Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2014

Cover Page for Supporting Information

Manuscript Title:

Synthesis and Applications of 1-Iodo-4-MgCl-1,3-dienes and 1-Iodovinyl Phenylmagnesium Chlorides

Authors:

Junnian Wei, Yongliang Zhang, Wen-Xiong Zhang, and Zhenfeng Xi*

Affiliations:

Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China. Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.

1)	Experimental Details and Characterization Data	S2
2)	Copies of ¹ H NMR and ¹³ C NMR spectra of all new compounds	S5
3)	References	S49

1) Experimental Details and Characterization Data

General Methods: All reactions were conducted under a slightly positive pressure of dry nitrogen using standard Schlenk line techniques or under a nitrogen atmosphere in a Mikrouna Super (1220/750) glovebox. The nitrogen in the glovebox was constantly circulated through a copper/molecular sieves catalyst unit. The oxygen and moisture concentrations in the glovebox atmosphere were monitored by an O₂/H₂O Combi-Analyzer to ensure both were always below 1 ppm. Unless otherwise noted, all starting materials were commercially available and were used without further purification. Solvents were purified by an Mbraun SPS-800 Solvent Purification System and dried over fresh Na chips in the glove box. "BuLi and 'BuLi were obtained from Acros and J&K. 1,4-Diiodo-1,3-dienes 1 were prepared according to the references.^[11] ¹H and ¹³C NMR spectra were recorded on a Bruker-400 spectrometer (FT, 400 MHz for ¹H; 100 MHz for ¹³C) or a Bruker-500 spectrometer (FT, 500 MHz for ¹H; 125 MHz for ¹³C) at room temperature, unless otherwise noted. High-resolution mass spectra (HRMS) were recorded on a Bruker Apex IV FTMS mass spectrometer using ESI (electrospray ionization).

General procedure for I/Mg exchange reaction of 1,4-diiodo-1,3-dienes 1a and *o*-iodo-2-(2-iodovinyl)benzenes 1b with Knochel reagent. 1,4-diiodo-1,3-dienes 1a (0.8 mmol) in 4 mL of THF was treated with 'PrMgCl·LiCl (1.6 mmol for 1b) and the reaction mixture was stirred at room temperature for 6 h (3 h for 1b). After quenched with aq. HCl or allyl bromide at 0 °C and stirring at room temperature for 4 h, purification by column chromatography (petroleum ether) gave 2a1-5a2 as pure products. Quenched with isopropoxyboronic acid pinacol ester at room temperature overnight, purification by column chromatography (petroleum ether: ethyl acetate = 20 : 1) gave 6a-6b2 as pure products. Quenched with a CO₂ ballon at room temperature for 30 minutes, purification by column chromatography (petroleum ether: ethyl acetate = 10 : 1) gave 7a and 7b as pure products.

2a1^[2]: colorless oil, isolated yield 75% (175 mg). ¹H NMR (400MHz, CDCl₃, 25 °C, TMS): $\delta = 0.94$ (t, 3H, J = 7.5 Hz, CH₃), 0.97-1.04 (m, 6H, CH₃), 1.09 (t, 3H, J = 7.3 Hz, CH₃), 2.03-2.25 (m, 6H, CH₂), 2.58 (q, 2H, J = 7.3 Hz, CH₂), 5.06 (t, 1H, J = 7.3 Hz, CH) ppm; ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS): $\delta = 12.86$, 13.44, 14.02, 14.82, 21.08, 22.39, 24.30, 35.01, 106.59, 131.49, 143.98, 149.41 ppm. HRMS: m/z: calcd for C₁₂H₂₂I [M+H]⁺: 293.0761, found 293.0759

