Supporting Information for

A versatile fluorescent dye based on naphthalimide: highly selective detection of Hg²⁺ in aqueous solution and living cells and its aggregation-induced emission behaviour

Hio-Ieng Un,^{*a*,[‡]} Chang-Bo Huang,^{*a*,[‡]} Chusen Huang,^{*b*} Ti Jia,^{*b*} Xiao-Li Zhao, ^{*a*} Cui-Hong Wang,^{*a*} Lin Xu^{*,*a*} and Hai-Bo Yang^{*,*a*}

 ^aShanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China, E-mail: lxu@chem.ecnu.edu.cn, hbyang@chem.ecnu.edu.cn

^bDepartment of Chemistry, Life and Environmental Science College, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China.

Contents:

- 1. General information
- 2. Synthesis of probe model compounds M1-2
- 3. The absorption and emissive properties of NPS on changing the pH
- 4. UV-Vis absorption spectra of NPS in the presence of various metal ions
- 5. UV-Vis absorption titration spectra of NPS with Hg^{2+}
- The normalized emission spectra of NPS upon the addition of Hg²⁺ and at various pH
- 7. The response of NPS to Hg^{2+} at different water-THF ratios
- 8. Fluorescence spectra of NPS and M1–2 in the absence and presence of Hg^{2+}
- 9. The ¹H NMR titration experiments of Hg²⁺
- 10. Fluorescence spectra of M1 and M2 in THF-H₂O mixture
- 11. ¹H NMR and ¹³C NMR spectra of compounds NPS and M1-2
- 12. The HR-ESI-MS spectra of compounds NPS and M1-2

1. General information

Unless otherwise mentioned, all the reagents were of analytic grade. ¹H NMR and ¹³C NMR spectra were measured on a Bruker AM-400 spectrometer with chemical shifts reported as ppm (in CDCl₃). Mass spectrometry data were obtained with a HP 5989A spectrometer. Absorption spectra were determined on a Varian Cary 100 Spectrophotometer. Fluorescence spectra were determined on a Varian Cary Eclipse.

The metal salts used were $Fe(ClO_4)_2$, $Zn(ClO_4)_2 \cdot 6H_2O$, $Co(ClO_4)_2 \cdot 6H_2O$, Ni $(ClO_4)_2 \cdot 6H_2O$, Ba $(ClO_4)_2 \cdot 3H_2O$, Pb $(ClO_4)_2 \cdot 3H_2O$, Cd $(ClO_4)_2 \cdot 6H_2O$, Cu $(ClO_4)_2 \cdot 6H_2O$, Mn $(ClO_4)_2 \cdot 6H_2O$, Li $ClO_4 \cdot 3H_2O$, Na $ClO_4 \cdot H_2O$, Ag $ClO_4 \cdot H_2O$, Hg $(ClO_4)_2 \cdot 3H_2O$, Mg $(ClO_4)_2 \cdot 6H_2O$, Al $(ClO_4)_3 \cdot 9H_2O$.

Hela cells were obtained from Institute of Basic Medical Sciences (IBMS) of Chinese Academy of Medical Sciences (CAMS), and grown in DMEM (High glucose) medium supplemented with 10% FBS. Cells were incubated in a 5% CO₂ humidified incubator at 37 °C and typically passaged with sub-cultivation ratio of 1:3 every two days.

Hela Cells were grown in the exponential phase of growth on 35-mm glass-bottom culture dishes (Φ 20mm) for 1-2 days to reach 70-90% confluency. These cells were used for fluorescence imaging experiments. The cells were washed with DMEM for three times, and then incubated with 10 μ M of probe in 2mL DMEM (containing 5% DMF) under an atmosphere of 5% CO₂ and 95% air for 30 min at 37°C. Cells were washed twice with 1mL PBS at room temperature, and then followed by addition of 1mL PBS and observed under microscopy (Olympus IX71, magnification 20 X), with excitation by 405 nm laser and 500-700 nm emission light was collected. For the Hg²⁺ treated samples, the cells were washed with DMEM for three times, and then incubated with 10 μ M of probe in 2mL DMEM (containing 5% DMF)) under anatmosphere of 5% CO₂ and 95% air for 10 min at 37°C. Then followed by addition of 50 μ Mof Hg²⁺, which was further incubated for another 20 min. After the cells were washed twice with 1mL PBSat room temperature,1mL PBSwas added and observed under microscopy (Olympus IX71, magnification 20 X), with excitation by 405 nm laser and 500-700 nm emission light was collected.

