N-AllenyInitrone Acts as 2-Azadiene in the Cu-Catalyzed Cascade Reaction of *O*-propargylic Oximes with Azodicarboxylates

Itaru Nakamura,* Takeru Jo, Dong Zhang, Masahiro Terada

Supporting Information

Contents

1. General information	2
2. Solvent effect	3
3. Analytical data of 1	4
4. Analytical data of 3	8
5. Analytical data of 4	17
6. ¹ H and ¹³ C NMR charts of 1 , 3 and 4	18
7. X-ray crystallographic analysis of 3c	86

1. General information

¹H and ¹³C NMR spectra were recorded on a JEOL JNM-ECS400 (400 MHz for ¹H and 100 MHz for ¹³C) spectrometer. Chemical shifts are reported in ppm relative to CHCl₃ (for ¹H, δ 7.24), and CDCl₃ (for ¹³C, δ 77.00). ¹H NMR data are reported as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t = triplet, sext = sextet, dd = double doublet, dq = double quartet, tq = triple quartet, br = broad, m = multiplet) and coupling constants (Hz). Infrared spectra were recorded on a JASCO FT/IR-4100 spectrometer. Optically rotations were measured on a Jasco P-1020 digital polarimeter with a sodium lamp and reported as follows; $[\alpha] T \circ C D$ (c = g/100 mL, solvent). High-resolution mass spectra analysis was performed on a Bruker Daltonics solariX FT-ICR-MS spectrometer at the Instrumental Analysis Center for Chemistry, Graduate School of Science, Tohoku University. X-ray crystallographic data was obtained by Rigaku XtaLAB mini diffractometer at the Instrumental Analysis Center for Chemistry, Graduate School of Science, Tohoku University. Flash column chromatography was performed with Kanto Chemical silica gel 60N (spherical, neutral, 40-50 µm). Analytical thin layer chromatography (TLC) was performed on Merck precoated TLC plates (silica gel 60 F₂₅₄). All reactions were carried out under argon atmosphere. Anhydrous MeCN, 1,4-dioxane, toluene, 1,2-dichloroethane, EtOAc, DMF were purchased from WAKO and used as received. CuCl was purchased from WAKO. Substrates 1 were synthesized in accordance with the literature method¹.

 ¹ I. Nakamura, Y. Kudo, T. Araki, D. Zhang, E. Kwon, M. Terada, Synthesis, 2012, 44, 1542.
 G. Gao, D. Moore, R. Xie, L. Pu, Org. Lett., 2002, 4, 4143

2. Solvent effect

H H O ^N Ph Ph 1	+ EtO ₂ C N N CO ₂ Et 2 (2 equiv)	10 mol % CuCl Solvent (XX M) 70 °C, 24 h		$EtO_2C_N \xrightarrow{\oplus} O$ $EtO_2C^N \xrightarrow{\oplus} O$ Ph 3
Entry	Solvent	XX	3 (%) ^a	1 (%) ^b
1	MeCN	0.5	63	<1
2	1,4-dioxane	0.5	32	<1
3	Toluene	0.5	35	<1
4	1,2-DCE	0.5	35	<1
5	EtOAc	0.5	30	5
6	DMF	0.5	26	<1
7	MeCN	1.0	56	<1
8	MeCN	0.25	66	<1

^aIsolated yield. ^{b1}H NMR yield using CH₂Br₂ as an internal standard.

3. Analytical data of 1

Formaldehyde O-1-phenylhept-6-en-2-yn-1-yl oxime (1e). ¹H NMR (400 MHz, CDCl₃) δ 2.29-2.34 (m, 2H), 2.39-2.43 (m, 2H), 5.02-5.11 (m, 2H), 5.82-5.90 (m, 2H), 6.53 (d, *J* = 8.2 Hz, 1H), 7.09 (d, *J* = 7.8 Hz, 1H), 7.33-7.41 (m, 3H), 7.54-7.56 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 18.7, 32.6, 75.5, 77.9, 88.0, 115.7, 127.8, 128.3, 128.5, 136.7, 137.9, 138.2. IR (neat) 3066, 3033, 2979, 2909, 2843, 2284, 2228, 1641, 1494, 1454, 1333, 1300, 1273, 1136, 984, 919, 883 cm⁻¹. HRMS (ESI) calcd. for (M+Na)⁺ 236.1046, found. 236.1045.

Formaldehyde *O*-1-(2-naphthyl)-3-phenylprop-2-ynyl oxime (1i). mp 61-62 °C. ¹H NMR (400 MHz, CDCl₃) δ 6.25 (s, 1H), 6.57 (d, *J* = 8.0 Hz, 1H), 7.15 (d, *J* = 8.0 Hz, 1H), 7.32-7.33 (m, 3H), 7.49-7.54 (m, 4H), 7.72 (d, *J* = 8.5 Hz, 1H), 7.84-7.90 (m, 3H), 8.08 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 75.9, 86.4, 88.1, 122.4, 125.4, 126.3, 126.5, 127.2, 127.7, 128.2, 128.3, 128.5, 128.6, 131.9, 133.1, 133.4, 135.0, 138.7. IR (neat) 3055, 2950, 2900, 2226, 1598, 1489, 1442, 1365, 1307, 1123, 977, 948, 917, 874, 817 cm⁻¹. HRMS (ESI) calcd. for (M+Na)⁺ 308.1046, found. 308.1045.

(*E*)-Acetaldehyde *O*-1,3-diphenylprop-2-ynyl oxime ((*E*)-1k). mp 61-62 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.83 (d, *J* = 6.0 Hz, 3H), 6.01 (s, 1H), 7.28-7.43 (m, 6H), 7.48-7.55 (m, 3H), 7.61-7.63 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 15.3, 75.2, 86.9, 87.4, 122.6, 127.9, 128.2, 128.5, 128.5, 128.6, 131.9, 137.8, 148.4. IR (neat) 3062, 3032, 2999, 2917, 2227, 1597, 1489, 1442, 1300, 1276, 1016, 997, 977, 889 cm⁻¹. HRMS (ESI) calcd. for (M+Na)⁺ 272.1046, found. 272.1045.

(*E*)-Butyraldehyde *O*-1,3-diphenylprop-2-ynyl oxime ((*E*)-11). ¹H NMR (400 MHz, CDCl₃) δ 0.94 (t, *J* = 7.2 Hz, 3H), 1.52 (sext, *J* = 7.2 Hz, 2H), 2.20 (q, *J* = 7.2 Hz, 2H), 6.02 (s, 1H), 7.25-7.41 (m, 6H), 7.47-7.51 (m, 3H), 7.62-7.64 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 13.6, 20.0, 31.4, 75.2, 87.0, 87.4, 122.6, 128.0, 128.2, 128.5, 128.6, 131.9, 137.8, 152.5. IR (neat) 3063, 3032, 2961, 2933, 2872, 2228, 1598, 1489, 1454, 1299, 1277, 1027, 963, 922, 880 cm⁻¹. HRMS (ESI) calcd. for (M+Na)⁺ 300.1359, found. 300.1359.

(*Z*)-Butyraldehyde *O*-1,3-diphenylprop-2-ynyl oxime ((*Z*)-1I). ¹H NMR (400 MHz, CDCl₃) δ 0.95 (t, *J* = 7.3 Hz, 3H), 1.51 (sext, *J* = 7.3 Hz, 2H), 2.31-2.45 (m, 2H), 6.05 (s, 1H), 6.77 (t, *J* = 5.5 Hz, 1H), 7.29-7.43 (m, 6H), 7.48-7.51 (m, 2H), 7.60-7.62 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 13.8, 19.5, 27.9, 75.3, 87.1, 87.3, 122.6, 127.7, 128.1, 128.4, 128.5, 128.5, 131.9, 138.1, 153.3. IR (neat) 3062, 3032, 2961, 2931, 2872, 2229, 1598, 1489, 1454, 1443, 1299, 1279, 1029, 964, 912, 876 cm⁻¹. HRMS (ESI) calcd. for (M+Na)⁺ 300.1359, found. 300.1359.

(*S*,*E*)-Butyraldehyde *O*-1-(4chlorophenyl)-3-phenylprop-2-ynyl oxime ((*S*,*E*)-1m). [α]²⁰_D = -6.80 (*c* 1.00, CHCl₃), HPLC analysis Chiralcel IA-3 (Hexane/IPA = 99/1, 1.0 mL/min, 254 nm, 30 °C), 6.3, 7.2 min (major), (99% ee). ¹H NMR (400 MHz, CDCl₃) δ 0.94 (t, *J* = 7.3 Hz, 3H), 1.52 (sext, *J* = 7.3 Hz, 2H), 2.20 (q, *J* = 7.3 Hz, 2H), 5.98 (s, 1H), 7.29-7.39 (m, 5H), 7.46-7.50 (m, 3H), 7.54-7.56 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 13.5, 19.9, 31.4, 74.4, 86.4, 87.7, 122.3, 128.2, 128.6, 128.6, 129.3, 131.9, 134.4, 136.4, 152.7. IR (neat) 3054, 2961, 2931, 2873, 2228, 1597, 1489, 1442, 1408, 1298, 1090, 1032, 1016, 920, 883, 826 cm⁻¹. HRMS (ESI) calcd. for (M+Na)⁺ 334.0969, found. 334.0969.

(*Z*)-Butyraldehyde *O*-1-(4chlorophenyl)-3-phenylprop-2-ynyl oxime ((*Z*)-1m). ¹H NMR (400 MHz, CDCl₃) δ 0.95 (t, *J* = 7.3 Hz, 3H), 1.51 (sext, *J* = 7.3 Hz, 2H), 2.31-2.41 (m, 2H), 6.01 (s, 1H), 6.76 (t, *J* = 5.5 Hz, 1H), 7.28-7.39 (m, 5H), 7.48-7.55 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 13.8, 19.5, 27.9, 74.6, 86.5, 87.5, 122.3, 128.2, 128.6, 129.2, 131.9, 134.3, 136.7, 153.6. IR (neat) 3057, 2960, 2931, 2873, 2230, 1597, 1489, 1442, 1408, 1298, 1288, 1089, 1032, 1015, 966, 912, 876, 824 cm⁻¹. HRMS (ESI) calcd. for (M+Na)⁺ 334.0969, found. 334.0969.

(*E*)-Cyclohexanecaboxaldehyde *O*-1,3-diphenylprop-2-ynyl oxime ((*E*)-1n). ¹H NMR (400 MHz, CDCl₃) δ 1.17-1.31 (m, 5H), 1.64-1.81 (m, 5H), 2.24-2.32 (m, 1H), 6.00 (s, 1H), 7.29-7.42 (m, 7H), 7.48-7.51 (m, 2H) 7.61-7.63 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 25.3, 25.8, 30.3, 38.5, 75.2, 87.0, 87.4, 122.6, 128.0, 128.2, 128.4, 128.5, 128.6, 131.8, 137.8, 156.4. IR (neat) 3063, 3032, 2925, 2851, 2228, 1598, 1489, 1449, 1301, 1028, 1016, 998, 923, 883 cm⁻¹. HRMS (ESI) calcd. for (M+Na)⁺ 340.1672, found. 340.1671.

(*S*,*E*)-Cyclohexanecaboxaldehyde *O*-1-(4chlorophenyl)-3-phenylprop-2-ynyl oxime ((*S*,*E*)-1p). mp 51-52 °C. [α]²¹_D = -9.72 (*c* 1.01, CHCl₃), HPLC analysis Chiralcel IA-3 (Hexane/IPA = 99/1, 1.0 mL/min, 254 nm, 30 °C), 6.1, 6.8 min (major), (99% ee). ¹H NMR (400 MHz, CDCl₃) δ 1.17-1.30 (m, 5H), 1.58-1.75 (m, 5H), 2.25-2.27 (m, 1H), 5.96 (s, 1H), 7.25-7.38 (m, 6H), 7.47-7.50 (m, 2H), 7.55 (d, *J* = 8.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 25.3, 25.7, 30.3, 38.5, 74.4, 86.4, 87.6, 122.3, 128.2, 128.6, 129.3, 131.8, 134.4, 136.5, 156.6. IR (neat) 3055, 2926, 2851, 2228, 1597, 1489, 1449, 1408, 1301, 1089, 1015, 911,

823 cm⁻¹. HRMS (ESI) calcd. for (M+Na)⁺ 374.1282, found. 374.1282.