2a2^[2]: colorless oil, isolated yield 78% (217 mg). ¹H NMR (400MHz, CDCl₃, 25 °C, TMS): δ = 0.85-0.97 (m, 12H, CH₃), 1.33-1.47 (m, 6H, CH₂), 1.56-1.61 (m, 2H, CH₂), 2.02-2.18 (m, 6H, CH₂), 2.53 (t, 2H, *J* = 7.3 Hz, CH₂), 5.10 (t, 1H, *J* = 7.2 Hz, CH) ppm; ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS): δ = 13.10, 13.97, 14.23, 14.96, 21.63, 21.88, 22.76, 23.04, 30.00, 31.97, 33.43, 43.11, 105.18, 130.64, 143.97, 149.16 ppm. HRMS: *m*/*z*: calcd for C₁₆H₃₀I [M+H]⁺: 349.1387, found 349.1384

2b: colorless oil, isolated yield 77% (176 mg). ¹H NMR (400MHz, CDCl₃, 25 °C, TMS): $\delta = 0.93$ (t, 3H, J = 7.5 Hz, CH₃), 1.16 (t, 3H, J = 7.3 Hz, CH₃), 2.47 (q, 2H, J = 7.5 Hz, CH₂), 2.71 (q, 2H, J = 7.3 Hz, CH₂), 7.06-7.08 (m, 2H, CH), 7.28-7.35 (m, 2H, CH), 7.41-7.60 (m, 1H, CH) ppm; ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS): $\delta = 13.23$, 14.88, 27.72, 35.12, 107.35, 126.99, 127.27, 128.18, 128.39, 128.86, 147.33, 148.08 ppm. HRMS: m/z: calcd for C₁₂H₁₆I [M+H]⁺: 287.0291, found 287.0288

4a1: colorless oil, isolated yield 72% (191 mg). ¹H NMR (400MHz, CDCl₃, 25 [°]C, TMS): δ = 0.94-1.12 (m, 12H, CH₃), 2.00-2.09 (m, 3H, CH₂), 2.15-2.20 (m, 1H, CH₂), 2.28-2.34 (m, 1H, CH₂), 2.41-2.46 (m, 1H, CH₂), 2.58-2.64 (m, 2H, CH₂), 2.80-2.84 (m, 2H, CH₂), 4.98-5.05 (m, 2H, CH₂), 5.76-5.86 (m, 1H, CH) ppm; ¹³C NMR (100 MHz, CDCl₃, 25 [°]C, TMS): δ = 12.52, 13.22, 13.32, 14.71, 22.91, 24.21, 25.26, 35.00, 37.80, 108.71, 115.86, 134.03, 137.66, 139.92, 146.81 ppm. HRMS: *m*/z: calcd for C₁₅H₂₆I [M+H]⁺: 333.1074, found 333.1067 403.1847 403.1856

4a2: colorless oil, isolated yield 77% (239 mg). ¹H NMR (400MHz, CDCl₃, 25 [°]C, TMS): δ = 0.88-0.96 (m, 12H, CH₃), 1.42-1.62 (m, 8H, CH₂), 1.94-2.37 (m, 6H, CH₂), 2.52-2.56 (m, 2H, CH₂), 2.78-2.83 (m, 2H, CH₂), 4.98-5.04 (m, 2H, CH₂), 5.75-5.85 (m, 1H, CH) ppm; ¹³C NMR (100 MHz, CDCl₃, 25 [°]C, TMS): δ = 13.24, 14.63, 14.70, 15.17, 21.23, 22.00, 22.04, 23.19, 32.24, 34.24, 35.13, 38.17, 43.02, 107.41, 115.81, 133.00, 137.71, 140.11, 147.14 ppm. HRMS: *m/z*: calcd for C₁₉H₃₄I [M+H]⁺: 389.1700, found 389.1698

4a3: colorless oil, isolated yield 85% (226 mg). ¹H NMR (400MHz, CDCl₃, 25 °C, TMS): δ = 0.87-0.92 (m, 6H, CH₃), 1.33-1.44 (m, 8H, CH₂), 2.09 (br, 2H, CH₂), 2.19 (t, 2H, J = 7.2 Hz, CH₂), 2.71 (br, 2H, CH₂), 4.95-5.06 (m, 2H, CH₂), 5.30 (t, 1H, J = 7.2 Hz, CH), 5.79-5.89 (m, 1H, CH), 6.10 (br, 1H, CH) ppm; ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS): δ = 14.01, 14.13, 22.57, 22.89, 29.87, 30.01, 33.95, 35.30, 37.81, 75.97, 114.96, 124.26, 137.40, 141.45, 152.90 ppm. HRMS: m/z: calcd for C₁₅H₂₆I [M+H]⁺: 333.1074, found 333.1069

