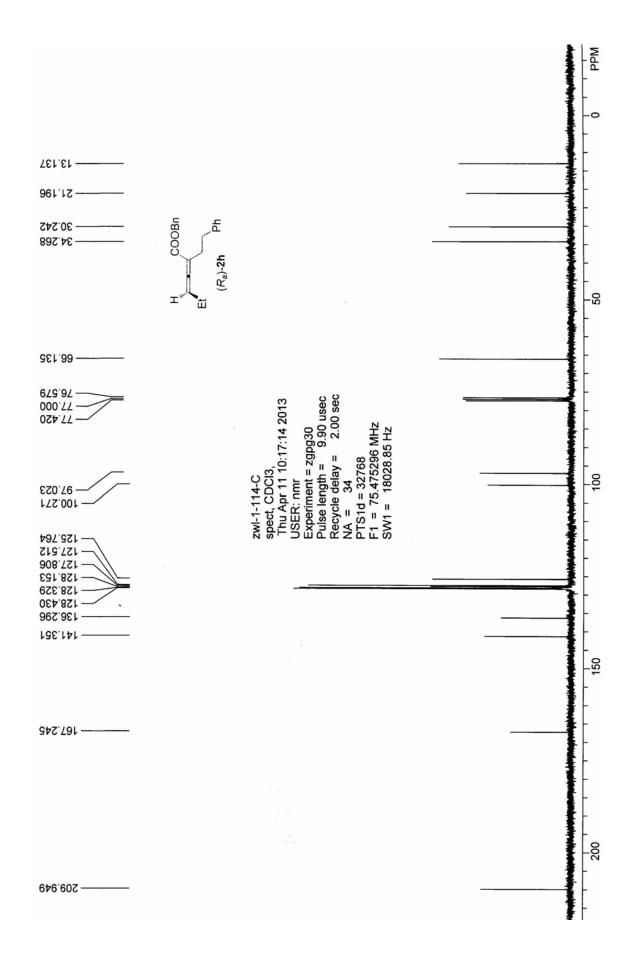
	为初名未改							
峰号	峰名	保留时间	峰高	峰面积	含量			
1		18.813	641433.000	19134010.000	49.5780			
2		22.100	524517.750	19459710.000	50. 4220			
总计			1165950. 750	38593720.000	100.0000			

Roject Name: Reported by User: defaults for copy Breeze user (Breeze)

	SAN	IPLE INFORMA	TION	
Sample Name: Sample Type: Viel: Injection #: Injection Volume: Run Time: Column Type:	wyl-16-116-whalks,s-200-1-1-2 秋田 1 19 10.00 ul 200.00 Mhutes	214 Acquired By: Date Acquired Acq. Method Date Rocessed Channel Name Channel Desc.: Sample Sat Name	Breeze 2013/6/14 13:57:40 CST 2013/6/14 17:18:39 CST W2489 ChA W2489 ChA 214rm	
1.20 1.00 0.80 2 0.60	H CC Et (R _a)-2g	DOBn		18:832
0.40-			16.768	
1				-
0.00 2.00	4.00 6.00	8.00 10.00 12.00 分钟	14.00 16.00	18.00 20.00
Γ	RT Area (min) (磷sec) %Area (语	ight % 满 Height		
1		5960 226		
2	18.832 33922444 98.26 112	318: 97.74		

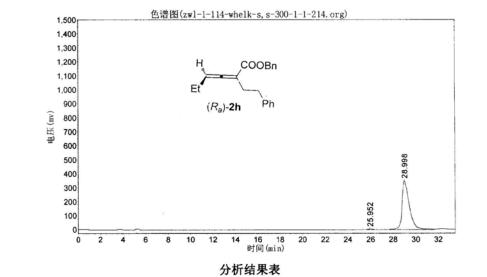
Report Method: Individual Report HP Page: 1 (共计1)


Rinted 2013/6/14 17:19:49 FRC


Roject Name: Reported by User: defaults for copy Breeze user (Breeze)

	SAMPLE	INFORMATIC	N	
Sample Name Sample Type Vial: Injection #: Injection Volume Run Time Column Type:	zwl-2-11-whalk-s,s-200-1-1-214 秋日 1 15 10:00 ul 200.00 Mhutes	Acquired By: Date Acquirect Acq. Methoot Date Processect Channel Name: Channel Dasc.: Sample Set Name:	Breeze 2013/6/14 10:26:52 CST 2g100 2013/6/14 17:18:20 CST W2489 ChA W2489 ChA 214rm	
0.60- 0.50 0.40 ⊋ 0.30- 0.20-	H COOB Et rac-2g	n Cl	16.136	
0.10		δ		
0.00 200	4.00 6.00 8.00 10	00 1200 14.00 分钟	16.00 18.00 20.00 2	22.00 24.00
	(nin) (硼sec) %Area (碉) He 1 16.13: 13694472 50.01 593010 5	% ight 3.79 6.21		

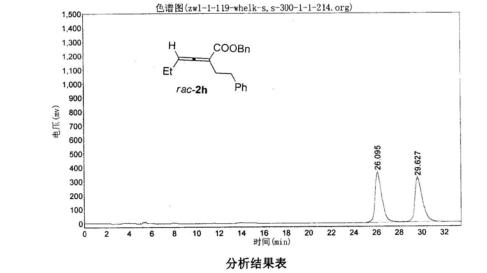
Report Method: Individual Report HP Page: 1 (共计 1) Rinted 2013/6/14 17:19:32/FRC