(*S*,*Z*)-Cyclohexanecaboxaldehyde *O*-1-(4chlorophenyl)-3-phenylprop-2-ynyl oxime ((*S*,*Z*)-1p). mp 91-93 °C. [α]²²_D = +24.53 (*c* 0.42, CHCl₃), HPLC analysis Chiralcel IA-3 (Hexane/IPA = 99/1, 1.0 mL/min, 254 nm, 30 °C), 7.2, 9.2 min (major), (99% ee). ¹H NMR (400 MHz, CDCl₃) δ 1.14-1.34 (m, 5H), 1.64-1.83 (m, 5H), 2.91-2.95 (m, 1H), 5.99 (s, 1H), 6.58 (d, *J* = 7.3 Hz, 1H), 7.31-7.33 (m, 3H), 7.37 (d, *J* = 8.2 Hz, 1H), 7.48-7.51 (m, 2H), 7.54 (d, *J* = 8.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 25.1, 25.1, 25.8, 29.4, 29.5, 34.5, 74.5, 86.5, 87.6, 122.3, 128.2, 129.1, 131.9, 134.3, 136.8, 157.5. IR (neat) 3056, 2925, 2851, 2230, 1597, 1489, 1449, 1408, 1301, 1090, 1016, 957, 908, 883, 834 cm⁻¹. HRMS (ESI) calcd. for (M+Na)⁺ 374.1282, found. 374.1282.

(*E*)-6-benzylidene-1,2-bis(ethoxycarbonyl)-5-phenyl-1,2,3,6-tetrahydro-1,2,4-triazine 4-oxide (3a). mp 123-124 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.31 (t, *J* = 6.9 Hz, 3H), 1.39 (t, *J* = 7.1 Hz, 3H), 4.27-4.39 (m, 4H), 5.13 (d, *J* = 14.2 Hz, 1H), 5.90 (d, *J* = 14.2 Hz, 1H), 6.79-6.81 (m, 2H), 6.87-6.91 (m, 2H), 6.93-6.97 (m, 1H), 7.01-7.05 (m, 3H), 7.08 (s, 1H), 7.38-7.39 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 14.3, 14.3, 63.6, 63.6, 68.0, 124.3, 127.2, 127.3, 127.6, 127.7, 128.9, 129.3, 130.3, 132.3, 132.7, 140.5, 153.9. IR (neat) 3058, 3026, 2982, 2936, 1731, 1512, 1490, 1444, 1401, 1375, 1299, 1213, 1179, 1095, 1075, 1021 cm⁻¹. HRMS (ESI) calcd. for (M+Na)⁺ 432.1530, found. 432.1529.

(*E*)-6-benzylidene-1,2-bis(isopropoxycarbonyl)-5-phenyl-1,2,3,6-tetrahydro-1,2,4-triazine 4-oxide (3b). mp 97-98 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.25 (br, 3H), 1.33 (d, *J* = 6.2 Hz, 3H), 1.35 (d, *J* = 6.4 Hz, 3H), 1.39 (d, *J* = 6.2 Hz, 3H), 5.05-5.12 (m, 3H), 5.90 (br, 1H), 6.79-6.80 (m, 2H), 6.87-6.91 (m, 2H), 6.93-6.95 (m, 1H), 7.02-7.04 (m, 4H), 7.37-7.39 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 21.8, 21.9, 22.0, 68.1, 71.7, 71.9, 124.5, 127.3, 127.4, 127.6, 127.8, 128.9, 129.3, 130.4, 132.2, 132.9, 140.6, 153.4. IR (neat) 3056, 3026, 2981, 2937, 1722, 1512, 1434, 1374, 1292, 1215, 1180, 1105, 1075, 953 cm⁻¹. HRMS (ESI) calcd. for (M+Na)⁺ 460.1843, found. 460.1843.

(*E*)-6-benzylidene-1,2-bis(*tert*-butoxycarbonyl)-5-phenyl-1,2,3,6-tetrahydro-1,2,4-triazine 4-oxide (3c). mp 124-125 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.50 (s, 9H), 1.58 (s, 9H), 5.07 (br, 1H), 5.86 (br, 1H), 6.78-6.80 (m, 2H), 6.87-6.94 (m, 3H), 7.00-7.03 (m, 4H), 7.37-7.39 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 27.7, 27.9, 67.5, 68.7, 83.0, 124.6, 127.0, 127.0, 127.2, 127.7, 128.5, 129.0, 130.1, 131.3, 132.8, 140.2, 152.1, 152.8. IR (neat) 3057, 2977, 2933, 1720, 1511, 1432, 1368, 1299, 1248, 1146, 1095, 1075, 944, 898, 851 cm⁻¹. HRMS (ESI) calcd. for (M+Na)⁺ 488.2156, found. 488.2156.

(*E*)-6-benzylidene-1,2-bis((benzyloxy)carbonyl)-5-phenyl-1,2,3,6-tetrahydro-1,2,4-triazine 4-oxide (3d). mp 84-86 °C. ¹H NMR (400 MHz, CDCl₃) δ 5.11-5.35 (m, 5H), 5.91 (br, 1H), 6.71 (d, *J* = 7.8 Hz, 2H), 6.87 (t, *J* = 7.6 Hz, 2 H), 6.93-7.06 (m, 5H), 7.30-7.38 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 68.1, 69.0, 124.2, 127.1, 127.3, 127.6, 127.8, 127.9, 128.4, 128.5, 128.5, 128.6, 128.9, 129.3, 129.8, 130.3, 132.4, 132.5, 134.8, 134.9, 140.4, 153.7. IR (neat) 3061, 3033, 2957, 1729, 1494, 1445, 1391, 1288, 1213, 1176, 1075, 978 cm⁻¹. HRMS (ESI) calcd. for (M+Na)⁺ 556.1843, found. 556.1843.

(*E*)-6-benzylidene-1,2-bis(2,2,2-trichloroethoxycarbonyl)-5-phenyl-1,2,3,6-tetrahydro-1,2,4-triazine 4-oxide (3e). mp 94-96 °C. ¹H NMR (400 MHz, CDCl₃) δ 4.72 (br, 1H), 4.84 (d, *J* = 11.9 Hz, 1H), 5.07 (br, 1H), 5.23 (d, *J* = 13.7 Hz, 1H), 6.00 (d, *J* = 14.7 Hz, 1H), 6.77 (d, *J* = 7.8 Hz, 2H), 6.89 (t, *J* = 7.3 Hz, 2H), 6.95-7.09 (m, 5H), 7.20 (br, 1H), 7.38-7.39 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 67.6, 75.9, 76.1, 94.2, 94.4, 123.3, 127.2, 127.4, 127.5, 128.0, 128.9, 129.7, 130.4, 132.3, 133.8, 140.4, 152.0, 152.6. IR (neat) 3058, 3027, 2958, 1744, 1512, 1491, 1434, 1387, 1279, 1205, 1109, 1058, 923, 891, 815 cm⁻¹. HRMS (ESI) calcd. for (M+Na)⁺ 635.9192, found. 635.9191.

(*E*)-6-benzylidene-5-phenyl-1,2-di(piperidine-1-carbonyl)-1,2,3,6-tetrahydro-1,2,4-triazine 4-oxide (3f). mp 211-212 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.64-1.66 (m, 12H), 3.42 (br, 4H), 3.52 (br, 4H), 5.26 (br, 2H), 6.65 (s, 1H), 6.86 (br, 5H), 7.00-7.02 (m, 3H), 7.48-7.50 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 24.3, 24.3, 25.6, 25.9, 46.7, 47.1, 73.5, 125.6, 126.8, 127.2, 127.2, 129.0, 129.1, 129.2, 129.8, 130.7, 134.2, 139.8, 158.8, 158.8. IR (neat) 3058, 3023, 2988, 2937, 2856, 1674, 1443, 1419, 1246, 1208, 1140, 1073, 1012, 956, 912, 854 cm⁻¹. HRMS (ESI) calcd. for (M+Na)⁺ 510.2476, found. 510.2475.

(*E*)-6-benzylidene-1,2-bis(*tert*-butoxycarbonyl)-5-(4-methoxyphenyl)-1,2,3,6-tetrahydro-1,2,4-triazi ne 4-oxide (3g). mp 117-118 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.49 (s, 9H), 1.57 (s, 9H), 3.67 (s, 3H), 5.05 (br, 1H), 5.85 (br, 1H), 6.53 (d, *J* = 8.9 Hz, 2H), 6.80 (d, *J* = 7.3 Hz, 2H), 6.90-6.99 (m, 4H), 7.36 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 28.0, 28.2, 55.2, 67.5, 68.9, 83.3, 112.9, 120.2, 125.0, 127.3, 127.4, 128.9, 131.8, 132.1, 133.2, 140.3, 152.4, 152.9, 160.1. IR (neat) 2977, 2936, 1719, 1606, 1503, 1367, 1294, 1248, 1147, 1091, 1031, 923, 850, 830 cm⁻¹. HRMS (ESI) calcd. for (M+Na)⁺ 518.2262, found. 518.2261.

(*E*)-6-benzylidene-1,2-bis(*tert*-butoxycarbonyl)-5-(4-(trifluoromethyl)phenyl)-1,2,3,6-tetrahydro-1,2, 4-triazine 4-oxide (3h). mp 160-161 °C. ¹H NMR (400 MHz, CDCl₃) $\overline{0}$ 1.51 (s, 9H), 1.58 (s, 9H), 5.07 (d, *J* = 14.2 Hz, 1H), 5.86 (br, 1H), 6.74-6.76 (m, 2H), 6.87-6.90 (m, 2H), 6.94-6.96 (m, 1H), 7.09 (br, 1H), 7.24 (d, *J* = 8.2 Hz, 2H), 7.44 (d, *J* = 7.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) $\overline{0}$ 28.0, 28.2, 68.3, 69.4, 83.6, 123.5 (q, *J* = 272 Hz), 124.3 (q, *J* = 3.8 Hz), 124.7, 127.8, 128.1, 128.7, 130.8 (q, *J* = 32 Hz), 130.9, 131.3, 131.8, 133.0, 139.2, 152.2, 153.0. IR (neat) 2980, 2933, 1724, 1478, 1411, 1392, 1369, 1321, 1245, 1149, 1127, 1066 cm⁻¹. HRMS (ESI) calcd. for (M+Na)⁺ 556.2030, found. 556.2030.

(*E*)-6-benzylidene-1,2-bis(*tert*-butoxycarbonyl)-5-propyl-1,2,3,6-tetrahydro-1,2,4-triazine 4-oxide (3i). mp 119-120 °C. ¹H NMR (400 MHz, CDCl₃) δ 0.55 (t, *J* = 7.3 Hz, 3H), 1.35 (m, 2H), 1.50 (s, 9H), 1.52 (s, 9H), 2.16 (br, 1H), 2.41 (br, 1H), 4.93 (br, 1H), 5.60 (br, 1H), 7.03 (br, 1H), 7.21-7.23 (m, 2H), 7.35-7.37 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 13.4, 18.0, 27.9, 28.0, 28.4, 67.3, 68.6, 83.1, 125.9, 128.2, 128.2, 128.3, 129.3, 134.6, 143.8, 152.1, 152.8. IR (neat) 2975, 2933, 1723, 1521, 1444, 1368, 1296, 1247, 1145, 1115, 1057, 938, 854 cm⁻¹. HRMS (ESI) calcd. for (M+Na)⁺ 454.2312, found. 454.2312.

(*E*)-6-benzylidene-5-(but-3-en-1-yl)-1,2-bis(*tert*-butoxycarbonyl)-1,2,3,6-tetrahydro-1,2,4-triazine 4-oxide (3j). mp 110-111 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.50 (s, 9H), 1.53 (s, 9H), 2.03-2.11 (m, 2H), 2.30 (br, 1H), 2.54 (br, 1H), 4.74-4.79 (m, 2H), 4.92 (br, 1H), 5.36-5.46 (m, 1H), 5.61 (br, 1H), 7.03 (br, 1H), 7.22-7.24 (m, 2H), 7.35-7.37 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 26.4, 28.1, 28.2, 28.6, 67.6, 68.7, 83.3, 115.4, 125.9, 128.4, 128.5, 128.6, 134.7, 136.5, 143.2, 152.3, 153.1. IR (neat) 2977, 2933, 1723, 1520, 1444, 1368, 1290, 1247, 1228, 1145, 1060, 913, 854 cm⁻¹. HRMS (ESI) calcd. for (M+Na)⁺ 466.2312, found. 466.2312.

(E)-6-benzylidene-1,2-bis(tert-butoxycarbonyl)-5-cyclohexyl-1,2,3,6-tetrahydro-1,2,4-triazine

4-oxide ((*E***)-3k).** mp 121-123 °C. ¹H NMR (400 MHz, CDCl₃) δ 0.44-0.58 (br, 2H), 1.11 (tq, J = 3.4, 13.1 Hz, 1H), 1.30-1.39 (m, 3H), 1.49 (s, 9H), 1.52 (s, 9H), 1.49-1.54 (m, 2H), 2.05 (br, 1H), 2.21 (dq, J = 2.7, 12.4 Hz, 1H), 2.36 (dq, J = 2.3, 12.4 Hz, 1H), 4.88 (br, 1H), 5.43-5.57 (br, 1H), 7.00 (br, 1H), 7.21-7.23 (m, 2H), 7.36-7.38 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 24.6, 24.9, 25.6, 25.9, 27.8, 27.9, 39.9, 67.8, 69.6, 82.9, 126.1, 127.9, 128.1, 128.2, 129.4, 135.0, 145.5, 152.1, 152.9. IR (neat) 2977, 2928, 2852, 1723, 1524, 1452, 1368, 1288, 1239, 1147, 1118, 1057, 938, 848 cm⁻¹. HRMS (ESI) calcd. for (M+Na)⁺ 494.2625, found. 494.2625.