4b: colorless oil, isolated yield 93% (243 mg). ¹H NMR (400MHz, CDCl₃, 25 °C, TMS): $\delta = 0.97$ (t, 3H, J = 7.6 Hz, CH₃), 1.18 (t, 3H, J = 7.6 Hz, CH₃), 2.18-2.27 (m, 1H, CH₂), 2.58-2.78 (m, 3H, CH₂), 3.23-3.36 (m, 2H, CH₂), 5.07-5.13 (m, 2H, CH₂), 5.93-6.03 (m, 1H, CH), 6.91-6.93 (m, 1H, CH), 7.18-7.25 (m, 3H, CH) ppm; ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS): $\delta = 13.11$, 14.85, 27.41, 34.74, 36.96, 109.32, 116.24, 126.07, 127.33, 128.91, 129.28, 136.48, 137.41, 146.42, 147.08 ppm. HRMS: *m/z*: calcd for C₁₅H₂₀I [M+H]⁺: 327.0604, found 327.0598

5a1: colorless oil, isolated yield 74% (205 mg). ¹H NMR (400MHz, CDCl₃, 25 °C, TMS): $\delta = 0.98-1.12$ (m, 12H, CH₃), 1.66 (s, 3H, CH₃), 1.91-1.96 (m, 1H, CH₂), 2.12-2.23 (m, 3H, CH₂), 2.28-2.34 (m, 2H, CH₂), 2.59 (q, 2H, J = 7.2 Hz, CH₂), 2.71-2.84 (m, 2H, CH₂), 4.67 (s, 1H, CH₂), 4.77 (s, 1H, CH₂) ppm; ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS): $\delta = 12.62$, 13.31, 13.60, 14.78, 23.09,

23.43, 24.55, 25.91, 34.95, 40.81, 109.00, 111.75, 133.48, 141.77, 144.84, 146.78 ppm. HRMS: m/z: calcd for C₁₆H₂₈I [M+H]⁺: 347.1230, found 347.1225

5a2: colorless oil, isolated yield 92% (255 mg). ¹H NMR (400MHz, CDCl₃, 25 °C, TMS): δ = 0.86-0.93 (m, 6H, CH₃), 1.30-1.43 (m, 8H, CH₂), 1.74 (s, 3H, CH₃), 2.11-2.20 (m, 4H, CH₂), 2.66 (br, 2H, CH₂), 4.71-4.72 (m, 2H, CH₂), 5.36 (t, 1H, *J* = 7.2 Hz, CH), 6.08 (s, 1H, CH) ppm; ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS): δ = 13.99, 14.14, 22.59, 22.89, 23.27, 29.92, 29.94, 35.34, 37.55, 37.84, 75.83, 110.34, 124.27, 141.83, 145.28, 152.94 ppm. HRMS: *m*/*z*: calcd for C₁₆H₂₈I [M+H]⁺: 347.1230, found 347.1228

5b1: colorless oil, isolated yield 93% (253 mg). ¹H NMR (400MHz, CDCl₃, 25 °C, TMS): $\delta = 0.97$ (t, 3H, J = 7.4 Hz, CH₃), 1.17 (t, 3H, J = 7.6 Hz, CH₃), 1.72 (s, 3H, CH₃), 2.10-2.19 (m, 1H, CH₂), 2.65-2.77 (m, 3H, CH₂), 3.254 (d, 2H, J = 3.2 Hz, CH₂), 4.73 (s, 1H, CH₂), 4.88 (s, 1H, CH₂), 6.93 (d, 1H, J = 7.3 Hz, CH), 7.18-7.25 (m, 3H, CH) ppm; ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS): $\delta = 13.18$, 14.84, 22.89, 27.17, 34.75, 40.97, 109.11, 113.20, 125.99, 127.22, 129.16, 129.30, 135.81, 144.54, 146.86, 147.22 ppm. HRMS: *m*/*z*: calcd for C₁₆H₂₂I [M+H]⁺: 341.0761, found 341.0758