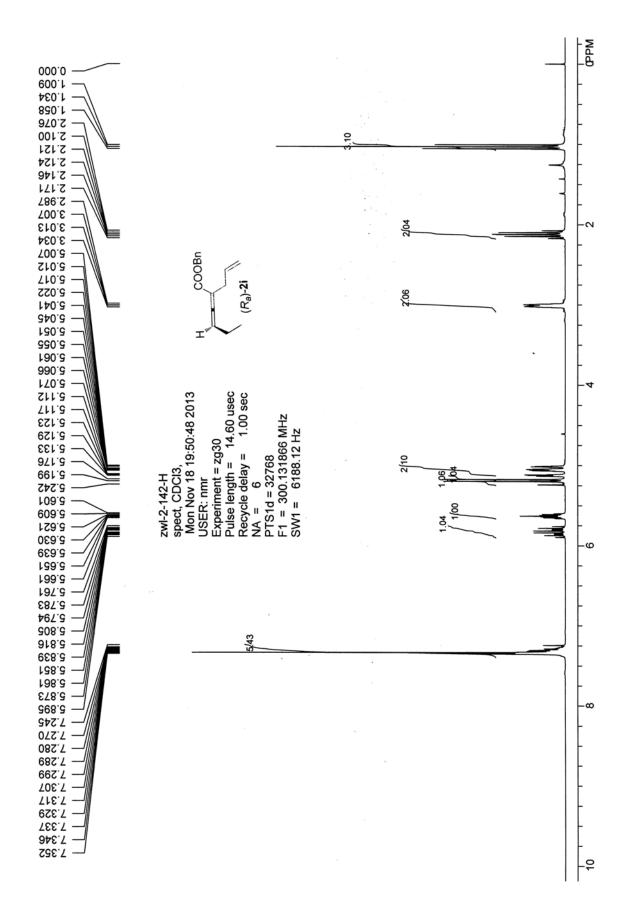
zw1-1-114-whe1k-s, s-300-1-1-214

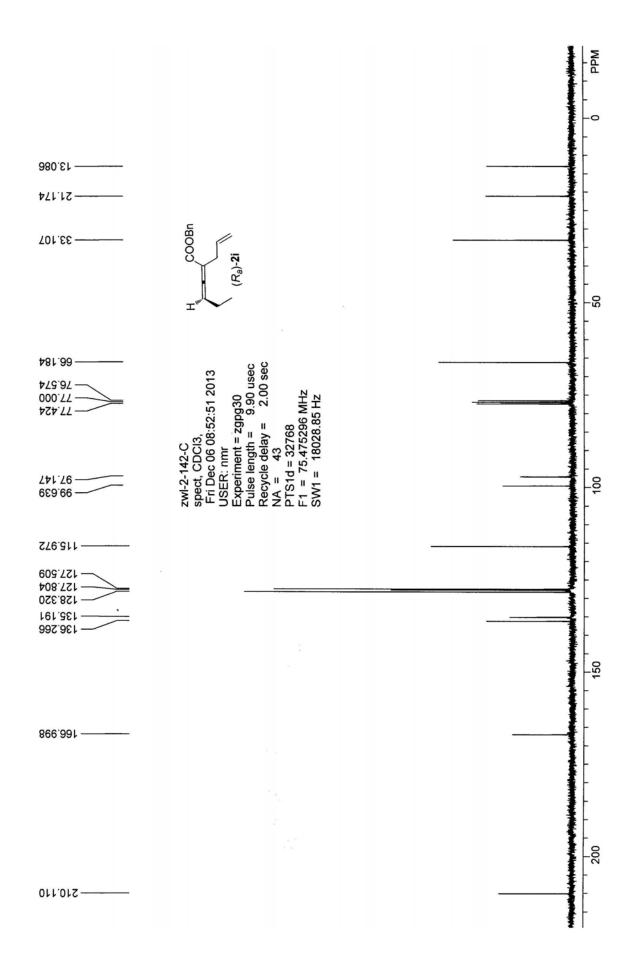
实验时间: 2013-05-10,12:12:00 **报告时间:** 2013-05-10,12:47:58 谱图文件:D:\zhuguangjiong\zwl\20130510\zwl-1-114-wheIk-s,s-300-1-1-214.org

实验内容简介: whelk-s,s 300+1 1ml/min 214nm

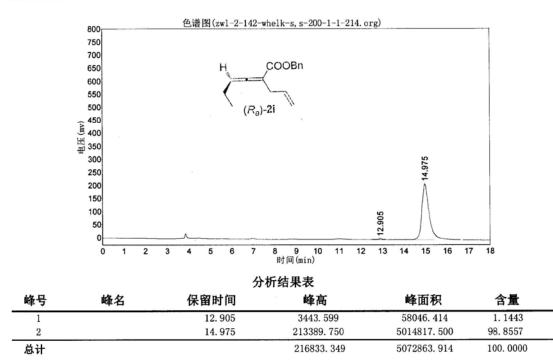

峰号	峰名	保留时间	峰高	峰面积	含量	
1		25.952	4517.988	149698.406	0.9257	
2		28.998	351228.844	16021067.000	99.0743	5
总计			355746. 832	16170765. 406	100.0000	

zw1-1-119-whelk-s, s-300-1-1-214


实验时间: 2013-05-10, 11:32:44 报告时间: 2013-05-10, 12:46:52 谱图文件:D:\zhuguangjiong\zwl\20130510\zwl-1-119-whelk-s, s-300-1-1-214.org

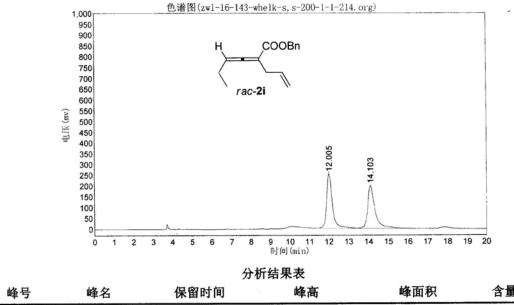

实验内容简介: whelk-s,s 300+1 lml/min 214nm

.

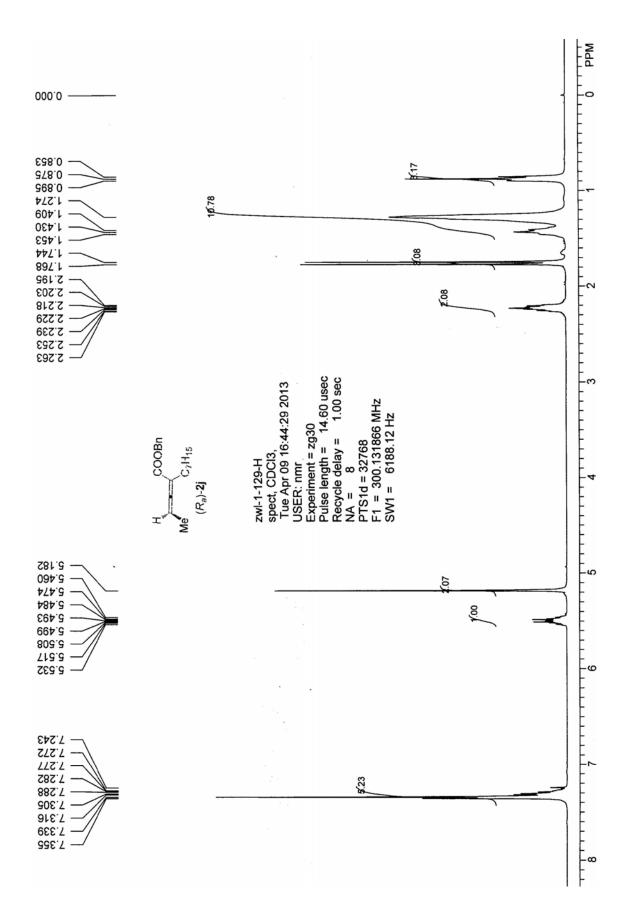

峰号	峰名	保留时间	峰高	峰面积	含量
1		26.095	357798.969	15080448.000	50. 2131
2		29.627	315047.281	14952478.000	49.7869
总计			672846. 250	30032926.000	100.0000

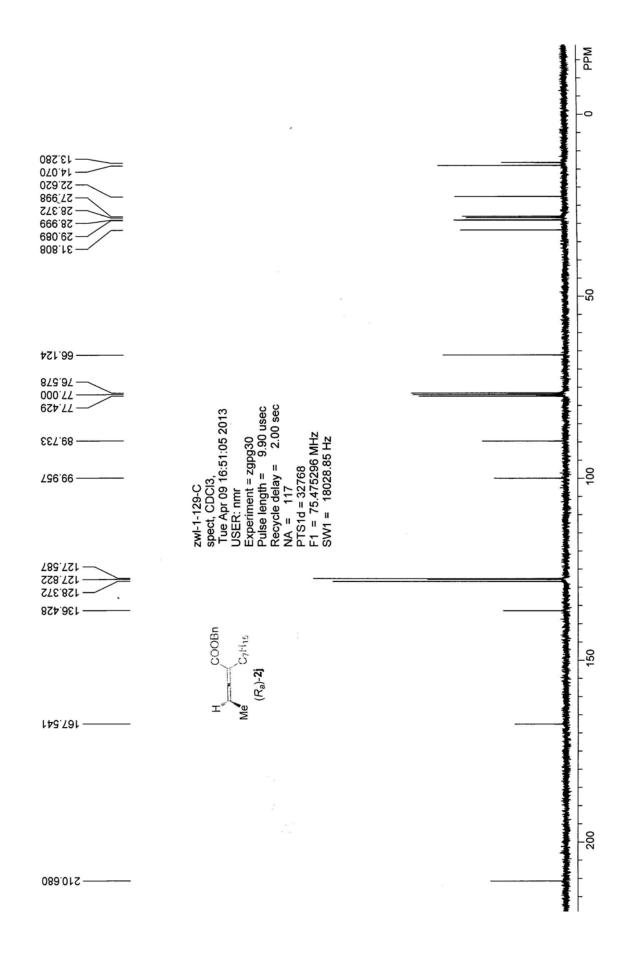
实验时间: 2013-11-14,14:43:41 报告时间: 2013-11-14,15:47:01 谱图文件:D:\zhuguangjiong\zwl\20131114\zwl-2-142-whelk-s,s-200-1-1-214.org

实验内容简介:



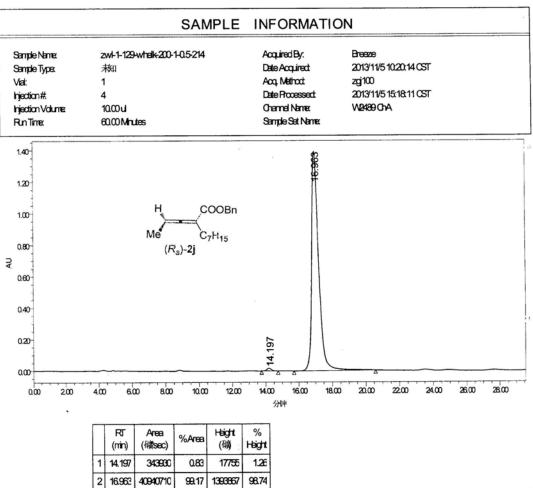
zw1-16-143-whe1k-s, s-200-1-1-214


实验时间: 2013-11-14,13:59:37 报告时间: 2013-11-14,15:45:39 诸图文件:D:\zhuguangjiong\zwl\20131114\zwl-16-143-whelk-s, s-200-1-1-214.org


实验内容简介:

.