The stereochemistry was determined by NOE experiment as shown below.

(*Z*)-6-benzylidene-1,2-bis(*tert*-butoxycarbonyl)-5-cyclohexyl-1,2,3,6-tetrahydro-1,2,4-triazine 4-oxide ((*Z*)-3k). mp 126-127 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.15 (br, 9H), 1.35-1.37 (m, 2H), 1.46-1.49 (m, 2H), 1.52 (s, 9H), 1.74- 1.77 (m, 2H), 1.86-1.89 (m, 2H), 2.17-2.31 (m, 2H), 3.36 (br, 1H), 4.90 (br, 1H), 5.57 (br, 1H), 6.79 (s, 1H), 7.29-7.35 (m, 3H), 7.88 (br, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 25.8, 26.5, 26.9, 27.6, 28.3, 37.4, 67.9, 69.4, 83.7, 124.6, 126.4, 128.4, 128.7, 129.9, 135.2, 145.9, 151.7, 152.3. IR (neat) 2978, 2928, 2855, 1731, 1523, 1448, 1368, 1302, 1248, 1224, 1142, 1058, 848 cm⁻¹. HRMS (ESI) calcd. for (M+Na)⁺ 494.2625, found. 494.2625.

(*E*)-1,2-bis(*tert*-butoxycarbonyl)-6-(4-methoxybenzylidene)-5-phenyl-1,2,3,6-tetrahydro-1,2,4-triazi ne 4-oxide (3l). mp 87-89 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.49 (s, 9H), 1.57 (s, 9H), 3.66 (s, 3H), 5.06 (br, 1H), 5.86 (br, 1H), 6.42 (d, *J* = 8.7 Hz, 2H), 6.73 (d, *J* = 8.2 Hz, 2H), 6.95 (s, 1H), 7.06-7.08 (m, 4H), 7.43-7.44 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 27.8, 28.0, 54.9, 67.4, 68.5, 83.0, 112.7, 123.2, 125.2, 127.2, 127.7, 129.1, 130.2, 130.3, 131.4, 140.6, 152.2, 153.0, 158.84. IR (neat) 2977, 2934, 1720, 1605, 1508, 1368, 1294, 1250, 1149, 1031, 903, 851 cm⁻¹. HRMS (ESI) calcd. for (M+Na)⁺ 518.2262, found. 518.2261.

(*E*)-1,2-bis(*tert*-butoxycarbonyl)-5-phenyl-6-(4-(trifluoromethyl)benzylidene)-1,2,3,6-tetrahydro-1,2,
4-triazine 4-oxide (3m). mp 96-98 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.52 (s, 9H), 1.58 (s, 9H), 5.08 (d, *J* = 14.0 Hz, 1H), 5.82 (br, 1H), 6.87 (d, *J* = 8.2 Hz, 2H), 6.98-7.04 (m, 4H), 7.11 (d, *J* = 8.0 Hz, 2H), 7.28 (br, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 28.1, 28.2, 68.9, 70.7, 83.7, 123.8 (q, *J* = 272 Hz), 124.2 (q, *J* = 3.8

Hz), 127.0, 127.7, 128.2, 128.5, 129.0, 129.1 (q, J = 33 Hz), 129.5, 130.5, 137.3, 139.6, 152.3, 152.3. IR (neat) 2979, 2933, 1724, 1615, 1491, 1369, 1321, 1248, 1149, 1124, 1066, 1017, 905, 851 cm⁻¹. HRMS (ESI) calcd. for (M+Na)⁺ 556.2030, found. 556.2030.

(*E*)-1,2-bis(*tert*-butoxycarbonyl)-6-(2-naphthalenylmethylidene)-5-phenyl-1,2,3,6-tetrahydro-1,2,4-tr iazine 4-oxide (3n). mp 160-161 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.51 (s, 9H), 1.59 (s, 9H), 5.09 (d, *J* = 14.7 Hz, 1H), 5.85 (d, *J* = 14.7 Hz, 1H), 6.73-6.76 (m, 1H), 6.83-6.92 (m, 3H), 7.16 (br, 1H), 7.26 (br, 1H), 7.32-7.42 (m, 5H), 7.49-7.51 (m, 1H), 7.58-7.60 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 28.2, 28.3, 68.6, 83.4, 83.6, 125.6, 126.0, 126.1, 126.4, 126.9, 127.4, 127.4, 127.9, 128.6, 129.1, 129.1, 130.3, 131.2, 132.3, 132.4, 140.5, 152.6, 152.7. IR (neat) 2978, 2933, 1722, 1509, 1491, 1433, 1369, 1300, 1251, 1150, 1094, 1075, 910, 850 cm⁻¹. HRMS (ESI) calcd. for (M+Na)⁺ 538.2312, found. 538.2312.

(*E*)-1,2-bis(*tert*-butoxycarbonyl)-5-phenyl-6-propyl-1,2,3,6-tetrahydro-1,2,4-triazine 4-oxide ((*E*)-3o). mp 90-91 °C. ¹H NMR (400 MHz, CDCl₃) δ 0.66 (t, *J* = 7.2 Hz, 3H), 1.20-1.23 (m, 2H), 1.29-1.44 (m, 2H), 1.51 (s, 9H), 1.53 (s, 9H), 4.98 (br, 1H), 5.74 (br, 1H), 5.89 (br, 1H), 7.45-7.50 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 13.3, 22.1, 27.9, 28.1, 29.9, 67.0, 68.3, 82.9, 125.1, 128.5, 129.3, 129.7, 130.7, 134.9, 140.6, 152.5, 152.9. IR (neat) 2975, 2932, 2872, 1719, 1519, 1494, 1455, 1435, 1367, 1303, 1251, 1149, 1074, 981, 904, 892, 874, 850 cm⁻¹. HRMS (ESI) calcd. for (M+Na)⁺ 454.2312, found. 454.2312. The stereochemistry was determined by NOE experiment as shown below.

(*Z*)-1,2-bis(*tert*-butoxycarbonyl)-5-phenyl-6-propyl-1,2,3,6-tetrahydro-1,2,4-triazine 4-oxide ((*Z*)-3o). mp 102-104 °C. ¹H NMR (400 MHz, CDCl₃) δ 0.87 (t, *J* = 7.4 Hz, 3H), 1.36-1.43 (m, 2H), 1.52 (s, 9H), 1.53 (s, 9H), 2.17 (br, 1H), 2.33 (br, 1H), 4.98 (d, *J* = 13.5 Hz, 1H), 5.48 (dd, *J* = 9.3, 5.6 Hz, 1H), 5.73 (br, 1H), 7.47 (br, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 13.8, 21.7, 28.0, 28.1, 30.8, 66.8, 83.2, 83.4, 128.1, 128.4, 129.2, 129.7, 130.0, 133.4, 141.5, 151.9, 152.1. IR (neat) 2975, 2933, 2872, 1724, 1531, 1441, 1391, 1368, 1333, 1151, 1069, 876, 849 cm⁻¹. HRMS (ESI) calcd. for (M+Na)⁺ 454.2312, found. 454.2312.

(*E*)-6-benzylidene-1,2-bis(*tert*-butoxycarbonyl)-3-methyl-5-phenyl-1,2,3,6-tetrahydro-1,2,4-triazine 4-oxide (3p). mp 130-131 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.50 (s, 9H), 1.58 (s, 9H), 1.80 (d, *J* = 6.4 Hz, 3H), 5.98 (br, 1H), 6.76-6.78 (m, 2H), 6.84-6.90 (m, 3H), 6.96-6.99 (m, 3H), 7.10 (br, 1H), 7.31-7.33 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 17.7, 27.9, 28.0, 77.2, 82.5, 83.1, 125.1, 126.8, 127.1, 127.1, 127.8, 128.7, 128.8, 128.9, 130.5, 133.7, 138.4, 152.3, 152.7. IR (neat) 2978, 2936, 1717, 1479, 1444, 1367, 1316, 1276, 1254, 1150, 1113, 1055, 952, 849 cm⁻¹. HRMS (ESI) calcd. for (M+Na)⁺ 502.2312, found. 502.2312.

(*E*)-6-benzylidene-1,2-bis(*tert*-butoxycarbonyl)-5-phenyl-3-propyl-1,2,3,6-tetrahydro-1,2,4-triazine 4-oxide (3q). mp 120-121 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.04 (t, *J* = 7.3 Hz, 3H), 1.50 (s, 9H), 1.58 (s, 9H), 1.61-1.68 (m, 1H), 1.69-1.78 (m, 1H), 1.85-1.94 (m, 1H), 2.33-2.41 (m, 1H), 5.80 (d, *J* = 10.1 Hz, 1H), 6.76-6.77 (m, 2H), 6.82-6.90 (m, 3H), 6.94-6.97 (m, 3H), 7.14 (br, 1H), 7.30-7.32 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 13.2, 18.5, 27.9, 30.0, 32.3, 80.1, 82.4, 83.0, 124.8, 126.7, 127.0, 127.0, 127.4, 128.6, 128.7, 128.9, 130.5, 133.7, 138.5, 152.0, 153.1. IR (neat) 3056, 2974, 2933, 2875, 1718, 1476, 1443, 1367, 1324, 1150, 1126, 1071, 950, 848 cm⁻¹. HRMS (ESI) calcd. for (M+Na)⁺ 530.2625, found. 530.2625.

(*E*)-1,2-bis(*tert*-butoxycarbonyl)-6-(4-chlorobenzylidene)-5-phenyl-3-propyl-1,2,3,6-tetrahydro-1,2,4 -triazine 4-oxide (3r). mp 149-150 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.04 (t, *J* = 7.3 Hz, 3H), 1.50 (s, 9H), 1.57 (s, 9H), 1.57 (m, 1H), 1.73 (br, 1H), 1.90 (br, 1H), 2.36 (br, 1H), 5.80 (br, 1H), 6.68 (d, *J* = 8.7 Hz, 2H), 6.81 (d, *J* = 8.2 Hz, 2H), 7.00-7.10 (m, 4H), 7.27-7.29 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 13.5, 18.8, 28.1, 28.1, 33.3, 79.8, 81.4, 82.9, 125.4, 125.9, 127.3, 127.4, 128.8, 129.1, 130.1, 130.7, 132.3, 132.8, 138.4, 152.2, 153.6. IR (neat) 3055, 2976, 2932, 2875, 1718, 1591, 1479, 1368, 1253, 1152, 1126, 1087, 1014, 952, 908, 849 cm⁻¹. HRMS (ESI) calcd. for (M+Na)⁺ 564.2236, found. 564.2235.

(*E*)-6-benzylidene-1,2-bis(*tert*-butoxycarbonyl)-3-cyclohexyl-5-phenyl-1,2,3,6-tetrahydro-1,2,4-triaz ine 4-oxide (3s). mp 151-152 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.24-1.36 (m, 4H), 1.49 (s, 9H), 1.59 (s, 9H), 1.45-1.63 (m, 2H), 1.71-1.93 (m, 4H), 2.23 (br, 1H), 5.68 (br, 1H), 6.77-6.79 (m, 2H), 6.84-6.86 (m, 3H), 6.95-6.97 (m, 3H), 7.28-7.33 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 26.0, 26.0, 26.2, 28.1, 28.3, 28.4, 39.6, 82.8, 83.4, 84.2, 125.1, 125.6, 126.7, 127.2, 127.2, 128.8, 129.1, 129.6, 130.8, 134.5, 138.6, 152.1, 153.7. IR (neat) 3055, 2979, 2932, 2856, 1720, 1481, 1455, 1392, 1367, 1248, 1149, 1114, 1020, 853 cm⁻¹. HRMS (ESI) calcd. for (M+Na)⁺ 570.2938, found. 570.2940.

(*E*)-1,2-bis(*tert*-butoxycarbonyl)-6-(4-chlorobenzylidene)-3-cyclohexyl-5-phenyl-1,2,3,6-tetrahydro-1,2,4-triazine 4-oxide (3t). mp 154-155 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.25-1.33 (m, 4H), 1.50 (s, 9H), 1.59 (s, 9H), 1.46-1.61 (m, 2H), 1.72-1.90 (m, 2H), 2.23 (br, 1H), 5.68 (br, 1H), 6.70 (d, *J* = 8.2 Hz, 2H), 6.81 (d, *J* = 8.2 Hz, 2H), 6.99-7.06 (m, 3H), 7.29 (d, *J* = 6.9 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 25.9, 26.1, 27.5, 28.1, 28.2, 28.4, 29.7, 39.5, 83.0, 83.5, 84.7, 123.0, 126.3, 127.4, 127.4, 128.9, 129.6, 130.2, 130.8, 132.5, 133.1, 138.1, 152.1, 153.5. IR (neat) 3055, 2977, 2928, 2855, 1719, 1481, 1368, 1305, 1255, 1150, 1088, 1014, 956, 850 cm⁻¹. HRMS (ESI) calcd. for (M+Na)⁺ 604.2549, found. 604.2549.