5b2: colorless oil, isolated yield 67% (198 mg). ¹H NMR (400MHz, CDCl₃, 25 °C, TMS): δ = 0.37 (s, 9H, CH₃), 1.71 (s, 3H, CH₃), 2.15 (s, 3H, CH₃), 3.20-3.32 (m, 2H, CH₂), 4.71 (s, 1H, CH₂), 4.86 (s, 1H, CH₂), 6.88-6.92 (m, 1H, CH), 7.22-7.25 (m, 3H, CH) ppm; ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS): δ = 1.96, 22.85, 24.87, 41.17, 108.50, 113.00, 126.65, 126.68, 127.14, 129.69, 134.28, 144.57, 150.41, 156.83 ppm. HRMS: *m*/*z*: calcd for C₁₆H₂₄ISi [M+H]⁺: 371.0686, found 371.0681

6a: colorless oil, isolated yield 70% (234 mg). ¹H NMR (400MHz, CDCl₃, 25 °C, TMS): δ = 0.98-1.03 (m, 6H, CH₃), 1.05 (t, 2H, *J* = 7.0 Hz, CH₃), 1.10 (t, 2H, *J* = 7.3 Hz, CH₃), 1.22 (s, 12H, CH₃), 2.06-2.24 (m, 4H, CH₂), 2.36-2.46 (m, 2H, CH₂), 2.57 (q, 2H, *J* = 7.3 Hz, CH₂) ppm; ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS): δ = 12.78, 13.27, 14.00, 14.49, 23.69, 24.78, 25.02, 25.11, 25.47, 34.99, 82.66, 106.11, 148.36, 157.71 ppm. HRMS: *m/z*: calcd for C₁₈H₃₃BIO₂ [M+H]⁺: 419.1613, found 419.1614

6b1: colorless oil, isolated yield 80% (262 mg). ¹H NMR (400MHz, CDCl₃, 25 [°]C, TMS): $\delta = 0.95$ (t, 3H, J = 7.6 Hz, CH₃), 1.18 (t, 3H, J = 7.6 Hz, CH₃), 1.30 (s, 12H, CH₃), 2.32-2.41 (m, 1H, CH₂), 2.53-2.69 (m, 2H, CH₂), 2.77-2.86 (m, 1H, CH₂), 6.95-6.97 (m, 1H, CH), 7.24-7.29 (m, 1H, CH), 7.39-7.43 (m, 1H, CH) 7.83-7.85 (m, 1H, CH) ppm; ¹³C NMR (100 MHz, CDCl₃, 25 [°]C, TMS): $\delta = 12.95$, 13.99, 24.98, 25.05, 27.94, 34.87, 83.44, 106.50, 126.19, 128.44, 130.64, 135.87, 148.87, 153.73 ppm. HRMS: *m/z*: calcd for C₁₈H₂₇BIO₂ [M+H]⁺: 413.1143, found 413.1135

6b2: colorless oil, isolated yield 92% (273 mg). ¹H NMR (400MHz, CDCl₃, 25 °C, TMS): δ = 1.31 (s, 12H, CH₃), 2.22 (s, 3H, CH₃), 6.14 (s, 1H, CH), 7.01-7.03 (m, 1H, CH), 7.28-7.32 (m, 1H, CH), 7.44-7.47 (m, 1H, CH), 7.80-7.82 (m, 1H, CH) ppm; ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS): δ = 24.95, 27.10, 75.98, 83.66, 126.73, 127.12, 131.12, 135.61, 150.64, 151.54 ppm. HRMS: *m/z*: calcd for C₁₅H₂₁BIO₂ [M+H]⁺: 371.0674, found 371.0671