峰号	峰名	保留时间	峰高	峰面积	含量
1		12.005	251432.641	5090092.000	49.7997
2		14.103	197256. 656	5131036. 500	50. 2003
总计			448689. 297	10221128. 500	100.0000

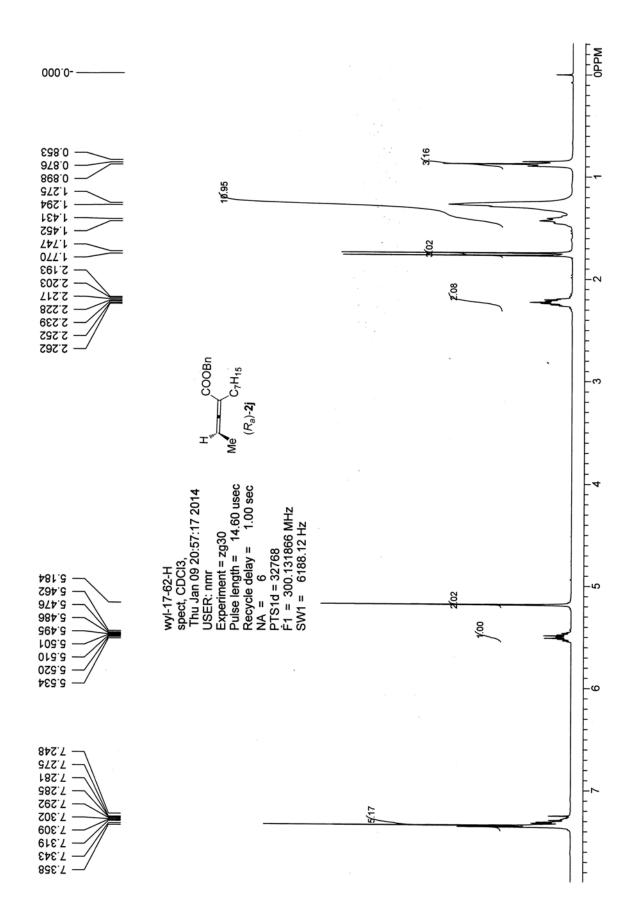


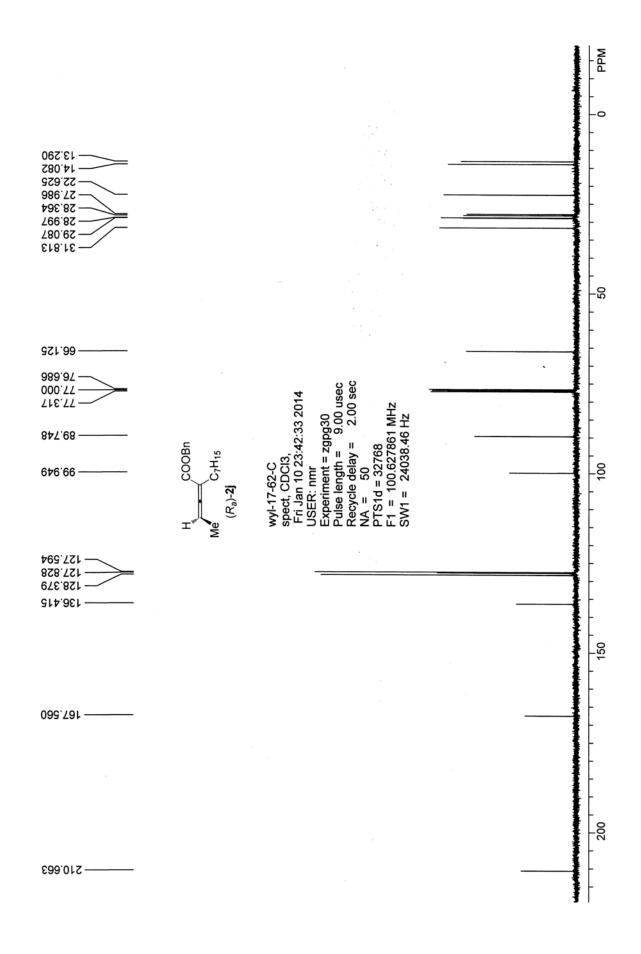
Roject Name: Reported by User:

r. Breeze user (Breeze)

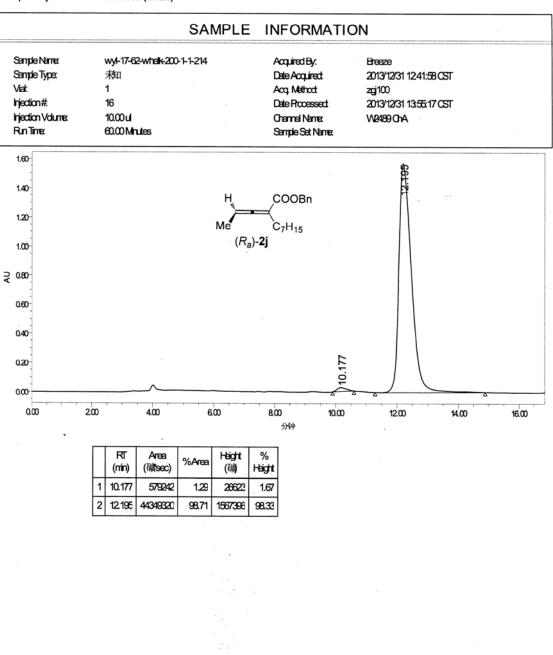
defaults for copy

 Rinted 2013/11/5 15:23:38 FFC

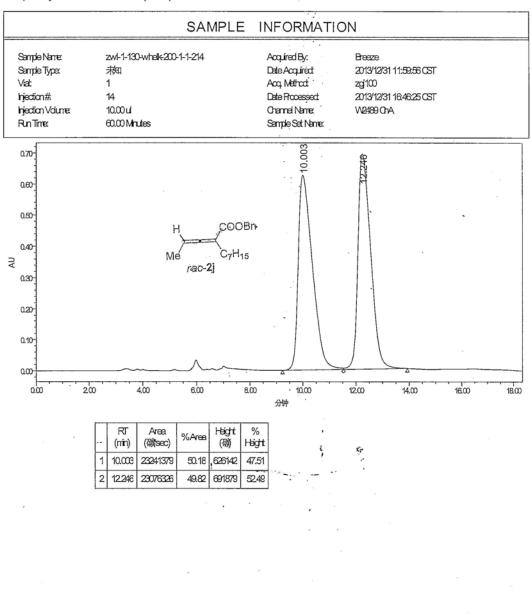



defaults for copy Breeze user (Breeze)