5. Analytical data of 4

(*4E*)-4-(4-chlorobenzylidene)-1-phenyl-3-propylazetidin-2-one (4m). mp 108-109 °C. ¹H NMR (400 MHz, CDCl₃) δ 0.88 (t, *J* = 7.6 Hz, 3H), 1.43 (sext, *J* = 7.6 Hz, 2H), 1.77-1.86 (m, 1H), 2.04-2.11 (m, 1H), 5.36 (dd, *J* = 5.0, 3.7 Hz, 1H), 6.75 (s, 1H), 7.19-7.21 (m, 2H), 7.33-7.35 (m, 2H), 7.43-7.50 (m, 3H), 8.09-8.11 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 13.8, 17.0, 29.6, 82.6, 115.3, 126.2, 126.9, 128.8, 128.8, 129.0, 130.6, 131.2, 133.4, 134.1, 148.3. IR (neat) 3058, 2959, 2932, 2873, 1685, 1544, 1490, 1449, 1415, 1406, 1090, 1011, 859 cm⁻¹. HRMS (ESI) calcd. for (M+Na)⁺ 334.0969, found. 334.0969.

(4*E***)-4-(4-chlorobenzylidene)-3-cyclohexyl-1-phenylazetidin-2-one (4p).** mp 155-156 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.07-1.25 (m, 4H), 1.59-1.92 (m, 7H), 5.27 (s, 1H), 6.77 (s, 1H), 7.18-7.20 (m, 2H), 7.34-7.36 (m, 2H), 7.42-7.51 (m, 3H), 8.10-8.12 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 25.8, 25.8, 26.2, 26.5, 29.7, 37.0, 87.2, 115.2, 126.1, 126.8, 128.7, 128.9, 129.2, 130.0, 130.5, 133.2, 134.2, 148.6. IR (neat) 3057, 2927, 2853, 1685, 1544, 1489, 1415, 1405, 1241, 1091, 1011, 856 cm⁻¹. HRMS (ESI) calcd. for (M+Na)⁺ 374.1282, found. 374.1282.

7. X-ray crystallographic analysis of 3c

Experimental

Data Collection

A colorless prism crystal of C₂₆H₃₁N₃O₅ having approximate dimensions of 0.200 x 0.100 x 0.100 mm was mounted on a glass fiber. All measurements were made on a Rigaku XtaLAB mini diffractometer using graphite monochromated Mo-K α radiation.

The crystal-to-detector distance was 50.00 mm.

Cell constants and an orientation matrix for data collection corresponded to a primitive triclinic cell with dimensions:

а	=	6.770(2) Å	α	=	74.170(5) ⁰
b	=	11.166(3) Å	β	=	82.524(6) ⁰
с	=	17.891(4) Å	γ	=	85.510(6) ⁰
V	=	1288.8(6) Å ³			

For Z = 2 and F.W. = 465.55, the calculated density is 1.200 g/cm^3 . Based on a statistical analysis of intensity distribution, and the successful solution and refinement of the structure, the space group was determined to be:

P-1 (#2)

The data were collected at a temperature of $-123 \pm 1^{\circ}$ C to a maximum 20 value of 55.0°. A total of 570 oscillation images were collected. A sweep of data was done using ω oscillations from -70.0 to 120.0° in 1.0° steps. The exposure rate was 120.0 [sec./°]. The detector swing angle was 30.00°. A second sweep was performed using ω oscillations from -70.0 to 120.0° in 1.0° steps. The exposure rate was 120.0 [sec./°]. The detector swing angle was 30.00°. Another sweep was performed using ω oscillations from -70.0 to 120.0° in 1.0° steps. The exposure rate was 120.0 [sec./°]. The detector swing angle was 30.00°. Another sweep was performed using ω oscillations from -70.0 to 120.0° in 1.0° steps. The exposure rate was 120.0 [sec./°]. The detector swing angle was 30.00°. Another sweep was performed using ω oscillations from -70.0 to 120.0° in 1.0° steps. The exposure rate was 120.0 [sec./°]. The detector swing angle was 30.00°. Another sweep was performed using ω oscillations from -70.0 to 120.0° in 1.0° steps. The exposure rate was 120.0 [sec./°]. The detector swing angle was 30.00°. Another sweep was performed using ω oscillations from -70.0 to 120.0° in 1.0° steps. The exposure rate was 120.0 [sec./°]. The detector swing angle was 30.00°. Another sweep was performed using ω oscillations from -70.0 to 120.0° in 1.0° steps. The exposure rate was 120.0 [sec./°]. The detector swing angle was 30.00°. Another sweep was performed using ω oscillations from -70.0 to 120.0° in 1.0° steps. The exposure rate was 120.0 [sec./°]. The detector swing angle was 30.00°. Another sweep was performed using ω oscillations from -70.0 to 120.0° in 1.0° steps. The exposure rate was 120.0 [sec./°]. The detector swing angle was 30.00°. Another sweep was performed using ω oscillations from -70.0 to 120.0° in 1.0° steps. The exposure rate was 120.0 [sec./°]. The detector swing angle was 30.00°. The crystal-to-detector distance was 50.00 mm. Readout was performed in the 0.146 mm pixel mode.

Data Reduction

Of the 14009 reflections that were collected, 5896 were unique ($R_{int} = 0.0620$). Data were collected and processed using CrystalClear (Rigaku).

The linear absorption coefficient, μ , for Mo-K α radiation is 0.836 cm⁻¹. An empirical absorption correction was applied which resulted in transmission factors ranging from 0.679 to 0.992. The data were

corrected for Lorentz and polarization effects. A correction for secondary extinction² was applied (coefficient = 0.010980).

Structure Solution and Refinement

The structure was solved by direct methods³ and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement⁴ on F² was based on 5896 observed reflections and 308 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

 $R1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo| = 0.0608$

wR2 =
$$[\Sigma (w (Fo^2 - Fc^2)^2) / \Sigma w (Fo^2)^2]^{1/2} = 0.1512$$

The standard deviation of an observation of unit weight⁵ was 1.02. Unit weights were used. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.26 and -0.26 e⁻/Å³, respectively.

Neutral atom scattering factors were taken from Cromer and Waber⁶. Anomalous dispersion effects were included in Fcalc⁷; the values for $\Delta f'$ and $\Delta f''$ were those of Creagh and McAuley⁸. The values for the mass attenuation coefficients are those of Creagh and Hubbell⁹. All calculations were performed using the CrystalStructure¹⁰ crystallographic software package except for refinement, which was performed using SHELXL-97¹¹.

References

(1) <u>CrystalClear</u>: Rigaku Corporation, 1999. CrystalClear Software User's Guide, Molecular Structure Corporation, (c) 2000.J.W.Pflugrath (1999) Acta Cryst. D55, 1718-1725.

(2) Larson, A.C. (1970), Crystallographic Computing, 291-294. F.R. Ahmed, ed. Munksgaard, Copenhagen (equation 22, with V replaced by the cell volume).

(3) <u>SHELX97</u>: Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.

(4) Least Squares function minimized: (SHELXL97)

 $\Sigma w(F_0^2 - F_c^2)^2$ where w = Least Squares weights.

(5) Standard deviation of an observation of unit weight:

 $[\Sigma w(F_0^2 - F_c^2)^2 / (N_0 - N_V)]^{1/2}$

where: N_0 = number of observations N_V = number of variables

(6) Cromer, D. T. & Waber, J. T.; "International Tables for X-ray Crystallography", Vol. IV, The Kynoch Press, Birmingham, England, Table 2.2 A (1974).

(7) Ibers, J. A. & Hamilton, W. C.; Acta Crystallogr., 17, 781 (1964).

(8) Creagh, D. C. & McAuley, W.J.; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222 (1992).

(9) Creagh, D. C. & Hubbell, J.H..; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206 (1992).

(10) <u>CrystalStructure 4.0</u>: Crystal Structure Analysis Package, Rigaku Corporation (2000-2010). Tokyo 196-8666, Japan.

(11) <u>SHELX97</u>: Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.

EXPERIMENTAL DETAILS

A. Crystal Data

Empirical Formula	C ₂₆ H ₃₁ N ₃ O ₅
Formula Weight	465.55
Crystal Color, Habit	colorless, prism
Crystal Dimensions	0.200 X 0.100 X 0.100 mm
Crystal System	triclinic
Lattice Type	Primitive
Lattice Parameters	$\begin{array}{rcl} a = & 6.770(2) \ \text{\AA} \\ b = & 11.166(3) \ \text{\AA} \\ c = & 17.891(4) \ \text{\AA} \\ \alpha = & 74.170(5) \ \text{O} \\ \beta = & 82.524(6) \ \text{O} \\ \gamma = & 85.510(6) \ \text{O} \\ V = & 1288.8(6) \ \text{\AA}^3 \end{array}$
Space Group	P-1 (#2)
Z value	2
D _{calc}	1.200 g/cm ³
F ₀₀₀	496.00
μ(ΜοΚα)	0.836 cm ⁻¹

B. Intensity Measurements

Diffractometer	XtaLAB mini
Radiation	MoK α (λ = 0.71075 Å) graphite monochromated
Voltage, Current	50kV, 12mA
Temperature	-123.0 ⁰ C
Detector Aperture	75 mm (diameter)
Data Images	570 exposures
ω oscillation Range	-70.0 - 120.0 ⁰
Exposure Rate	120.0 sec./ ⁰
Detector Swing Angle	30.00 ⁰
ω oscillation Range	-70.0 - 120.0 ⁰
Exposure Rate	120.0 sec./ ⁰
Detector Swing Angle	30.00 ⁰
ω oscillation Range	-70.0 - 120.0 ⁰
Exposure Rate	120.0 sec./ ⁰
Detector Swing Angle	30.00 ⁰
ω oscillation Range	-70.0 - 120.0 ⁰
Exposure Rate	120.0 sec./ ⁰
Detector Swing Angle	30.00 ⁰
ω oscillation Range	-70.0 - 120.0 ⁰

Exposure Rate	120.0 sec./ ⁰
Detector Swing Angle	30.00 ⁰
ω oscillation Range	-70.0 - 120.0 ⁰
Exposure Rate	120.0 sec./ ⁰
Detector Swing Angle	30.00 ⁰
Detector Position	50.00 mm
Pixel Size	0.146 mm
20 _{max}	55.0 ⁰
No. of Reflections Measured	Total: 14009 Unique: 5896 (R _{int} = 0.0620)
Corrections	Lorentz-polarization Absorption (trans. factors: 0.679 - 0.992) Secondary Extinction (coefficient: 1.09800e-002)

C. Structure Solution and Refinement

Structure Solution	Direct Methods (SHELX97)
Refinement	Full-matrix least-squares on F ²
Function Minimized	$\Sigma \text{ w } (\text{Fo}^2 - \text{Fc}^2)^2$
Least Squares Weights	w = 1/ [$\sigma^2(Fo^2)$ + (0.0620 · P) ² + 0.0737 · P] where P = (Max(Fo ² ,0) + 2Fc ²)/3
20 _{max} cutoff	55.0 ⁰
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (All reflections)	5896
No. Variables	308
Reflection/Parameter Ratio	19.14
Residuals: R1 (I>2.00σ(I))	0.0608
Residuals: R (All reflections)	0.1148
Residuals: wR2 (All reflections)	0.1512
Goodness of Fit Indicator	1.022
Max Shift/Error in Final Cycle	0.000
Maximum peak in Final Diff. Map	0.26 e⁻/Å ³
Minimum peak in Final Diff. Map	-0.26 e ⁻ /Å ³