2. Synthesis of probe model compounds M1-2

Scheme S1 Synthesis of intermediates 2 and 3

Compounds 1, 2, and 3 were prepared according to our previously reported methods (*Dalton Trans.*, 2014, 43, 8102).

Scheme S2 Synthesis of model compound M1

Compound **M1**: Anhydrous potassium carbonate (174 mg, 1.26 mmol), compounds **2** (300 mg, 0.63 mmol) and 2-hydroxypyridine (144 mg, 1.51 mmol) were dissolved in acetone (12 mL), and the reaction mixture was refluxed for 10 h under argon atmosphere. The mixture was filtered, and the solvent was removed in a vacuum to give a yellow solid. The crude product was then chromatographed on silica gel using dichloromethane–methanol 20 : 1 (v/v) as eluant to afford **M1** as a yellow solid. Yield: 268 mg (80%). Mp: 70 °C. ¹H NMR (CDCl₃, 400 MHz) δ 8.57 (d, *J* = 8.0 Hz, 1H), 8.51 (d, *J* = 8.0 Hz, 1H), 8.39 (d, *J* = 8.0 Hz, 1H), 7.73–7.63 (m, 2H), 7.52 (dd, *J* = 8.0, 4.0 Hz, 1H), 7.41 (d, *J* = 7.6 Hz, 1H), 7.34 (ddd, *J* = 8.8, 6.6, 2.0 Hz, 1H), 7.21 (d, *J* = 8.0 Hz, 2H), 6.60 (d, *J* = 8.8 Hz, 1H), 6.19 (td, *J* = 6.8, 1.2 Hz, 1H), 5.26 (s, 2H), 4.16 (t, *J* = 8.0 Hz, 2H), 3.84 (s, 2H), 3.33 (s, 4H), 2.87 (s, 4H), 1.70 (dt, *J* = 15.2, 7.6

Hz, 2H), 1.50–1.38 (m, 2H), 0.96 (t, J = 7.2 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ : 164.41, 163.95, 162.54, 157.57, 155.75, 155.37, 139.77, 138.25, 137.57, 132.45, 131.01, 130.17, 129.79, 126.09, 125.62, 123.25, 122.43, 121.10, 121.05, 116.79, 114.92, 106.07, 64.05, 53.94, 53.20, 52.84, 40.04, 30.24, 20.38, 13.86. HR-ESI-MS calcd for C₃₂H₃₄N₅O₃ [(M + H)⁺]: 536.2656, found: 536.2653.

Scheme S3 Synthesis of model compound M2

Compound M2: Anhydrous potassium carbonate (174 mg, 1.26 mmol), compounds 3 (300 mg, 0.63 mmol) and 2-mercaptopyridine (168 mg, 1.51 mmol) were dissolved in acetone (12 mL), and the reaction mixture was refluxed for 10 h under argon atmosphere. The mixture was filtered, and the solvent was removed in a vacuum to give a yellow solid. The crude product was then chromatographed on silica gel using dichloromethane-methanol 30: 1 (v/v) as eluant to afford M2 as a yellow solid. Yield: 264 mg (76%). Mp: 130 °C. ¹H NMR (CDCl₃, 400 MHz) δ 8.60–8.54 (m, 1H), 8.50 (d, J = 8.0 Hz, 1H), 8.47–8.45 (m, 1H), 8.38 (d, J = 8.4 Hz, 1H), 7.67 (dd, J = 8.4, 7.4 Hz, 1H), 7.50-7.44 (m, 1H), 7.43 (s, 1H), 7.34 (d, J = 6.8 Hz, 1H), 7.32-7.26 (m, 2H), 7.18 (dd, J = 10.6, 8.0 Hz, 2H), 7.00–6.97 (m, 1H), 4.46 (s, 2H), 4.16 (t, J = 8.0 Hz, 2H), 3.65 (s, 2H), 3.28 (s, 4H), 2.76 (s, 4H), 1.70 (dq, J = 15.2, 7.6 Hz, 2H), 1.50– 1.38 (m, 2H), 0.97 (t, J = 7.2 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ : 164.47, 164.01, 158.80, 155.92, 149.40, 138.09, 137.75, 135.97, 132.50, 131.01, 130.22, 129.85, 128.57, 128.05, 128.02, 126.14, 125.57, 123.31, 122.09, 119.61, 116.74, 114.91, 62.82, 53.06, 52.97, 40.07, 34.39, 30.28, 20.41, 13.87. HR-ESI-MS calcd for $C_{33}H_{35}N_4O_2S$ [(M + H)⁺]: 551.2475, found: 551.2501.