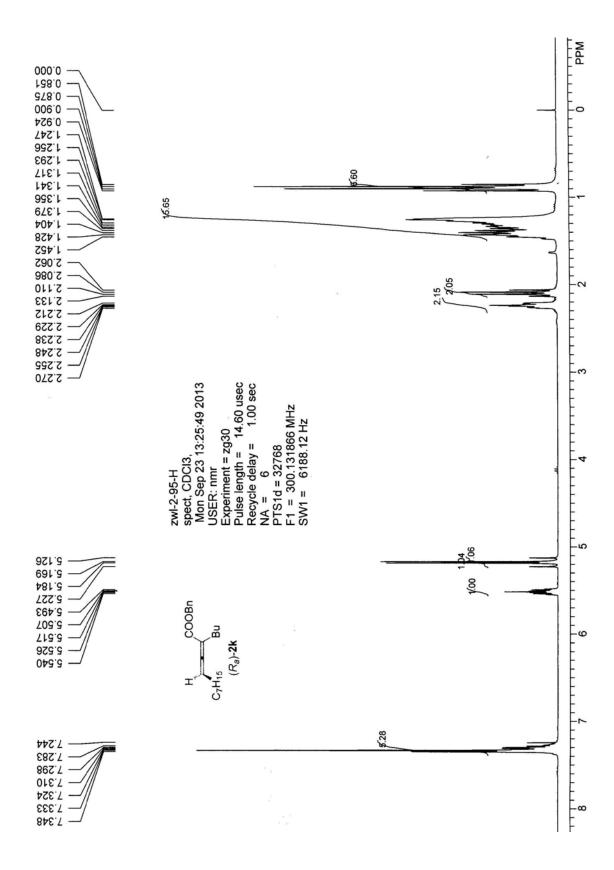
		SAMPLE	E INFORMATI	ON	
Sample Name:	zwl-1-130-whelk-20	0-1-0.5-214	Acquired By:	Breeze	
Sample Type:	萩		Date Acquirect	2013/11/5 11:36:35 CST	
Vial:	1		Acq. Method:	zgj100	
njection#.	6		Date Processect	2013/11/5 15:16:24 CST	
Injection Volume:	10.00 ul		Channel Name:	W2489 ChA	
Run Time:	60.00 Minutes		Sample Set Name.	1.2.720	
0.80					
0.70	H	COOBn	14:32		
0.60	Me rac- 2 j	C ₇ H ₁₅			
0.50					
0.40					
0.30					
0.20					
0.10					
0.00				۵	
0.00 2.00	4.00 6.00 8.00	10.00 12.00		20.00 22.00 24.00 26.00 26	8.00 30.00 32
,			分钟		
	RT Area (min) (磯sec	%Area Haight (确)	% Height		
	1 14.327 2223099				
	2 17.284 2241512				

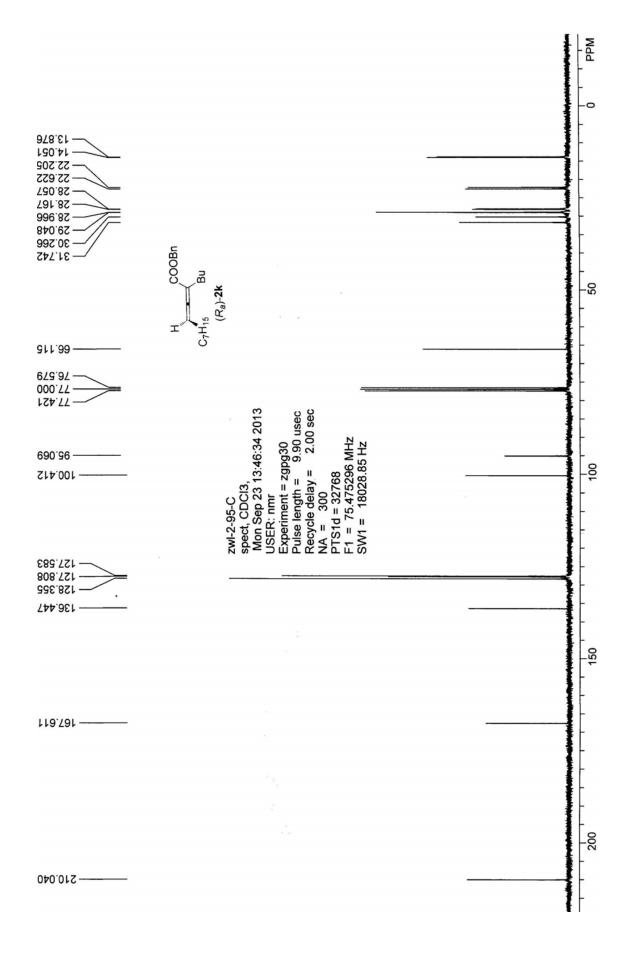

 Rinted: 2013/11/5 15:23:26 FRC

Roject Name: Reported by User: defaults for copy Breeze user (Breeze)

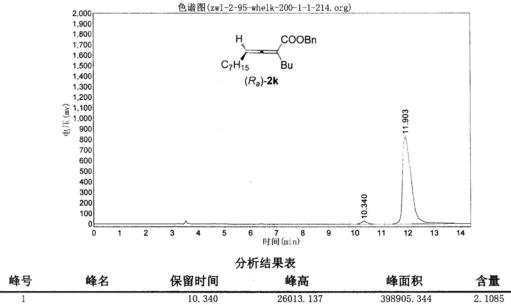

Rinted: 2013/12/31 16:48:12 FFC

中国科学院上海有机化学研究所 Roject Name defaults for copy




Breeze user (Breeze)

 Rintect 2013/12/31 16:47:58 FFC

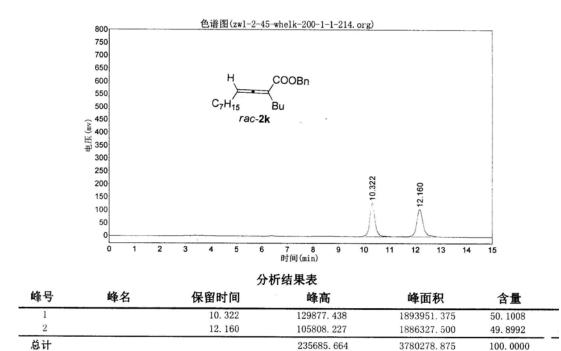


zw1-2-95-whe1k-200-1-1-214

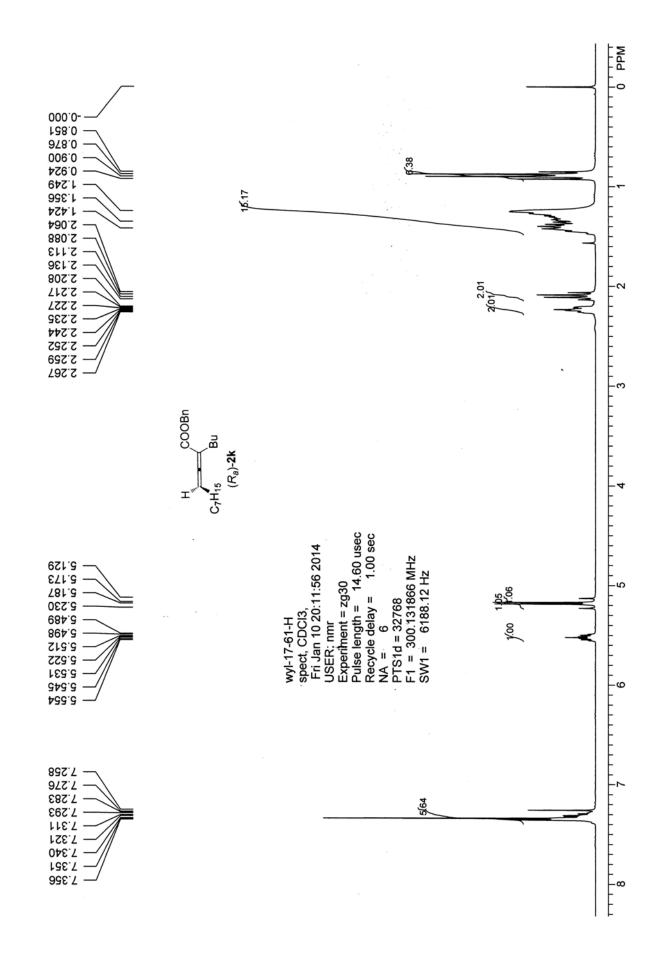
实验时间: 2013/9/24,9:54:02 报告时间: 2013/9/24,11:27:38 谱图文件:D:\zhuguangjiong\zw1\20130924\zw1-2-95-whe1k-200-1-1-214.org