Table 1. Atomic coordinates and $\mathsf{B}_{iso}/\mathsf{B}_{eq}$

atom	х	У	Z	B _{eq}
01	0.6127(2)	0.0756(2)	0.10149(8)	2.98(3)
O2	0.3464(2)	0.1858(2)	0.04699(8)	2.75(3)
O3	-0.0403(2)	-0.2410(2)	0.22622(9)	3.34(4)
O4	0.1611(2)	0.2367(2)	0.20742(9)	2.78(3)
O5	-0.1599(2)	0.1789(2)	0.22199(9)	3.36(4)
N6	0.0953(3)	0.0766(2)	0.1635(1)	2.49(4)
N7	0.0628(3)	-0.1462(2)	0.2213(1)	2.46(4)
N8	0.2991(3)	0.0465(2)	0.1628(1)	2.45(4)
C9	0.4370(3)	0.1028(2)	0.1023(2)	2.29(4)
C10	0.2249(3)	-0.1499(2)	0.2558(1)	2.17(4)
C11	0.4661(3)	-0.0045(2)	0.2788(2)	2.39(4)
C12	0.2974(3)	-0.2701(2)	0.3066(2)	2.36(4)
C13	0.4992(3)	-0.3040(2)	0.2977(2)	2.69(4)
C14	0.3415(3)	-0.0368(2)	0.2357(1)	2.19(4)
C15	0.5011(3)	-0.0657(2)	0.3601(2)	2.35(4)
C16	0.0166(3)	0.1678(2)	0.2014(2)	2.61(4)
C17	-0.0150(3)	-0.0299(2)	0.1669(2)	2.66(4)
C18	0.4675(4)	0.2661(2)	-0.0206(2)	2.86(4)
C19	0.5738(4)	-0.4128(2)	0.3465(2)	3.44(5)
C20	0.3437(4)	-0.1053(2)	0.4175(2)	3.09(5)
C21	0.1689(4)	-0.3470(2)	0.3639(2)	3.15(5)
C22	0.5663(4)	-0.1727(3)	0.5155(2)	4.01(6)
C23	0.1167(4)	0.3440(2)	0.2421(2)	3.02(5)
C24	0.6925(4)	-0.0782(3)	0.3830(2)	3.20(5)
C25	0.3766(4)	-0.1590(3)	0.4942(2)	3.96(6)
C26	0.2460(4)	-0.4546(3)	0.4127(2)	3.93(6)
C27	0.4482(5)	-0.4873(3)	0.4039(2)	4.11(6)
C28	0.7241(4)	-0.1326(3)	0.4596(2)	3.99(6)
C29	0.6082(4)	0.3374(3)	0.0082(2)	4.04(6)
C30	0.0241(4)	0.2989(3)	0.3259(2)	4.68(6)
C31	0.5770(4)	0.1875(3)	-0.0709(2)	4.23(6)
C32	0.3238(4)	0.3904(3)	0.2377(2)	4.16(6)
C33	0.3084(4)	0.3514(3)	-0.0630(2)	4.28(6)
C34	-0.0131(4)	0.4411(3)	0.1920(2)	4.39(6)

 $\mathsf{B}_{\mathsf{eq}} = 8/3 \ \pi^2 (\mathsf{U}_{11}(\mathsf{aa}^*)^2 + \mathsf{U}_{22}(\mathsf{bb}^*)^2 + \mathsf{U}_{33}(\mathsf{cc}^*)^2 + 2\mathsf{U}_{12}(\mathsf{aa}^*\mathsf{bb}^*)\mathsf{cos}\ \gamma + 2\mathsf{U}_{13}(\mathsf{aa}^*\mathsf{cc}^*)\mathsf{cos}\ \beta + 2\mathsf{U}_{23}(\mathsf{bb}^*\mathsf{cc}^*)\mathsf{cos}\ \alpha)$

т	able 2	Atomic co	ordinates	and Bico	involvina	hydrogen	atoms
		/	oraniacos		, in vorving	nyarogen	atomo

atom	Х	У	Z	B _{iso}
H11	0.5410	0.0669	0.2536	2.86
H13	0.5866	-0.2527	0.2581	3.23
H17A	-0.0073	-0.0422	0.1139	3.19
H17B	-0.1569	-0.0141	0.1847	3.19
H19	0.7119	-0.4356	0.3402	4.13
H20	0.2114	-0.0951	0.4038	3.71
H21	0.0301	-0.3259	0.3695	3.78
H22	0.5886	-0.2095	0.5684	4.82
H24	0.8023	-0.0487	0.3453	3.83
H25	0.2672	-0.1868	0.5326	4.75
H26	0.1597	-0.5064	0.4524	4.71
H27	0.4996	-0.5611	0.4376	4.94
H28	0.8559	-0.1426	0.4739	4.79
H29A	0.7087	0.2793	0.0351	4.84
H29B	0.5330	0.3804	0.0446	4.84
H29C	0.6743	0.3986	-0.0363	4.84
H30A	-0.1090	0.2693	0.3268	5.62
H30B	0.0133	0.3675	0.3508	5.62
H30C	0.1080	0.2305	0.3544	5.62
H31A	0.6785	0.1331	-0.0422	5.07
H31B	0.6414	0.2419	-0.1191	5.07
H31C	0.4822	0.1364	-0.0839	5.07
H32A	0.3804	0.4183	0.1829	5.00
H32B	0.4095	0.3228	0.2659	5.00
H32C	0.3154	0.4602	0.2616	5.00
H33A	0.2405	0.4018	-0.0295	5.13
H33B	0.2114	0.3012	-0.0755	5.13
H33C	0.3706	0.4064	-0.1115	5.13
H34A	0.0538	0.4669	0.1386	5.26
H34B	-0.0363	0.5136	0.2135	5.26
H34C	-0.1410	0.4061	0.1915	5.26

Table 3. Anisotropic displacement parameters

atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
01	0.0255(8)	0.0415(9)	0.040(1)	0.0020(7)	-0.0036(7)	-0.0018(8)
02	0.0312(8)	0.0351(9)	0.0317(9)	0.0009(7)	-0.0052(7)	0.0021(7)
O3	0.0338(9)	0.0368(9)	0.059(1)	-0.0079(8)	-0.0101(8)	-0.0140(8)
O4	0.0271(8)	0.0336(9)	0.047(1)	-0.0044(7)	-0.0056(7)	-0.0119(7)
O5	0.0236(8)	0.045(1)	0.061(2)	-0.0026(7)	0.0001(7)	-0.0184(9)
N6	0.0211(9)	0.032(1)	0.041(1)	-0.0007(8)	-0.0058(8)	-0.0077(9)
N7	0.0235(9)	0.031(1)	0.040(1)	-0.0040(8)	-0.0046(8)	-0.0095(9)
N8	0.0208(9)	0.034(1)	0.033(1)	-0.0009(8)	-0.0056(7)	0.0009(8)
C9	0.028(2)	0.027(1)	0.031(2)	-0.000(1)	-0.0066(9)	-0.006(1)
C10	0.022(1)	0.029(1)	0.030(2)	-0.0018(9)	0.0006(8)	-0.0076(9)
C11	0.025(1)	0.029(1)	0.035(2)	-0.0035(9)	-0.0020(9)	-0.006(1)
C12	0.031(1)	0.028(1)	0.031(2)	-0.005(1)	-0.0052(9)	-0.007(1)
C13	0.034(2)	0.031(2)	0.039(2)	-0.002(1)	-0.008(1)	-0.009(1)
C14	0.023(1)	0.027(1)	0.029(2)	-0.0020(9)	-0.0029(9)	-0.0017(9)
C15	0.032(2)	0.028(1)	0.030(2)	-0.004(1)	-0.0041(9)	-0.0076(9)
C16	0.028(2)	0.034(2)	0.036(2)	-0.001(1)	-0.0067(9)	-0.005(1)
C17	0.025(1)	0.035(2)	0.041(2)	0.002(1)	-0.0101(9)	-0.008(1)
C18	0.047(2)	0.030(2)	0.027(2)	-0.000(1)	-0.001(1)	-0.001(1)
C19	0.045(2)	0.035(2)	0.053(2)	0.005(2)	-0.020(2)	-0.011(2)
C20	0.040(2)	0.043(2)	0.034(2)	-0.008(1)	-0.002(1)	-0.010(1)
C21	0.042(2)	0.039(2)	0.037(2)	-0.009(1)	0.001(1)	-0.007(1)
C22	0.077(2)	0.043(2)	0.031(2)	-0.008(2)	-0.016(2)	-0.002(2)
C23	0.042(2)	0.039(2)	0.037(2)	-0.008(1)	-0.004(1)	-0.013(1)
C24	0.035(2)	0.050(2)	0.036(2)	-0.005(1)	-0.005(1)	-0.009(2)
C25	0.063(2)	0.052(2)	0.033(2)	-0.018(2)	0.006(2)	-0.008(2)
C26	0.073(2)	0.037(2)	0.035(2)	-0.016(2)	-0.002(2)	0.001(1)
C27	0.075(2)	0.032(2)	0.051(2)	0.001(2)	-0.028(2)	-0.005(2)
C28	0.051(2)	0.060(2)	0.042(2)	0.001(2)	-0.020(2)	-0.009(2)
C29	0.061(2)	0.037(2)	0.051(2)	-0.010(2)	-0.005(2)	-0.003(2)
C30	0.063(2)	0.072(2)	0.045(2)	-0.022(2)	0.004(2)	-0.017(2)
C31	0.072(2)	0.049(2)	0.036(2)	-0.001(2)	0.005(2)	-0.010(2)
C32	0.054(2)	0.056(2)	0.056(2)	-0.022(2)	-0.001(2)	-0.024(2)
C33	0.063(2)	0.044(2)	0.045(2)	0.003(2)	-0.012(2)	0.007(2)
C34	0.063(2)	0.035(2)	0.068(2)	0.005(2)	-0.012(2)	-0.012(2)

The general temperature factor expression: $exp(-2\pi^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^{*b^*}U_{12}hk + 2a^{*}c^{*}U_{13}hl + 2b^{*}c^{*}U_{23}kl))$

Table 4. Bond lengths (Å)

atom	atom	distance	atom	atom	distance
01	C9	1.204(3)	02	C9	1.335(3)
02	C18	1.485(3)	O3	N7	1.290(3)
O4	C16	1.324(3)	O4	C23	1.487(3)
O5	C16	1.211(3)	N6	N8	1.394(3)
N6	C16	1.406(3)	N6	C17	1.436(3)
N7	C10	1.320(3)	N7	C17	1.499(3)
N8	C9	1.377(3)	N8	C14	1.430(3)
C10	C12	1.488(3)	C10	C14	1.477(3)
C11	C14	1.343(4)	C11	C15	1.470(3)
C12	C13	1.390(3)	C12	C21	1.396(3)
C13	C19	1.390(3)	C15	C20	1.389(3)
C15	C24	1.395(3)	C18	C29	1.509(4)
C18	C31	1.511(4)	C18	C33	1.517(4)
C19	C27	1.374(4)	C20	C25	1.379(4)
C21	C26	1.388(3)	C22	C25	1.372(4)
C22	C28	1.377(4)	C23	C30	1.512(4)
C23	C32	1.518(4)	C23	C34	1.509(4)
C24	C28	1.376(4)	C26	C27	1.389(4)

atom	atom	distance	atom	atom	distance
C11	H11	0.950	C13	H13	0.950
C17	H17A	0.990	C17	H17B	0.990
C19	H19	0.950	C20	H20	0.950
C21	H21	0.950	C22	H22	0.950
C24	H24	0.950	C25	H25	0.950
C26	H26	0.950	C27	H27	0.950
C28	H28	0.950	C29	H29A	0.980
C29	H29B	0.980	C29	H29C	0.980
C30	H30A	0.980	C30	H30B	0.980
C30	H30C	0.980	C31	H31A	0.980
C31	H31B	0.980	C31	H31C	0.980
C32	H32A	0.980	C32	H32B	0.980
C32	H32C	0.980	C33	H33A	0.980
C33	H33B	0.980	C33	H33C	0.980
C34	H34A	0.980	C34	H34B	0.980
C34	H34C	0.980			

Table 5. Bond lengths involving hydrogens (Å)

Table 6. Bond angles (⁰)

atom	atom	atom	angle	atom	atom	atom	angle
C9	02	C18	119.79(15)	C16	04	C23	120.87(16)
N8	N6	C16	117.46(19)	N8	N6	C17	111.36(16)
C16	N6	C17	121.46(16)	O3	N7	C10	125.09(17)
O3	N7	C17	112.04(17)	C10	N7	C17	122.77(18)
N6	N8	C9	122.60(16)	N6	N8	C14	110.66(14)
C9	N8	C14	126.34(16)	01	C9	O2	127.11(17)
01	C9	N8	122.44(17)	O2	C9	N8	110.43(16)
N7	C10	C12	119.61(19)	N7	C10	C14	118.38(17)
C12	C10	C14	121.66(18)	C14	C11	C15	128.06(18)
C10	C12	C13	118.65(17)	C10	C12	C21	121.64(18)
C13	C12	C21	119.68(18)	C12	C13	C19	120.25(19)
N8	C14	C10	111.80(18)	N8	C14	C11	120.10(18)
C10	C14	C11	127.99(17)	C11	C15	C20	121.17(19)
C11	C15	C24	120.92(17)	C20	C15	C24	117.8(2)
O4	C16	O5	127.9(3)	O4	C16	N6	109.89(17)
O5	C16	N6	122.2(3)	N6	C17	N7	112.14(18)
02	C18	C29	109.73(18)	02	C18	C31	109.79(18)
02	C18	C33	101.87(17)	C29	C18	C31	112.0(2)
C29	C18	C33	111.9(2)	C31	C18	C33	111.0(2)
C13	C19	C27	120.1(3)	C15	C20	C25	121.0(3)
C12	C21	C26	119.3(2)	C25	C22	C28	119.5(3)
O4	C23	C30	109.84(19)	O4	C23	C32	101.49(18)
O4	C23	C34	109.7(2)	C30	C23	C32	111.3(3)
C30	C23	C34	112.9(2)	C32	C23	C34	110.97(19)
C15	C24	C28	120.8(2)	C20	C25	C22	120.4(3)
C21	C26	C27	120.7(2)	C19	C27	C26	119.9(3)
C22	C28	C24	120.5(3)				