3. The absorption and emissive properties of NPS on changing the pH

Fig. S1 The influence of pH on the absorption spectra (a) and fluorescence spectra (b) of **NPS** (10 μ M) in THF/H₂O (1:1, v/v). (c) Curve of the maximum fluorescence intensity of **NPS** (10 μ M) versus pH. (λ ex = 405 nm, slits: 2.5, 5 nm.).

Fig. S2 UV-Vis absorption spectra (a) and absorption at 405 nm (b) of **NPS** (10 μ M) in the presence of various metal ions (80 μ M) in aqueous solution (THF/H₂O, v/v, 1:1, 10 mM Tris-HCl, pH 7.4).

5. UV-Vis absorption titration spectra of NPS with Hg²⁺

Fig. S3 (a) UV-Vis absorption spectra of NPS (10 μ M) upon addition of Hg²⁺ (1–150 μ M) in aqueous solution (THF/H₂O, v/v, 1:1, 10 mM Tris-HCl, pH 7.4). The curves of maximum absorption (b) and the wavelength of maximum absorbance (c) of NPS (10 μ M) versus increasing concentrations of Hg²⁺ (1–150 μ M).

6. The normalized emission spectra of NPS upon the addition of Hg²⁺ and at various pH

Fig. S4 (a) The normalized emission spectra of **NPS** (10 μ M) upon the addition of Hg²⁺ (0.1–15 equivalents) in aqueous solution (THF/H₂O, 1:1, v/v, 10 mM Tris-HCl, pH 7.4) and (b) The normalized emission spectra of **NPS** (10 μ M) at various pH in THF/H₂O (1:1, v/v).

7. The response of NPS to Hg²⁺ at different water-THF ratios

Fig. S5 The fluorescence spectra of NPS (10 μ M) in the absence and presence of 8 equivalents of Hg²⁺ in aqueous solution (THF/H₂O, 10 mM Tris-HCl, pH 7.4) with different water-THF ratios (a, THF/H₂O, 70/30; b, THF/H₂O, 15/85; c, 100% H₂O).

8. Fluorescence spectra of NPS and M1-2 in the absence and presence of

Fig. S6 Fluorescence spectra of **NPS** and **M1–2** (all compounds were 10 μ M) in the absence and presence of Hg²⁺ (80 μ M) in aqueous solution (THF/H₂O, v/v, 1:1, 10 mM Tris-HCl, pH 7.4). λ_{ex} = 405 nm, slits: 5, 5 nm.

9. The ¹H NMR titration experiments of Hg²⁺

Fig. S7 The ¹H NMR spectra changes of NPS with the addition of Hg^{2+} in the mixture solution of CD₃CN and DMSO-*d*₆.

10. Fluorescence spectra of M1 and M2 in THF-H₂O mixture

Fig. S8 The fluorescence spectra of M1 (a, b) and M2 (d, e) in THF-H₂O mixture with different fraction (a, 0–80%; b, 80–100%; d, 0–70%; e, 70–100%); Plots of the maximum fluorescent intensity of M1 (c) and M2 (f) versus water fraction in THF-H₂O mixture. ($\lambda ex = 405$ nm, slits: 2.5, 5 nm.)

11. ¹H NMR and ¹³C NMR spectra of compounds NPS and M1-2

Fig. S9 ¹H NMR (top) and ¹³C NMR (bottom) spectra of NPS in CDCl₃.

Fig. S10 ¹H NMR (top) and ¹³C NMR (bottom) spectra of M1 in CDCl₃.

Fig. S11 $^1\mathrm{H}$ NMR (top) and $^{13}\mathrm{C}$ NMR (bottom) spectra of M2 in CDCl_3.

12. The HR-ESI-MS spectra of compounds NPS and M1-2

Fig. S12 The HR-ESI-MS spectra of compounds NPS and M1–2 (from top to bottom, NPS, M1, and M2).