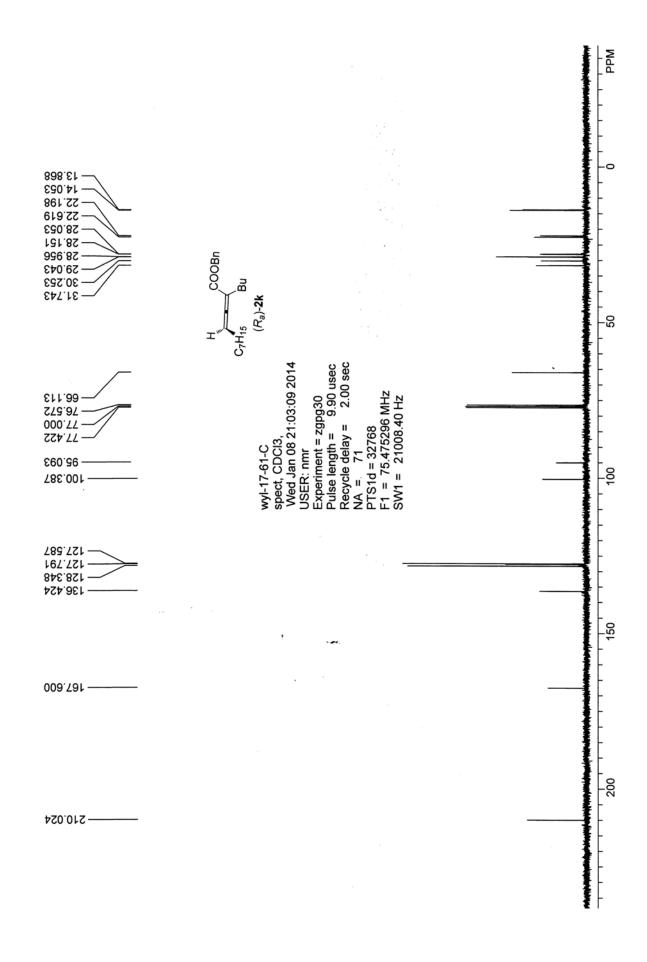
实验内容简介:

.


总计		850646. 449	18918533. 344	100.0000	
2	11.903	824633. 313	18519628.000	97.8915	
1	10.340	26013. 137	398905.344	2.1085	

文件使用 "pdfFactory Pro" 试用版本创建 www.fineprint.cn


zw1-2-45-whe1k-200-1-1-214


实验时间: 2013/9/24,9:35:48 报告时间: 2013/9/24,11:29:02 谱图文件:D:\zhuguangjiong\zwl\20130924\zwl-2-45-whelk-200-1-1-214.org

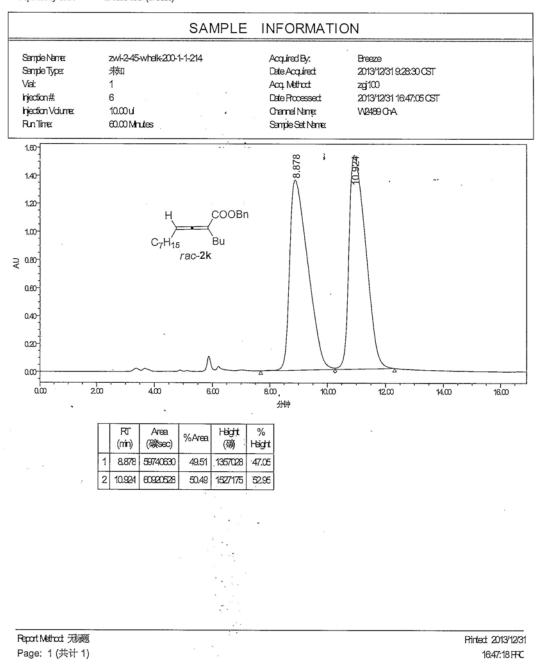
实验内容简介:

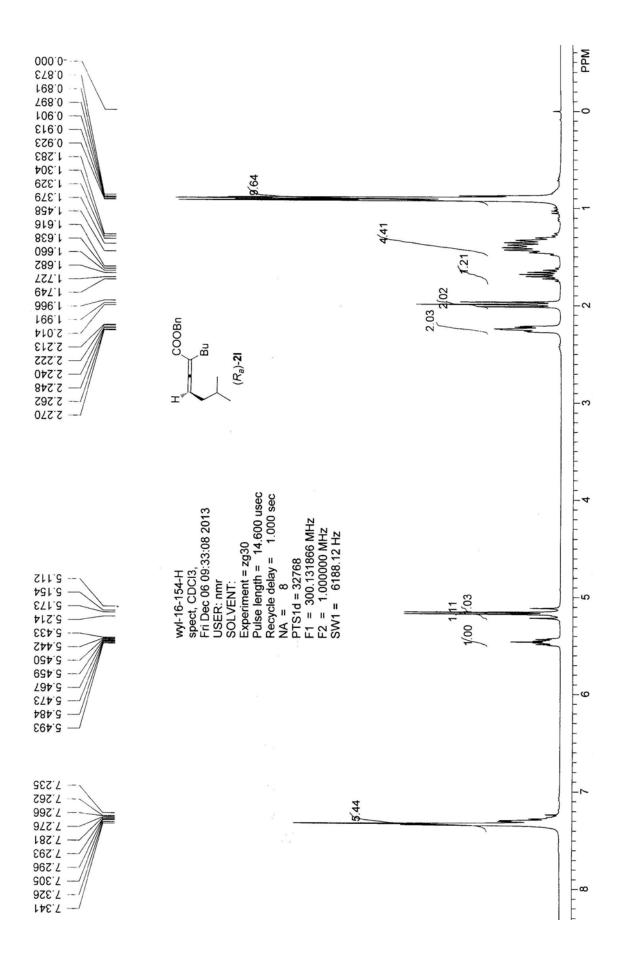
PDF 文件使用 "pdfFactory Pro" 试用版本创建 www.fineprint.cn