	Table 7.	Bond	angles	involvina	hvdrogens	(0)
--	----------	------	--------	-----------	-----------	-----

atom	atom	atom	angle	atom	atom	atom	angle
C14	C11	H11	116.0	C15	C11	H11	116.0
C12	C13	H13	119.9	C19	C13	H13	119.9
N6	C17	H17A	109.2	N6	C17	H17B	109.2
N7	C17	H17A	109.2	N7	C17	H17B	109.2
H17A	C17	H17B	107.9	C13	C19	H19	119.9
C27	C19	H19	119.9	C15	C20	H20	119.5
C25	C20	H20	119.5	C12	C21	H21	120.3
C26	C21	H21	120.3	C25	C22	H22	120.3
C28	C22	H22	120.3	C15	C24	H24	119.6
C28	C24	H24	119.6	C20	C25	H25	119.8
C22	C25	H25	119.8	C21	C26	H26	119.7
C27	C26	H26	119.7	C19	C27	H27	120.1
C26	C27	H27	120.1	C22	C28	H28	119.8
C24	C28	H28	119.8	C18	C29	H29A	109.5
C18	C29	H29B	109.5	C18	C29	H29C	109.5
H29A	C29	H29B	109.5	H29A	C29	H29C	109.5
H29B	C29	H29C	109.5	C23	C30	H30A	109.5
C23	C30	H30B	109.5	C23	C30	H30C	109.5
H30A	C30	H30B	109.5	H30A	C30	H30C	109.5
H30B	C30	H30C	109.5	C18	C31	H31A	109.5
C18	C31	H31B	109.5	C18	C31	H31C	109.5
H31A	C31	H31B	109.5	H31A	C31	H31C	109.5
H31B	C31	H31C	109.5	C23	C32	H32A	109.5
C23	C32	H32B	109.5	C23	C32	H32C	109.5
H32A	C32	H32B	109.5	H32A	C32	H32C	109.5
H32B	C32	H32C	109.5	C18	C33	H33A	109.5
C18	C33	H33B	109.5	C18	C33	H33C	109.5
H33A	C33	H33B	109.5	H33A	C33	H33C	109.5
H33B	C33	H33C	109.5	C23	C34	H34A	109.5
C23	C34	H34B	109.5	C23	C34	H34C	109.5
H34A	C34	H34B	109.5	H34A	C34	H34C	109.5
H34B	C34	H34C	109.5				

Table 8. Torsion Angles(⁰) (Those having bond angles > 160 or < 20 degrees are excluded.)

atom1	atom2	atom3	atom4	angle	atom1	atom2	atom3	atom4	angle
C9	02	C18	C29	-56.3(3)	C9	02	C18	C31	67.3(3)
C9	O2	C18	C33	-174.98(17)	C18	O2	C9	01	-7.1(4)
C18	02	C9	N8	174.46(17)	C16	O4	C23	C30	61.1(3)
C16	O4	C23	C32	179.00(15)	C16	O4	C23	C34	-63.6(2)
C23	O4	C16	O5	-0.8(3)	C23	O4	C16	N6	177.16(14)
N8	N6	C16	O4	20.5(2)	N8	N6	C16	O5	-161.43(16)
C16	N6	N8	C9	-93.6(3)	C16	N6	N8	C14	79.67(19)
N8	N6	C17	N7	40.3(3)	C17	N6	N8	C9	119.85(19)
C17	N6	N8	C14	-66.9(2)	C16	N6	C17	N7	-104.71(19)
C17	N6	C16	O4	163.51(16)	C17	N6	C16	O5	-18.4(3)
O3	N7	C10	C12	-1.6(3)	O3	N7	C10	C14	171.72(16)
O3	N7	C17	N6	177.95(15)	C10	N7	C17	N6	-5.6(3)
C17	N7	C10	C12	-177.59(16)	C17	N7	C10	C14	-4.3(3)
N6	N8	C9	01	-179.1(2)	N6	N8	C9	02	-0.6(3)
N6	N8	C14	C10	55.3(3)	N6	N8	C14	C11	-121.19(18)
C9	N8	C14	C10	-131.8(2)	C9	N8	C14	C11	51.7(3)
C14	N8	C9	01	8.7(4)	C14	N8	C9	02	-172.72(19)
N7	C10	C12	C13	133.9(2)	N7	C10	C12	C21	-48.0(3)
N7	C10	C14	N8	-19.8(3)	N7	C10	C14	C11	156.33(18)
C12	C10	C14	N8	153.36(17)	C12	C10	C14	C11	-30.5(3)
C14	C10	C12	C13	-39.2(3)	C14	C10	C12	C21	138.9(2)
C14	C11	C15	C20	-43.8(4)	C14	C11	C15	C24	140.7(2)
C15	C11	C14	N8	168.31(18)	C15	C11	C14	C10	-7.6(4)
C10	C12	C13	C19	177.0(2)	C10	C12	C21	C26	-176.3(2)
C13	C12	C21	C26	1.8(4)	C21	C12	C13	C19	-1.2(4)
C12	C13	C19	C27	-0.1(4)	C11	C15	C20	C25	-177.85(19)
C11	C15	C24	C28	178.3(2)	C20	C15	C24	C28	2.6(4)
C24	C15	C20	C25	-2.2(4)	C13	C19	C27	C26	0.7(5)
C15	C20	C25	C22	1.1(4)	C12	C21	C26	C27	-1.2(4)
C25	C22	C28	C24	0.6(4)	C28	C22	C25	C20	-0.2(4)
C15	C24	C28	C22	-1.9(4)	C21	C26	C27	C19	-0.0(5)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	atom	atom	distance	atom	atom	distance
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01	N6	3.534(3)	O1	C11	3.101(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01	C14	2.878(3)	O1	C18	2.822(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01	C29	2.944(3)	O1	C31	3.029(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	02	O4	3.159(3)	O2	N6	2.595(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	02	C16	3.289(3)	O3	N6	3.571(3)
04N8 $2.537(3)$ 04 $C9$ $3.073(3)$ 04 C11 $3.329(3)$ 04 C14 $3.132(3)$ 04 C17 $3.573(3)$ 05 N8 $3.499(3)$ 05 C17 $2.831(3)$ 05 C23 $2.848(3)$ 05 C30 $3.004(4)$ 05 C34 $3.052(3)$ $N6$ C10 $2.766(3)$ N6C11 $3.370(3)$ $N7$ N8 $2.676(3)$ N7C13 $3.553(3)$ $N7$ C16 $3.419(3)$ N7C21 $3.026(3)$ C9C10 $3.598(3)$ C9C11 $3.083(3)$ C9C16 $3.291(3)$ C9C17 $3.428(3)$ C9C29 $2.932(3)$ C9C31 $3.028(4)$ C10C15 $3.162(4)$ C10C20 $3.274(4)$ C11C12 $3.151(4)$ C11C13 $3.262(4)$ C12C27 $2.780(3)$ C13C14 $3.046(3)$ C13C26 $2.764(3)$ C14C16 $3.039(3)$ C14C17 $2.835(3)$ C14C20 $3.133(3)$ C15C22 $2.789(4)$ C16C30 $2.988(4)$ C16C34 $3.004(4)$ C19C21 $2.782(4)$ C20C21 $3.437(4)$ C20C28 $2.747(4)$ C24C25 $2.750(4)$ C20C28 $2.747(4)$	O3	C12	2.808(3)	O3	C21	2.921(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O4	N8	2.537(3)	O4	C9	3.073(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O4	C11	3.329(3)	O4	C14	3.132(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O4	C17	3.573(3)	O5	N8	3.499(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O5	C17	2.831(3)	O5	C23	2.848(3)
N6C10 $2.766(3)$ N6C11 $3.370(3)$ N7N8 $2.676(3)$ N7C13 $3.553(3)$ N7C16 $3.419(3)$ N7C21 $3.026(3)$ C9C10 $3.598(3)$ C9C11 $3.083(3)$ C9C16 $3.291(3)$ C9C17 $3.428(3)$ C9C29 $2.932(3)$ C9C31 $3.028(4)$ C10C15 $3.162(4)$ C10C20 $3.274(4)$ C11C12 $3.151(4)$ C11C13 $3.262(4)$ C12C15 $3.171(4)$ C12C20 $3.110(4)$ C12C27 $2.780(3)$ C13C14 $3.046(3)$ C13C15 $3.155(4)$ C13C20 $3.503(4)$ C13C26 $2.764(3)$ C14C16 $3.039(3)$ C14C17 $2.835(3)$ C14C20 $3.133(3)$ C15C22 $2.789(4)$ C16C30 $2.988(4)$ C16C34 $3.004(4)$ C19C21 $2.782(4)$ C20C21 $3.437(4)$ C20C28 $2.747(4)$ C24C25 $2.750(4)$ C20C28 $2.747(4)$	O5	C30	3.004(4)	O5	C34	3.052(3)
N7N8 $2.676(3)$ N7C13 $3.553(3)$ N7C16 $3.419(3)$ N7C21 $3.026(3)$ C9C10 $3.598(3)$ C9C11 $3.083(3)$ C9C16 $3.291(3)$ C9C17 $3.428(3)$ C9C29 $2.932(3)$ C9C31 $3.028(4)$ C10C15 $3.162(4)$ C10C20 $3.274(4)$ C11C12 $3.151(4)$ C11C13 $3.262(4)$ C12C15 $3.171(4)$ C12C20 $3.110(4)$ C12C27 $2.780(3)$ C13C14 $3.046(3)$ C13C15 $3.155(4)$ C13C20 $3.503(4)$ C13C26 $2.764(3)$ C14C16 $3.039(3)$ C14C17 $2.835(3)$ C14C20 $3.133(3)$ C15C22 $2.789(4)$ C16C30 $2.988(4)$ C16C34 $3.004(4)$ C19C21 $2.782(4)$ C20C21 $3.437(4)$ C20C28 $2.747(4)$ C24C25 $2.750(4)$ C10C20C28	N6	C10	2.766(3)	N6	C11	3.370(3)
N7C16 $3.419(3)$ N7C21 $3.026(3)$ C9C10 $3.598(3)$ C9C11 $3.083(3)$ C9C16 $3.291(3)$ C9C17 $3.428(3)$ C9C29 $2.932(3)$ C9C31 $3.028(4)$ C10C15 $3.162(4)$ C10C20 $3.274(4)$ C11C12 $3.151(4)$ C11C13 $3.262(4)$ C12C15 $3.171(4)$ C12C20 $3.110(4)$ C12C27 $2.780(3)$ C13C14 $3.046(3)$ C13C15 $3.155(4)$ C13C20 $3.503(4)$ C13C26 $2.764(3)$ C14C16 $3.039(3)$ C14C17 $2.835(3)$ C14C20 $3.133(3)$ C15C22 $2.789(4)$ C16C30 $2.988(4)$ C16C34 $3.004(4)$ C19C21 $2.782(4)$ C20C21 $3.437(4)$ C20C28 $2.747(4)$ C24C25 $2.750(4)$ C10C20C28	N7	N8	2.676(3)	N7	C13	3.553(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N7	C16	3.419(3)	N7	C21	3.026(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9	C10	3.598(3)	C9	C11	3.083(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9	C16	3.291(3)	C9	C17	3.428(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9	C29	2.932(3)	C9	C31	3.028(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10	C15	3.162(4)	C10	C20	3.274(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11	C12	3.151(4)	C11	C13	3.262(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12	C15	3.171(4)	C12	C20	3.110(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12	C27	2.780(3)	C13	C14	3.046(3)
C13C262.764(3)C14C163.039(3)C14C172.835(3)C14C203.133(3)C15C222.789(4)C16C302.988(4)C16C343.004(4)C19C212.782(4)C20C213.437(4)C20C282.747(4)C24C252.750(4)C10C282.747(4)	C13	C15	3.155(4)	C13	C20	3.503(4)
C14C172.835(3)C14C203.133(3)C15C222.789(4)C16C302.988(4)C16C343.004(4)C19C212.782(4)C20C213.437(4)C20C282.747(4)C24C252.750(4)C20C282.747(4)	C13	C26	2.764(3)	C14	C16	3.039(3)
C15C222.789(4)C16C302.988(4)C16C343.004(4)C19C212.782(4)C20C213.437(4)C20C282.747(4)C24C252.750(4)C20C28C2747(4)	C14	C17	2.835(3)	C14	C20	3.133(3)
C16C343.004(4)C19C212.782(4)C20C213.437(4)C20C282.747(4)C24C252.750(4)C20C28C2747(4)	C15	C22	2.789(4)	C16	C30	2.988(4)
C20 C21 3.437(4) C20 C28 2.747(4 C24 C25 2.750(4)	C16	C34	3.004(4)	C19	C21	2.782(4)
C24 C25 2.750(4)	C20	C21	3.437(4)	C20	C28	2.747(4)
	C24	C25	2.750(4)			