7a: colorless oil, isolated yield 45% (121 mg). ¹H NMR (400MHz, CDCl₃, 25 °C, TMS): $\delta = 1.03$ -1.15 (m, 12H, CH₃), 2.25-2.69 (m, 8H, CH₂) ppm; ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS): $\delta = 12.32$, 13.29, 13.34, 13.65, 22.43, 26.01, 26.41, 34.68, 104.77, 130.64, 146.63, 156.63, 173.49 ppm. HRMS: *m/z*: calcd for C₁₃H₂₂IO₂ [M+H]⁺: 337.0659, found 337.0660

7b: colorless solid, isolated yield 85% (224 mg). ¹H NMR (400MHz, CDCl₃, 25 °C, TMS): $\delta = 0.97$ (t, 3H, J = 7.6 Hz, CH₃), 1.16 (t, 3H, J = 7.4 Hz, CH₃), 2.26-2.35 (m, 1H, CH₂), 2.55-2.64 (m, 1H, CH₂), 2.73-2.86 (m, 2H, CH₂), 7.08-7.10 (m, 1H, CH), 7.38-7.42 (m, 1H, CH), 7.55-7.59 (m, 1H, CH), 8.12-8.14 (m, 1H, CH) ppm; ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS): $\delta = 13.11$, 13.98, 27.34, 34.64, 106.11, 127.37, 128.87, 130.97, 131.64, 133.07, 147.77, 149.37, 172.05 ppm. HRMS: *m/z*: calcd for C₁₃H₁₆IO₂ [M+H]⁺: 331.0189, found 331.0192

General procedure for intramolecular Heck reactions of 1-iodo-1,3-dienes analogues. 1-Iodo-1,3-dienes analogues (0.4 mmol) in 4 mL of toluene was treated with $Pd(OAc)_2$ (0.04 mmol), Et₃N (1.2 mmol) and PPh₃ (0.08 mmol). The reaction mixture was stirred at 100 °C for 12 h based on the structures. Generally a longer reaction time has little effect on the Heck reaction. After purification by column chromatography, the corresponding products were given as pure compounds.

8a1: colorless oil, isolated yield 94% (77 mg). ¹H NMR (400MHz, CDCl₃, 25 °C, TMS): δ = 1.12-1.24 (m, 12H, CH₃), 2.29 (s, 3H, CH₃), 2.60-2.68 (m, 8H, CH₂), 6.86 (s, 1H, CH) ppm; ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS): δ = 14.74, 15.77, 15.81, 16.12, 19.85, 21.85, 22.15, 22.59, 25.71, 128.67, 133.71, 137.63, 138.23, 139.49, 139.89 ppm. HRMS: *m*/*z*: calcd for C₁₅H₂₅ [M+H]⁺: 205.1951, found 205.1949

8a2: colorless oil, isolated yield 99% (103 mg). ¹H NMR (400MHz, CDCl₃, 25 °C, TMS): δ = 0.98-1.06 (m, 12H, CH₃), 1.47-1.52 (m, 6H, CH₂), 1.56-1.62 (m, 2H, CH₂), 2.25 (s, 3H, CH₃), 2.48-2.56 (m, 8H, CH₂), 6.82 (s, 1H, CH) ppm; ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS): δ = 14.71, 15.11, 15.16, 15.24, 20.00, 23.85, 24.93, 24.98, 25.22, 31.70, 32.11, 32.31, 35.38, 129.30, 133.56, 136.61, 137.08, 138.22, 138.99 ppm. HRMS: *m/z*: calcd for C₁₉H₃₃ [M+H]⁺: 261.2577, found 261.2573

8b: colorless oil, isolated yield 95% (76 mg). ¹H NMR (400MHz, CDCl₃, 25 °C, TMS): $\delta = 1.99$ (t, 3H, J = 7.6 Hz, CH₃), 1.29 (t, 3H, J = 7.6 Hz, CH₃), 2.48 (s, 3H, CH₃), 2.82 (q, 2H, J = 7.6 Hz, CH₂), 3.11 (q, 2H, J = 7.6 Hz, CH₂), 7.33-7.42 (m, 2H, CH), 7.48