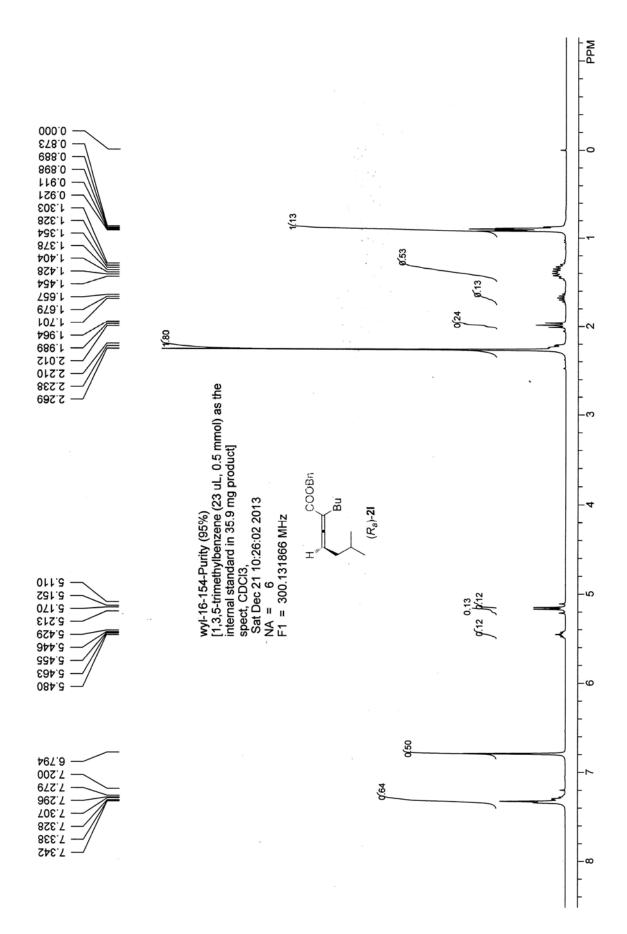
中国科学院上海有机化学和究所

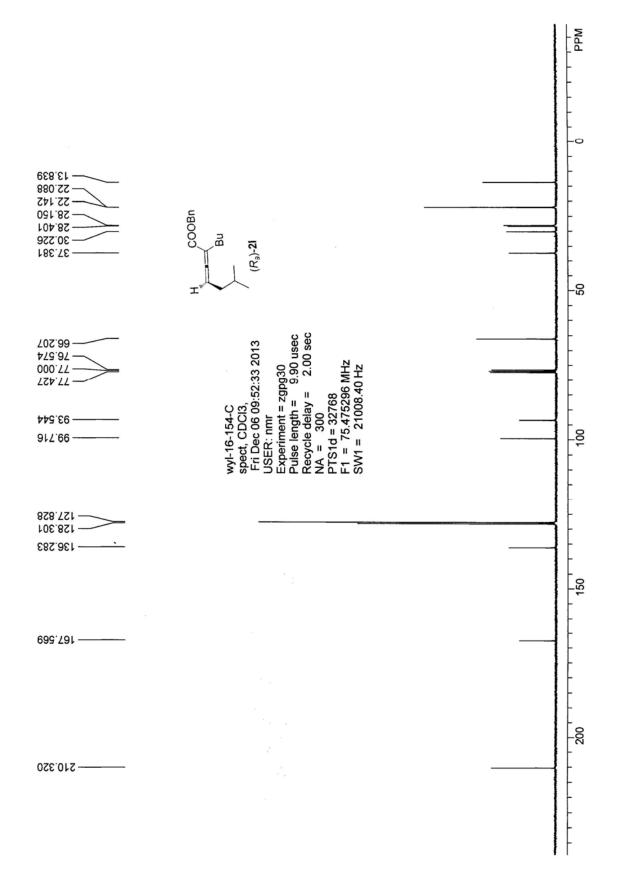
Roject Name: Recorted by User:

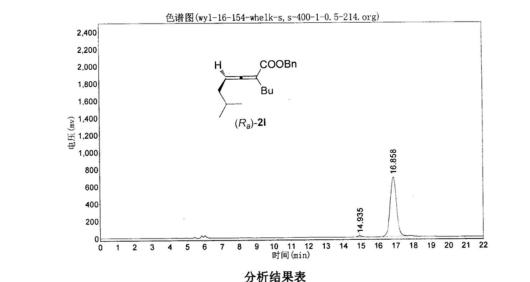
defaults for copy Breeze user (Breeze)




RT Area (min) %Area (确) Height (确) % Height 1 9.279 1883123 2.22 66076 2.50	Reported by User:	Breeze user (Breeze)			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		SAMPL	E INFORMAT	ION	
$\begin{array}{c} 200 \\ 200 \\ 1.50$	Sample Type: Vial: Injection #: Injection Volume:	秋日 1 8 10.00 ul	Date Acquirect Acq. Method Date Processed Channel Name	2013/12/31 10:07:13 CST zg100 2013/12/31 12:34:16 CST	
分钟 RT Area (min) (确选sec) %Area Height % (确选 Height 1 9.279 1883123 2.22 68076 2.50	2.00- 1.50- 0.50-	C ₇ H ₁₅ Bu (<i>R_a</i>)- 2k	71.012		
(min) (孫陈sec) % Area (孫) Height 1 9.275 1883123 2.22 68076 2.50	0.00 200	4.00 6.00 8.00 10.0		16.00 18.00 20.00 22.00	24.00
			t % Height		
2 11.072 82828456 97.78 2654040 97.50		1 9.279 1883123 2.22 6807	6 250		
		2 11.072 82828456 97.78 265404	0 97.50		


Rinted: 2013/12/31 16:48:43 FRC

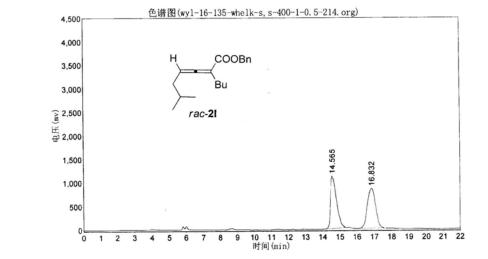

中国科学院上每有机化学研究所 Reject Name defaults for copy Reported by User: Breeze user (Breeze)



wy1-16-154-whelk-s, s-400-1-0. 5-214

实验时间: 2013/6/28,15:16:47 报告时间: 2013/6/28,15:57:30 谱图文件:D:\zhuguangjiong\wy1\20130628\wy1-16-154-whelk-s,s-400-1-0.5-214.org

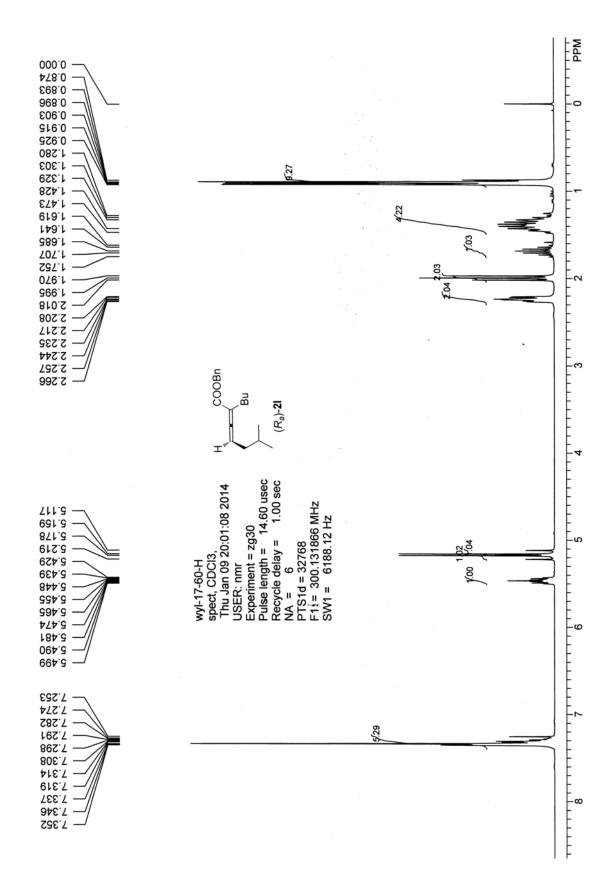
实验内容简介: whelk-s,s 400+1 0.5ml/min 214nm

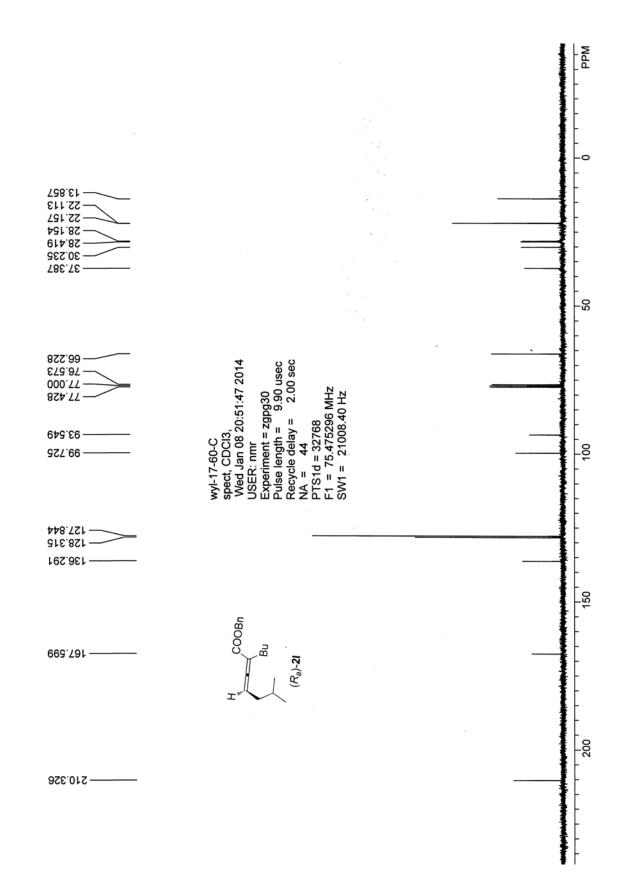

			PICHCICCO		
峰号	峰名	保留时间	峰髙	峰面积	含量
1		14.935	13307.122	215480. 500	1.2561
2		16.858	690324.813	16939586.000	98.7439
总计			703631.935	17155066. 500	100.0000