Table 9. Intramolecular contacts less than 3.60 Å

atom	atom	distance	atom	atom	distance
01	H11	2.677	01	H29A	2.359
01	H29B	3.298	01	H31A	2.462
01	H31C	3.418	02	H17A	3.492
02	H29A	2.701	02	H29B	2.586
02	H29C	3.291	02	H31A	2.705
02	H31B	3.293	02	H31C	2.588
02	H33A	2.528	02	H33B	2.469
02	H33C	3.204	O3	H17A	2.558
O3	H17B	2.531	O3	H21	2.572
04	H11	3.134	O4	H30A	2.710
04	H30B	3.295	O4	H30C	2.589
04	H32A	2.515	O4	H32B	2.471
04	H32C	3.202	O4	H34A	2.620
04	H34B	3.295	O4	H34C	2.663
O5	H17A	3.548	O5	H17B	2.422
O5	H30A	2.432	O5	H30C	3.355
O5	H34A	3.495	O5	H34C	2.455
N6	H11	3.582	N7	H21	2.849
N8	H11	2.514	N8	H17A	2.706
N8	H17B	3.164	C9	H11	2.800
C9	H17A	3.483	C9	H29A	2.723
C9	H29B	3.081	C9	H31A	2.825
C9	H31C	3.225	C10	H11	3.343
C10	H13	2.622	C10	H17A	3.073
C10	H17B	3.129	C10	H20	2.864
C10	H21	2.695	C11	H13	2.935
C11	H20	2.653	C11	H24	2.655
C11	H32B	3.591	C12	H19	3.267
C12	H20	2.932	C12	H26	3.261
C13	H21	3.269	C13	H27	3.254
C14	H13	2.783	C14	H17A	3.431
C14	H17B	3.582	C14	H20	2.928
C15	H13	3.104	C15	H25	3.263
C15	H28	3.264	C16	H17A	3.178
C16	H17B	2.527	C16	H30A	2.791
C16	H30C	3.150	C16	H34A	3.240
C16	H34C	2.757	C19	H26	3.246

Table 10. Intramolecular contacts less than 3.60 Å involving hydrogens

atom	atom	distance	atom	atom	distance
C20		3 224	C20	Ц Ц 2	3 246
C20		3 244	C21		3 267
C20	H20	3 127	C21	H27	3 268
C22	H20	3 240	C22	H2/	3 243
C24	H20 H11	2 712	C24	н <u>г</u> Ц13	3.510
C24		2.712	C24	L113	3.247
C24	H28	3 232	C26		3 250
C25		3.252	C20	нтэ Ц21	3.200
C28	L113	3.231	C20		2.661
C20		$\begin{array}{c} 5.255 \\ 5.744 \end{array}$	C29		2.001
C29		2.744	C29		3.341
029	HOOA	2.000	C29		3.343
C29		2.752	C30		3.343
C30		2.094	C30		2.700
030	H34A	3.353	030	H34B	2.718
030	H34C	2.717	031	HZ9A	2.661
C31	H29B	3.342	C31	H29C	2.743
C31	H33A	3.338	C31	H33B	2.693
C31	H33C	2.686	C32	H29B	3.587
C32	H30A	3.345	C32	H30B	2.697
C32	H30C	2.695	C32	H34A	2.644
C32	H34B	2.729	C32	H34C	3.336
C33	H29A	3.347	C33	H29B	2.703
C33	H29C	2.701	C33	H31A	3.339
C33	H31B	2.690	C33	H31C	2.687
C34	H30A	2.680	C34	H30B	2.758
C34	H30C	3.351	C34	H32A	2.644
C34	H32B	3.334	C34	H32C	2.734
H11	H13	3.537	H11	H20	3.449
H11	H24	2.595	H11	H32B	2.983
H13	H19	2.337	H13	H24	3.579
H19	H27	2.324	H20	H21	3.175
H20	H25	2.319	H20	H30C	3.535
H21	H26	2.338	H22	H25	2.323
H22	H28	2.327	H24	H28	2.317
H26	H27	2.335	H29A	H31A	2.444
H29A	H31B	2.996	H29A	H31C	3.538
H29A	H33A	3.559	H29B	H31A	3.538

Table 10. Intramolecular contacts less than 3.60 Å involving hydrogens (continued)

atom	atom	distance	atom	atom	distance
H29B	H32A	2.684	H29B	H33A	2.485
H29B	H33B	3.564	H29B	H33C	3.066
H29C	H31A	2.993	H29C	H31B	2.621
H29C	H33A	2.922	H29C	H33C	2.583
H30A	H32B	3.584	H30A	H32C	3.590
H30A	H34A	3.576	H30A	H34B	2.953
H30A	H34C	2.512	H30B	H32A	3.587
H30B	H32B	2.982	H30B	H32C	2.526
H30B	H34B	2.597	H30B	H34C	3.071
H30C	H32A	3.582	H30C	H32B	2.516
H30C	H32C	2.990	H30C	H34C	3.580
H31A	H33B	3.582	H31A	H33C	3.578
H31B	H33A	3.578	H31B	H33B	2.985
H31B	H33C	2.509	H31C	H33A	3.579
H31C	H33B	2.514	H31C	H33C	2.971
H32A	H34A	2.417	H32A	H34B	2.972
H32A	H34C	3.524	H32B	H34A	3.521
H32C	H34A	2.982	H32C	H34B	2.607
H33A	H34A	3.351			

Table 10. Intramolecular contacts less than 3.60 Å involving hydrogens (continued)

atom	atom	distance	atom	atom	distance
01	$O5^1$	3.293(3)	01	N6 ¹	3.586(3)
01	C17 ¹	2.943(3)	01	C31 ²	3.497(4)
O3	C13 ³	3.266(3)	O3	C19 ³	3.494(3)
O5	O1 ³	3.293(3)	O5	C11 ³	3.262(3)
O5	C24 ³	3.568(3)	N6	01 ³	3.586(3)
N7	C31 ²	3.492(3)	N8	C31 ²	3.447(4)
C9	C31 ²	3.448(4)	C10	C31 ²	3.527(4)
C11	$O5^1$	3.262(3)	C13	O3 ¹	3.266(3)
C17	O1 ³	2.943(3)	C19	O3 ¹	3.494(3)
C24	$O5^1$	3.568(3)	C25	C28 ⁴	3.568(4)
C27	C27 ⁵	3.528(4)	C28	C25 ⁴	3.568(4)
C31	01 ²	3.497(4)	C31	N7 ²	3.492(3)
C31	N8 ²	3.447(4)	C31	C9 ²	3.448(4)
C31	C10 ²	3.527(4)	C33	C34 ⁶	3.500(4)
C34	C33 ⁶	3.500(4)			

Table 11. Intermolecular contacts less than 3.60 Å

Symmetry Operators:

(1)	X+1,Y,Z	(2) -X+1,-Y,-Z
(3)	X-1,Y,Z	(4) -X+1,-Y,-Z+1

(5) -X+1,-Y-1,-Z+1 (6) -X,-Y+1,-Z

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	atom	atom	distance	atom	atom	distance
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01	H17A ¹	2.803	01	H17B ¹	2.280
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01	H31C ²	2.610	O3	H13 ³	2.522
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3	H19 ³	2.993	O3	H24 ³	3.440
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3	H31B ²	3.103	O3	H33B ⁴	3.315
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3	H34B ⁵	2.809	O5	H11 ³	2.387
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O5	H24 ³	2.879	O5	H29A ³	3.435
N7H13 ³ 3.445 N7H24 ³ 3.036 N7H31A ² 3.418 N7H31B ² 2.876 N8H31A ² 3.307 N8H31B ² 3.497 N8H31C ² 2.986 C9H17B ¹ 3.298 C9H31A ² 3.286 C9H31C ² 2.783 C10H24 ³ 3.364 C10H31B ² 2.917 C10H31C ² 3.409 C11H17B ¹ 2.881 C12H31B ² 3.257 C12H32C ⁵ 3.312 C13H31B ² 3.329 C13H32C ⁵ 3.248 C14H17B ¹ 3.410 C14H31B ² 3.481 C14H31C ² 3.262 C15H17B ¹ 3.588 C16H11 ³ 3.424 C16H24 ³ 3.227	05	H32B ³	3.325	N6	H24 ³	3.571
N7H31A23.418N7H31B22.876N8H31A23.307N8H31B23.497N8H31C22.986C9H17B13.298C9H31A23.286C9H31C22.783C10H2433.364C10H31B22.917C10H31C23.409C11H17B12.881C12H31B23.257C12H32C53.312C13H31B23.329C13H32C53.248C14H17B13.410C14H31B23.481C14H31C23.262C15H17B13.588C16H1133.424C16H2433.281C17H1133.435C17H2433.227	N7	H13 ³	3.445	N7	H24 ³	3.036
N8 $H31A^2$ 3.307 N8 $H31B^2$ 3.497 N8 $H31C^2$ 2.986 C9 $H17B^1$ 3.298 C9 $H31A^2$ 3.286 C9 $H31C^2$ 2.783 C10 $H24^3$ 3.364 C10 $H31B^2$ 2.917 C10 $H31C^2$ 3.409 C11 $H17B^1$ 2.881 C12 $H31B^2$ 3.257 C12 $H32C^5$ 3.312 C13 $H31B^2$ 3.329 C13 $H32C^5$ 3.248 C14 $H17B^1$ 3.410 C14 $H31B^2$ 3.481 C14 $H31C^2$ 3.262 C15 $H17B^1$ 3.588 C16 $H11^3$ 3.424 C16 $H24^3$ 3.281	N7	H31A ²	3.418	N7	H31B ²	2.876
N8 $H31C^2$ 2.986C9 $H17B^1$ 3.298C9 $H31A^2$ 3.286C9 $H31C^2$ 2.783C10 $H24^3$ 3.364C10 $H31B^2$ 2.917C10 $H31C^2$ 3.409C11 $H17B^1$ 2.881C12 $H31B^2$ 3.257C12 $H32C^5$ 3.312C13 $H31B^2$ 3.329C13 $H32C^5$ 3.248C14 $H17B^1$ 3.410C14 $H31B^2$ 3.481C14 $H31C^2$ 3.262C15 $H17B^1$ 3.588C16 $H11^3$ 3.424C16 $H24^3$ 3.281C17 $H14^3$ 3.435C17 $H24^3$ 3.227	N8	H31A ²	3.307	N8	H31B ²	3,497
$C9$ $H31A^2$ 3.286 $C9$ $H31C^2$ 2.783 $C10$ $H24^3$ 3.364 $C10$ $H31B^2$ 2.917 $C10$ $H31C^2$ 3.409 $C11$ $H17B^1$ 2.881 $C12$ $H31B^2$ 3.257 $C12$ $H32C^5$ 3.312 $C13$ $H31B^2$ 3.329 $C13$ $H32C^5$ 3.248 $C14$ $H17B^1$ 3.410 $C14$ $H31B^2$ 3.481 $C14$ $H31C^2$ 3.262 $C15$ $H17B^1$ 3.588 $C16$ $H11^3$ 3.424 $C16$ $H24^3$ 3.281 $C17$ $H11^3$ 3.435 $C17$ $H24^3$ 3.227	N8	$H31C^2$	2 986	C9	H17B ¹	3 298
C10H243 3.364 C10H31B2 2.917 C10H31C2 3.409 C11H17B1 2.881 C12H31B2 3.257 C12H32C5 3.312 C13H31B2 3.329 C13H32C5 3.248 C14H17B1 3.410 C14H31B2 3.481 C14H31C2 3.262 C15H17B1 3.588 C16H113 3.424 C16H243 3.281 C17H113 3.435 C17H243 3.227	C9	H31A ²	3 286	C9	$H31C^2$	2 783
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C10	$H24^3$	3.364	C10	$H31B^2$	2.917
C12H31B2 3.257 C12H32C5 3.312 C13H31B2 3.329 C13H32C5 3.248 C14H17B1 3.410 C14H31B2 3.481 C14H31C2 3.262 C15H17B1 3.588 C16H113 3.424 C16H243 3.281 C17H113 3.435 C17H243 3.227	C10	$H31C^2$	3 409	C11	H17B ¹	2 881
C12H01D 0.201 0.1201 0.12 $H02O$ 0.012 C13H31B ² 3.329 C13H32C ⁵ 3.248 C14H17B ¹ 3.410 C14H31B ² 3.481 C14H31C ² 3.262 C15H17B ¹ 3.588 C16H11 ³ 3.424 C16H24 ³ 3.281 C17H11 ³ 3.435 C17H24 ³ 3.227	C12	$H31B^2$	3 257	C12	$H32C^5$	3 312
C14H17B1 3.410 C14H31B2 3.481 C14H31C2 3.262 C15H17B1 3.588 C16H113 3.424 C16H243 3.281 C17H113 3.435 C17H243 3.227	C13	$H31B^2$	3 329	C13	$H32C^{5}$	3 248
C14 H31C ² 3.262 C15 H17B ¹ 3.588 C16 H11 ³ 3.424 C16 H24 ³ 3.281 C17 H11 ³ 3.435 C17 H24 ³ 3.227	C14	H17B ¹	3 410	C14	$H31B^2$	3 481
C16 H11 ³ 3.424 C16 H24 ³ 3.281 C17 H11 ³ 3.435 C17 H24 ³ 3.227	C14	$H31C^2$	3 262	C15	H17B ¹	3 588
C_{17} H_{11}^3 3_{A35} C_{17} H_{24}^3 3_{227}	C16	H11 ³	3 424	C16	H24 ³	3 281
	C17	H11 ³	3 435	C17	H24 ³	3 227
$C17 H31A^2$ 3 342 $C17 H31B^2$ 3 512	C17	$H31A^2$	3 342	C17	$H31B^2$	3 512
$C19 H21^1 3416 C19 H32C^5 3104$	C19	$H21^{1}$	3 416	C19	$H32C^{5}$	3 104
$C19 H34B^6$ 3 521 $C20 H28^3$ 3 350	C19	$H34B^6$	3 521	C20	H28 ³	3 350
C21 $H19^3$ 3.433 C21 $H30B^5$ 3.511	C21	H19 ³	3 433	C21	H30B ⁵	3 511
C_{21} $H_{32}C_{5}^{5}$ 3.211 C_{22} H_{27}^{7} 2.913	C21	H32C ⁵	3 211	C22	H27 ⁷	2 913
$C22 H30C^8 3 315 C24 H17B^1 3 454$	C22		3 315	C24	H17B ¹	3 4 5 4
C_{24} H_{20}^{1} 3.565 C_{24} H_{21}^{1} 3.488	C24	H20 ¹	3 565	C24	H21 ¹	3 488
C_{25} H_{27}^7 3 110 C_{25} H_{28}^3 3 576	C25	H27 ⁷	3 110	C25	H28 ³	3 576
$C_{25} = H_{20}^{9} = 3.426$ $C_{26} = H_{26}^{10} = 3.384$	C25	H304 ⁹	3 4 2 6	C26	H26 ¹⁰	3 384
C_{26} H_{27}^7 3 416 C_{26} $H_{30}B^5$ 3 130	C26	$H27^{7}$	3 4 1 6	C26	H30B ⁵	3 130
$C_{20} = H_{20}^{-5} = 3.072 = C_{20}^{-7} = H_{20}^{-7} = 3.000 = 0.100 = 0$	C26	H32C ⁵	3 072	C27	H22 ⁷	3 300
C_{27} H_{27}^7 3.094 C_{27} H_{22}^{-5} 3.022	C27	H27 ⁷	3 094	C27	H32C ⁵	3 022
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C28	н20 ¹	3 344	C28	H21 ¹	3 1 1 6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C28	H30C ⁸	3 517	C20	H20B ¹¹	3 1/3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C20	H29C ¹¹	3 504	C20	H33 ¹¹	3 202
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C30	H10 ¹²	3 552	C30	ноод Ноо ⁸	3 361
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C30	H25 ⁹	3 037	C31	$H13^2$	3 534