(s, 1H, CH), 7.69 (d, 1H, J = 7.8 Hz, CH), 7.97 (d, 1H, J = 8.3 Hz, CH) ppm; ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS): $\delta = 14.86$, 15.66, 20.76, 21.61, 22.92, 123.96, 124.72, 125.07, 127.02, 127.99, 130.96, 132.74, 134.87, 136.94, 138.51 ppm. HRMS: m/z: calcd for C₁₅H₁₉ [M+H]⁺: 199.1481, found 199.1479

9a1: colorless oil, isolated yield 80% (70 mg). ¹H NMR (400MHz, CDCl₃, 25 °C, TMS): $\delta = 0.72$ (t, 3H, J = 7.4 Hz, CH₃), 0.99 (t, 3H, J = 7.4 Hz, CH₃), 1.03-1.11 (m, 6H, CH₃), 1.14-1.19 (m, 2H, CH₂), 1.95 (s, 3H, CH₃), 2.04-2.23 (m, 6H, CH₂), 2.60 (t, 1H, J = 8.4 Hz, CH) 5.70 (s, 1H, CH), 6.02 (s, 1H, CH) ppm; ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS): $\delta = 12.44$, 13.01, 13.77, 15.44, 19.93, 25.01, 27.19, 29.74, 33.05, 50.20, 121.60, 129.02, 132.16, 133.69, 134.88, 143.20 ppm. HRMS: *m*/*z*: calcd for C₁₆H₂₇ [M+H]⁺: 219.2107, found 219.2105

9a2: colorless oil, isolated yield 74% (64 mg). ¹H NMR (400MHz, CDCl₃, 25 °C, TMS): $\delta = 0.83-0.90$ (m, 6H, CH₃), 1.17-1.37 (m, 8H, CH₂), 1.94 (s, 3H, CH₃), 2.15-2.18 (m, 4H, CH₂), 2.32 (t, 2H, J = 7.2 Hz, CH₂), 5.23 (t, 1H, J = 7.2 Hz, CH), 5.73 (d, 1H, J = 5.2 Hz, CH), 6.22 (d, 1H, J = 5.4 Hz, CH) pm; ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS): $\delta = 14.13$, 14.14, 22.58, 22.61, 23.87, 32.03, 32.96, 33.43, 33.59, 36.24, 119.11, 121.07, 128.13, 135.33, 138.81, 143.65 ppm. HRMS: m/z: calcd for C₁₆H₂₇ [M+H]⁺: 219.2107, found 219.2106

9b1: colorless oil, isolated yield 55% (46 mg). ¹H NMR (400MHz, CDCl₃, 25 °C, TMS): $\delta = 0.15$ (d, 1H, J = 4.3 Hz, CH₂), 0.46 (d, 1H, J = 4.0 Hz, CH₂), 1.02-1.05 (m, 4H, CH₃+CH₂), 1.08-1.14 (m, 1H, CH₂), 1.30 (s, 3H, CH₃), 1.88 (d, 3H, J = 7.1 Hz, CH₃), 2.70 (d, 1H, J = 15.4 Hz, CH₂), 2.87 (d, 1H, J = 15.3 Hz, CH₂), 5.61 (q, 1H, J = 7.0 Hz, CH), 7.03-7.06 (m, 1H, CH), 7.12-7.17 (m, 2H, CH), 7.21-7.23 (m, 1H, CH) ppm; ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS): $\delta = 11.77$, 16.18, 20.90, 21.99, 23.73, 23.77, 32.28, 39.17, 118.04, 125.37, 126.70, 127.82, 128.94, 135.78, 137.33, 138.90 ppm. HRMS: *m/z*: calcd for C₁₆H₂₁ [M+H]⁺: 213.1638, found 213.1635