PDF 文件使用 "pdfFactory Pro" 试用版本创建 www.fineprint.cn

wy1-16-135-whe1k-s, s-400-1-0. 5-214

实验时间: 2013/6/28, 15:53:16 报告时间: 2013/6/28, 16:18:54 语图文件:D:\zhuguangjiong\wyl\20130628\wyl-16-135-whelk-s, s-400-1-0.5-214. org

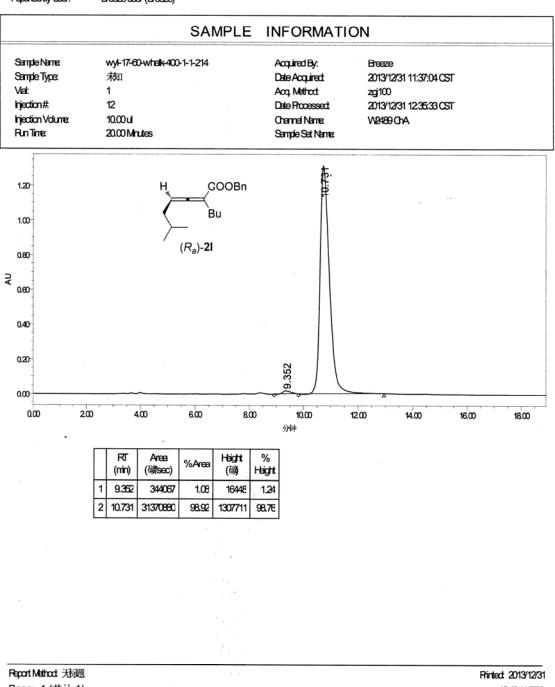

实验内容简介: whelk-s,s 400+1 0.5ml/min 214nm



分析结果表

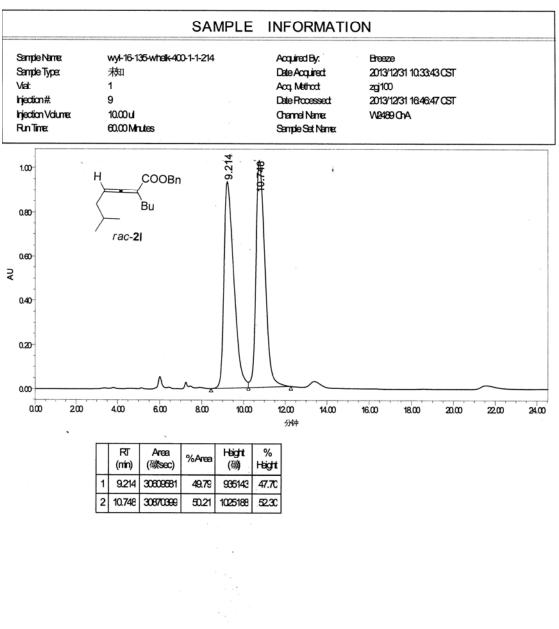
峰号	峰名	保留时间	峰高	峰面积	含量
1		14. 565	1107220. 375	27030012.000	49.5097
2		16.832	842960.688	27565426.000	50. 4903
总计			1950181.063	54595438.000	100.0000

PDF 文件使用 "pdfFactory Pro" 试用版本创建 www.fineprint.cn



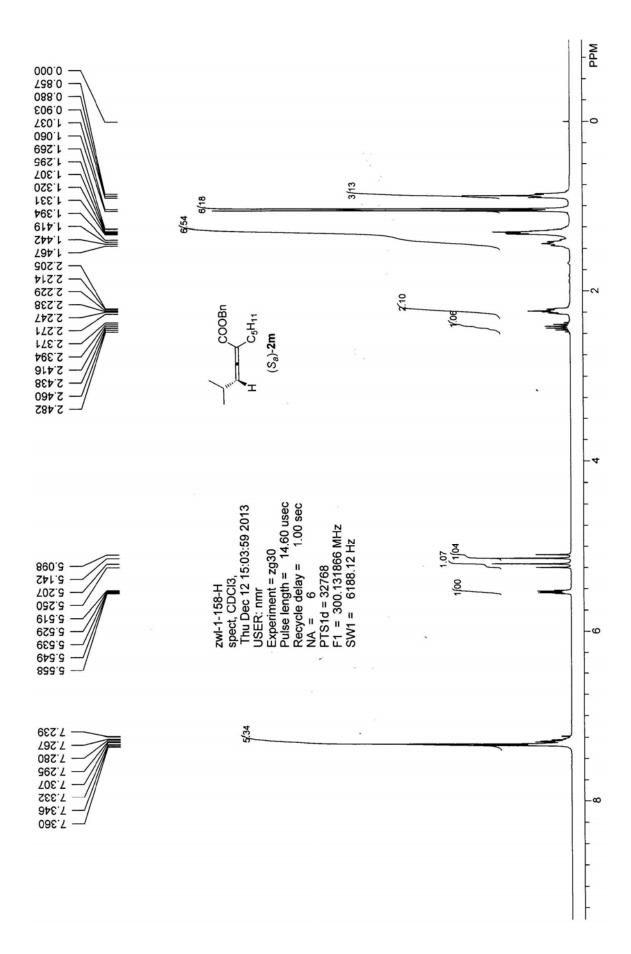
中国科学院上海有机化学研究所

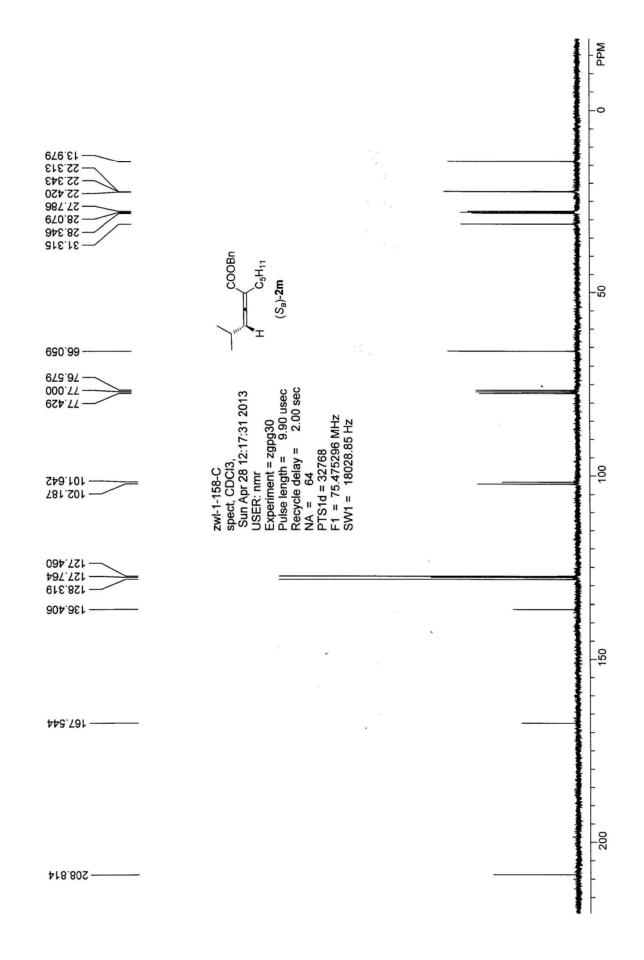
Project Name Reported by User: defaults for copy Breeze user (Breeze)


Page: 1 (共计 1)

16:49:11 FFC

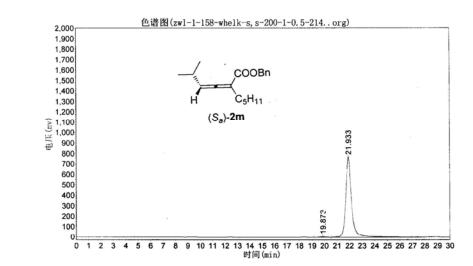
中国科学院上海有机化学研究所


Roject Name: Reported by User: defaults for copy Breeze user (Breeze)