Table 12. Intermolecular contacts less than 3.60 Å involving hydrogens

atom	atom	distance	atom	atom	distance
C31		3.327	C32	H33C ¹¹	3.354
C33	H29B ¹¹	3.371	C33	H32A ¹¹	3.509
C33	H34A ¹³	3.247	C33	H34B ¹³	3.400
C33	H34C ¹³	3.271	C34	H19 ⁺²	3.562
C34	H29C ¹¹	3.533	C34	H33A ¹³	3.444
C34	H33B'	3.358	C34	H33C ¹³	3.124
H11	O5'	2.387	H11	C16'	3.424
H11	C17'	3.435	H11	H17B'	2.487
H13	O3'	2.522	H13	N7'	3.445
H13	C31 ²	3.534	H13	H17B'	3.172
H13	H31B ²	3.064	H13	H31C ²	3.113
H13	H33B [∠]	3.539	H13	H33C ²	3.477
H17A	O1° _	2.803	H17A	C31 ²	3.327
H17A	H31A ²	2.691	H17A	H31B ²	3.193
H17A	H33B⁴	3.563	H17B	O1°_	2.280
H17B	C9 ³	3.298	H17B	C11 ³	2.881
H17B	C14 ³	3.410	H17B	C15 ³	3.588
H17B	C24 ³	3.454	H17B	H11 ³	2.487
H17B	H13 ³	3.172	H17B	H24 ³	2.774
H17B	H31C ⁴	3.580	H19	$O3^1$	2.993
H19	C21 ¹	3.433	H19	C30 ⁶	3.552
H19	C34 ⁶	3.562	H19	H21 ¹	2.734
H19	H30A ⁶	3.480	H19	H30B ⁶	2.864
H19	H32C ⁵	3.592	H19	H34B ⁶	2.812
H19	H34C ⁶	3.577	H20	C24 ³	3.565
H20	C28 ³	3.344	H20	H24 ³	3.044
H20	H28 ³	2.588	H21	C19 ³	3.416
H21	C24 ³	3.488	H21	C28 ³	3.446
H21	H19 ³	2.734	H21	H24 ³	3.292
H21	H26 ¹⁰	3.372	H21	H28 ³	3.195
H21	H30B⁵	3.541	H22	C27 ⁷	3.309
H22	C30 ⁸	3.361	H22	H26 ⁷	3.569
H22	H27 ⁷	2.708	H22	H30A ⁹	3.546
H22	H30B ⁸	3.368	H22	H30C ⁸	2.583
H22	H32B ⁸	2.890	H24	O3 ¹	3.440
H24	O5 ¹	2.879	H24	N6 ¹	3.571
H24	$N7^1$	3.036	H24	C10 ¹	3.364

Table 12. Intermolecular contacts less than 3.60 Å involving hydrogens (continued)

atom	atom	distance	atom	atom	distance
H24	C16'	3.281	H24	C17'	3.227
H24	H17B'	2.774	H24	H20'	3.044
H24	H21'	3.292	H24	H30 _A 1	3.567
H25	C30 [°]	3.037	H25	H27′	3.067
H25	H28° _	3.059	H25	H30A ⁹	2.552
H25	H30B ⁹	3.051	H25	H30C ⁹	3.017
H26	C26 ¹⁰	3.384	H26	H21 ¹⁰	3.372
H26	H22′	3.569	H26	H26 ¹⁰ _	2.592
H26	H27′	3.467	H26	H30g°	2.891
H26	H32ǰ	3.550	H27	C22′	2.913
H27	C25′	3.119	H27	C26′	3.416
H27	C27′	3.094	H27	H22′	2.708
H27	H25′	3.067	H27	H26′ _	3.467
H27	H27′	2.917	H27	H32C°	3.478
H28	C20	3.350	H28	C25	3.576
H28	H20'	2.588	H28	H21'	3.195
H28	H25'	3.059	H28	H30C°	2.995
H29A	O5'	3.435	H29A	H33A''	3.577
H29B	C29''	3.143	H29B	C33 ¹¹	3.371
H29B	H29B''	2.749	H29B	H29C''	2.719
H29B	H33A''	2.908	H29B	H33C''	3.087
H29C	C29''	3.504	H29C	C34''	3.533
H29C	H29B''	2.719	H29C	H29C ¹¹	3.514
H29C	H32A''	2.899	H29C	H33A''	2.913
H29C	H34A''	2.655	H30A	C25	3.426
H30A	H19' ²	3.480	H30A	H22 [°]	3.546
H30A	H24°	3.567	H30A	H25 [°]	2.552
H30A	H32B ³	3.527	H30B	C21 ¹⁴	3.511
H30B	C26 ¹⁴	3.130	H30B	H19' ²	2.864
H30B	H21 ¹⁺	3.541	H30B	H22°	3.368
H30B	H25 ຶ	3.051	H30B	H26' ⁴	2.891
H30C	C22°	3.315	H30C	C28°	3.517
H30C	H22°	2.583	H30C	H25 [°]	3.017
H30C	H28°	2.995	H31A	N7 ²	3.418
H31A	N8 ⁻	3.307	H31A	C9 ²	3.286
H31A	C17 ⁻	3.342	H31A	H17A ²	2.691
H31A	H31C [∠]	3.391	H31B	O3 [∠]	3.103

Table 12. Intermolecular contacts less than 3.60 Å involving hydrogens (continued)
atom	atom	distance	atom	atom	distance
H31B	N7 ²	2.876	H31B	N8 ²	3.497
H31B	$C10^2$	2.917	H31B	C12 ²	3.257
H31B	C13 ²	3.329	H31B	C14 ²	3.481
H31B	C17 ²	3.512	H31B	H13 ²	3.064
H31B	H17A ²	3.193	H31C	01 ²	2.610
H31C	N8 ²	2.986	H31C	C9 ²	2.783
H31C	$C10^2$	3.409	H31C	C14 ²	3.262
H31C	H13 ²	3.113	H31C	H17B ⁴	3.580
H31C	H31A ²	3.391	H32A	C33 ¹¹	3.509
H32A	H29C ¹¹	2.899	H32A	H33C ¹¹	2.626
H32A	H34C ¹	3.255	H32B	O5 ¹	3.325
H32B	H22 ⁸	2.890	H32B	H30A ¹	3.527
H32B	H34C ¹	3.258	H32C	C12 ¹⁴	3.312
H32C	C13 ¹⁴	3.248	H32C	C19 ¹⁴	3.104
H32C	C21 ¹⁴	3.211	H32C	C26 ¹⁴	3.072
H32C	C27 ¹⁴	3.022	H32C	H19 ¹⁴	3.592
H32C	H26 ¹⁴	3.550	H32C	H27 ¹⁴	3.478
H32C	H33C ¹¹	3.283	H33A	C29 ¹¹	3.293
H33A	C34 ¹³	3.444	H33A	H29A ¹¹	3.577
H33A	H29B ¹¹	2.908	H33A	H29C ¹¹	2.913
H33A	H34A ¹³	2.986	H33A	H34B ¹³	3.596
H33A	H34C ¹³	3.216	H33B	O34	3.315
H33B	$C34^{13}$	3.358	H33B	H13 ²	3.539
H33B	H17A ⁴	3.563	H33B	H34A ¹³	3.067
H33B	H34B ¹³	3.061	H33B	H34C ¹³	3.395
H33C	C32 ¹¹	3.354	H33C	C34 ¹³	3.124
H33C	H13 ²	3.477	H33C	H29B ¹¹	3.087
H33C	H32A ¹¹	2.626	H33C	H32C ¹¹	3.283
H33C	H34A ¹³	3.138	H33C	$H34B^{13}$	3.021
H33C	H34C ¹³	2.699	H34A	C33 ¹³	3.247
H34A	H29C ¹¹	2.655	H34A	H33A ¹³	2.986
H34A	H33B ¹³	3.067	H34A	H33C ¹³	3.138
H34B	O3 ¹⁴	2.809	H34B	C19 ¹²	3.521
H34B	C33 ¹³	3.400	H34B	H19 ¹²	2.812
H34B	H33A ¹³	3.596	H34B	H33 ²	3.061
H34B		3.021	H34C	C33 ¹³	3.271
H34C	H19 ¹²	3.577	H34C	H32A ³	3.255

Table 12. Intermolecular contacts less than 3.60 Å involving hydrogens (continued)

Table 12. Intermolecular contacts less than 3.60 Å involving hydrogens (continued)

atom	atom	distance	atom	atom	distance
H34C	H32B ³	3.258	H34C	H33A ¹³	3.216
H34C	H33B ¹³	3.395	H34C	H33C ¹³	2.699

Symmetry Operators:

(1) X+1,Y,Z	(2) -X+1,-Y,-Z
(3) X-1,Y,Z	(4) -X,-Y,-Z
(5) X,Y-1,Z	(6) X+1,Y-1,Z
(7) -X+1,-Y-1,-Z+1	(8) -X+1,-Y,-Z+1
(9) -X,-Y,-Z+1	(10) -X,-Y-1,-Z+1
(11) -X+1,-Y+1,-Z	(12) X-1,Y+1,Z
(13) -X,-Y+1,-Z	(14) X,Y+1,Z