9b2: colorless oil, isolated yield 70% (67 mg). ¹H NMR (400MHz, CDCl₃, 25 °C, TMS): $\delta = 0.12$ (s, 9H, CH₃), 0.75 (d, 1H, J = 4.2 Hz, CH₂), 0.84 (d, 1H, J = 4.2 Hz, CH₂), 1.32 (s, 3H, CH₃), 2.58 (d, 1H, J = 15.3 Hz, CH₂), 2.82 (d, 1H, J = 15.3 Hz, CH₂), 5.11 (s, 1H, CH) 5.24 (s, 1H, CH), 7.02-7.04 (m, 1H, CH), 7.16-7.18 (m, 2H, CH), 7.24-7.26 (m, 1H, CH) ppm; ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS): $\delta = 0.94$, 21.29, 22.82, 24.44, 25.03, 40.13, 112.75, 125.30, 126.60, 127.02, 127.26, 136.96, 140.03, 150.26 ppm. HRMS: *m*/z: calcd for C₁₆H₂₃Si [M+H]⁺: 243.1564, found 243.1563

Procedure for synthesis of 10. Compound **6b2** (0.4 mmol) in 4 mL of toluene was treated with $PdCl_2(PPh_3)_2$ (0.02 mmol), Et₃N (1.6 mmol) and Ph₂PH (0.5 mmol, 10 wt.% in hexane). The reaction mixture was stirred at 100 °C for 12 h. After purification by column chromatography, **10** was obtained.

10: colorless solid, isolated yield 73% (125 mg). ¹H NMR (400MHz, CDCl₃, 25 °C, TMS): $\delta = 1.25$ (s, 12H, CH₃), 2.26 (s, 3H, CH₃), 6.22 (br, 1H, CH), 7.02 (d, 1H, *J* = 7.5 Hz, CH), 7.27-7.39 (m, 12H, CH), 7.84 (d, 1H, *J* = 7.3 Hz, CH) ppm; ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS): $\delta = 24.92$, 29.44 (d, *J* = 6.7 Hz), 83.58, 124.82 (d, *J* = 5.6 Hz), 126.48, 127.90, 128.21 (d, *J* = 6.2 Hz), 128.58, 128.64 (d, *J* = 2.8 Hz), 128.83, 130.59, 132.71 (d, *J* = 18.4 Hz), 133.86 (d, *J* = 19.5 Hz), 135.90, 140.80 (d, *J* = 10.7 Hz), 149.46 (d, *J* = 8.8 Hz), 158.28 (d, *J* = 29.8 Hz) ppm. HRMS: m/z: calcd for C₂₇H₃₁BO₂P [M+H]⁺: 429.2149, found 429.2150

X-ray crystallographic studies: The single crystals of **10** suitable for X-ray analysis were grown as shown in were grown in mixed solvent of hexane and ethanol for 1 day. Data collections for **10** was performed at 180 K on a SuperNova diffractometer, using graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). The structure was solved with the shelxs-97^[3] and refined with the XL refinement package using Least Squares minimization. Refinement was performed on F^2 anisotropically for all the non-hydrogen atoms by the full-matrix least-squares method. The hydrogen atoms were placed at the calculated positions and were included in the structure calculation without further refinement of the parameters. Crystal data, data collection and processing parameters for compound **10** are summarized in Supporting Information. Crystallographic data (excluding structure factors) have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC-1011067 (**10**). Copies of these data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

2) Copies of ¹H NMR and ¹³C NMR spectra of all new compounds

S6

S13

S22

S26

10

3) References

[1] For the preparation of 1,3-dienes and diiodo analogues, see: a) S. L. Buchwald, B. T. Watson, J. C. Huffman, *J. Am. Chem. Soc.* 1987, *109*, 2544-2546; b) T. Takahashi, M. Kageyama, V. Denisov, R. Hara, E. Negishi, *Tetrahedron Lett.* 1993, *34*, 687-690; c) Z. Xi, R. Hara, T. Takahashi, *J. Org. Chem.* 1995, *60*, 4444-4448; d) T. Hamada, D. Suzuki, H. Urabe, F. Sato, *J. Am. Chem. Soc.* 1999, *121*, 7342-7344.

[2] For other synthetic methods of 2a1 and 2a2, see: T. Takahashi, W.-H. Sun, C. Xi, U. Haruka, Z. Xi. Tetrahedron, 1998, 54, 715-726.

[3] G. M. Sheldrick, SHELXTL 5.10 for Windows NT: *Structure Determination Software Programs*; Bruker Analytical X-ray Systems, Inc.: Madison, WI, **1997**.