Report Methodt 无规题 Page: 1 (共计1)

Rinted: 2013/12/31 16:48:55 FRC



zw1-1-158-whelk-s, s-200-1-0.5-214

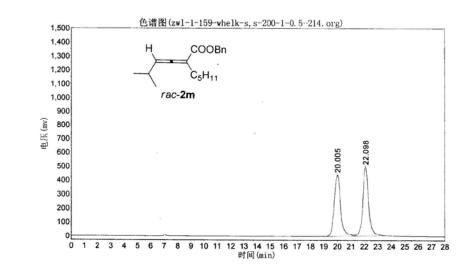
实验时间: 2013-04-28, 13:51:31 谱图文件:D:\zhuguangjiong\zwl\20130428\zwl-1-158-whelk-s, s-200-1-0.5-214..org

实验内容简介: whelk-s,s 200+1 0.5ml/min 214nm

•

11 10	14	-	**
分析	结	果え	쿥

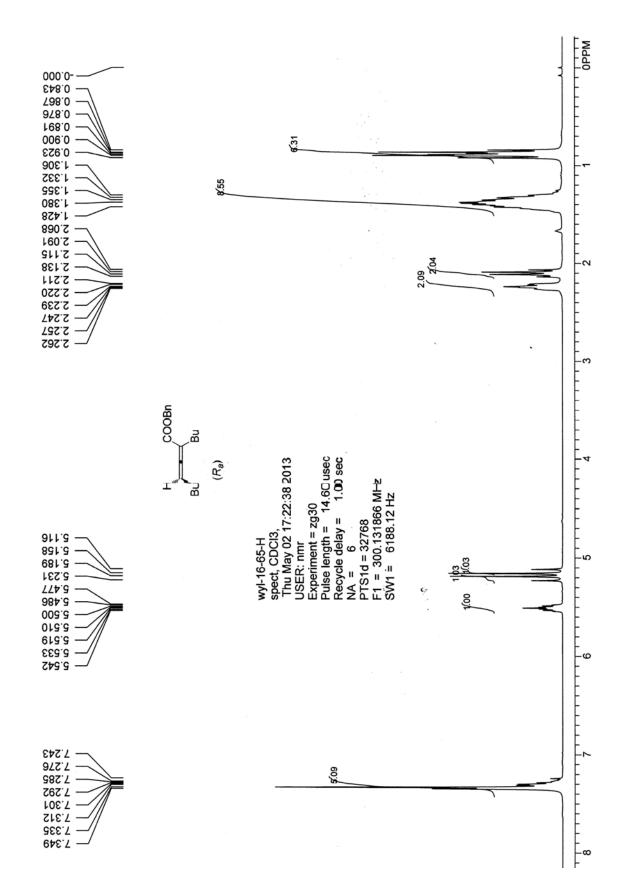
			PICE PICE			
峰号	峰名	保留时间	峰高	峰面积	含量	
1		19.873	6011.043	160463. 172	0.6266	
2		21.933	767171.063	25447982 000	99.3734	
总计			773182. 105	25608445. 172	100.0000	

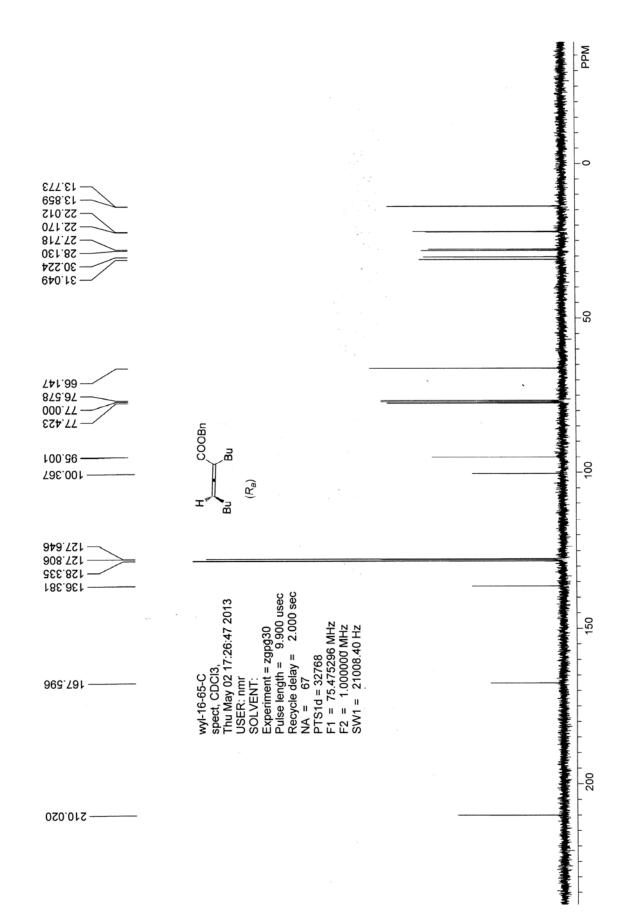

PDF 文件使用 "pdfFactory Pro" 试用版本创建 www.fineprint.cn

zwl-1-159-whelk-s, s-200-1-0. 5-214

.

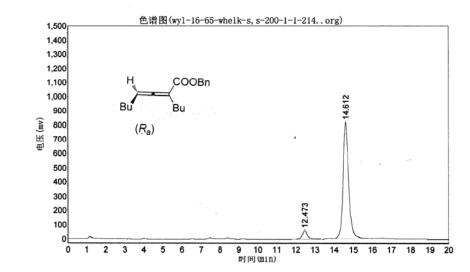
实验时间: 2013-04-28,12:43:50 报告时间: 2013-04-28,13:42:19 谱图文件:D:\zhuguang.jiong\zw1\20130428\zw1-1-159-whe1k-s, s-200-1-0.5-214.org


实验内容简介: whelk-s,s 200+1 0.5ml/min 214nm



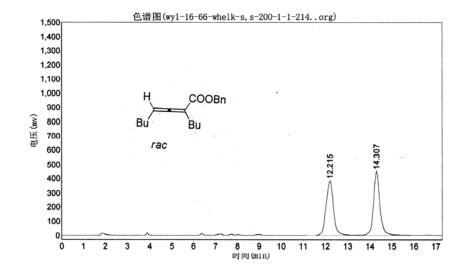
峰号	峰名	保留时间	峰高	峰面积	含量
1		20.005	439468. 469	14792792.000	49.5197
2		22.098	492610. 281	15079771.000	50. 4803
总计			932078. 750	29872563.000	100.0000

PDF 文件使用 "pdfFactory Pro" 试用版本创建 www.fineprint.cn


\$

实验时间: 2013-05-02,11:28:26 报告时间: 2013-05-02,13:31:47 谱图文件:D:\zhuguangjiong\wy1\20130502\wy1-16-65-whelk-s,s-200-1-1-214..org

实验内容简介: whelk-s,s 200+1 1ml/min 214nm


峰号	峰名	保留时间	峰高	峰面积	含量	
1		12.473	63753.641	1192039.375	6.6915	_
2		14.612	818372.250	16622253.000	93. 3085	
总计			882125. 891	17814292. 375	100. 0000	

2DF 文件使用 "pdfFactory Pro" 试用版本创建 www.fineprint.cn

实验时间: 2013-05-02,12:10:06 报告 谱图文件:D:\zhuguangjiong\wy1\20130502\wy1-16-66-whelk-s,s-200-1-1-214..org

实验内容简介: whelk-s,s 200+1 lml/min 214nm

.

分析结果表

峰号	峰名	保留时间	峰高	峰面积	含量	
1		12. 215	381762.719	9162743.000	49.9487	
2		14. 307	449652.094	9181581.000	50.0513	
总计			831414. 813	18344324.000	100. 0000	

'DF 文件使用 "pdfFactory Pro" 试用版本创建 <u>www.fineprint.cn</u>