Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2014

- 1 -

SUPPLEMENTARY INFORMATION

Flow chemistry as a key parameter in reaction equilibrium control. Metal catalyzed cross-couplings under non-basic conditions

Svatava Voltrova^{*a*} and Jiri Srogl^{*a**}

Content:	1. General Experimental	S2
	2. General procedure for Sonogashira Coupling in Flow Regime	. S2
	3. Continuous-Flow Preparation of Compounds 3a-3p	S2
	4. Preparation of compounds 5 and 6	S5
	5. Control Experiments	S6
	6. Optimization Procedures	S6
	7. NMR Spectra	S 8
	8. References	S20

^aInstitute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 166 10 Prague, Czech Republic; jsrogl@uochb.cas.cz

1. General Experimental:

Continuous-flow reactions were performed on reactor X-CubeTM (ThalesNano Inc., Hungary) at atmospheric pressure with flow rate 0.1-0.2 mL/min. NMR spectra (400 MHz for ¹H, 100 MHz for ¹³C), (δ , ppm; *J*, Hz) were measured in hexadeuterated acetone or CDCl₃ and referenced to the solvent signal. Data are reported in the following order: chemical shifts; multiplicities are indicated br (broadened), s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet). Solvents were dried over 4 Å molecular sieves and titrated for water level with a Karl Fischer Coulometer (water content below 10 ppm). No degassing of solvents was necessary. Catalysts and were purchased from Aldrich, Acros Organics, Alfa-Aesar or Strem Chemicals and were used without further purification.

2. General Procedure for Sonogashira Coupling in Flow Regime

Continuous-flow reactions were performed on reactor X-Cube[™] (ThalesNano Inc., Hungary; two CatCarts[™] of 64 mm size, 4 mm i.d. in series connection, residence volume of the system was 6 mL). Substituted iodobenzene 1 (0.5 mmol) and aryl acetylene 2 (0.6 mmol) were dissolved in dried THF-DMA 9:1 (10 mL) and passed through the cartridges packed with commercially available Pd catalyst on a solid support¹ and 0.1% Cu₂O (Sigma-Aldrich) on alumina powder (made by evaporation of toluene suspension of both components) in the weight ratio of 17:1 (total amount of the catalyst was 1.9 g, average TON calculated from the total catalyst capacity was 120-150) at 80 °C in the same solvent composition with the flow rate 0.1 mL/min. GC yields were calculated from the correlated areas of reactant/product ratio. Isolation: To the eluate was added water (30 mL) and the mixture shaken with hexane (3x30 mL). The collected hexane portion was washed with brine and dried by MgSO₄. After evaporation, the residue was purified by column chromatography on silica gel (hexane:ether:acetone 30:1:2).

3. Continuous-Flow Preparation of Compounds 3a-3p:

4-(Phenylethynyl)toluene (**3a**): synthesized from 4-iodotoluene (**1a**, 0.109 g, 0.5 mmol) and phenylacetylene (**2a**, 0.062 g, 0.6 mmol), yield 0.0576 g (60%), m.p. 72.5-74.5 °C (ref.² 72.5-74 °C). ¹H NMR spectrum (CDCl₃): δ 7.55 – 7.50 (m, 2H), 7.43 (d, *J* = 8.1, 2H), 7.37 – 7.30 (m, 3H), 7.18 – 7.12 (m, 2H), 2.36 (s, 3H).

- 2 -

1,2-Diphenylethyne (**3b**): synthesized from iodobenzene (**1b**, 0.102 g, 0.5 mmol) and **2a** (0.062 g, 0.6 mmol), yield 0.0659 g (74%), m.p. 58.5-60.5 °C (ref.³ 58-60 °C). ¹H NMR spectrum (CDCl₃): δ 7.55 – 7.50 (m, 4H), 7.37 – 7.30 (m, 6H).

2-Methyl-4-*p*-tolylbut-3-yn-2-ol (**3c**): synthesized from **1a** (0.109 g, 0.5 mmol) and 2methylbut-3-yn-2-ol (**2b**, 0.050 g, 0.6 mmol), yield 0.0505 g (58%), m.p. 48.9-49.1 °C (ref.⁴ 50-52 °C). ¹H NMR spectrum (cf. ref.⁵) (CDCl₃): δ 7.30 (d, *J* = 8.1, 2H), 7.11 (d, *J* = 7.8, 2H), 2.34 (s, 3H), 1.95 (br s, 1H), 1.61 (s, 6H). ¹³C NMR spectrum ((CD₃)₂)CO): δ 139.8 (C), 133.1 (2xCH), 130.9 (2xCH), 122.3 (C), 96.4 (C), 82.6 (C), 66.1 (C), 33.1 (2xCH₃), 22.3 (CH₃).

2-Methyl-4-nitro-1-(phenylethynyl)benzene (**3d**): synthesized from 1-iodo-2-methyl-4nitrobenzene (**1c**, 0.132 g, 0.5 mmol) and **2a** (0.062 g, 0.6 mmol), LRMS (EI): m/z 237 (M⁺). The product could not be obtained pure after column chromatography.

(Cyclopropylethynyl)benzene (**3e**): synthesized from **1b** (0.102 g, 0.5 mmol) and ethynylcyclopropane (**2c**, 0.040 g, 0.6 mmol), yield 0.0512 g (72%), oil. ¹H NMR spectrum (cf. ref.⁶) ((CD₃)₂)CO): δ 7.35 (m, 2H), 7.30 (m, 3H), 1.48 (m, 1H), 0.89 (m, 2H), 0.73 (m, 2H). ¹³C NMR spectrum ((CD₃)₂)CO): δ 133.2 (2xCH), 130.1 (2xCH), 129.4 (CH), 125.9 (C), 95.2 (C), 77.3 (C), 9.8 (2xCH₂), 1.5 (CH).

3-(*p*-Tolylethynyl)pyridine (**3f**): synthesized from **1a** (0.109 g, 0.5 mmol) and 3ethynylpyridine (**2d**, 0.062 g, 0.6 mmol), yield 0.0705 g (73%), colorless oil. ¹H NMR spectrum (cf. ref.⁷) (CDCl₃): δ 8.75 (d, 1H, *J* = 1.5 Hz), 8.53 (dd, 1H, *J* = 5.0, 1.5 Hz), 7.79 (dt, 1H, *J* = 1.75, 8.0 Hz), 7.44 (d, *J* = 8.1, 2H), 7.29-7.26 (m, 1H), 7.17 (d, *J* = 8.1, 2H).

1-Bromo-2-(phenylethynyl)benzene (**3g**): synthesized from **1b** (0.102 g, 0.5 mmol) and 1bromo-2-ethynylbenzene (**2e**, 0.108 g, 0.6 mmol), catalyst: (5% Pd on alumina powder) : (0.1% Cu₂O on alumina powder) = 50:1; yield 0.0642 g (50%), isolated as colorless oil. ¹H NMR spectrum (cf. ref.⁸) ((CD₃)₂)CO): δ 7.72 (m, 1H), 7.64 (m, 1H), 7.59 (m, 2H), 7.44 (m, 4H), 7.34 (m, 1H). ¹³C NMR spectrum ((CD₃)₂)CO): δ 135.2 (CH), 134.4 (CH), 133.3 (2xCH), 131.9 (2xCH), 130.8 (CH), 130.5 (CH), 129.5 (CH), 126.9 (C), 126.8 (C), 124.6 (C), 95.6 (C), 89.6 (C).

1-(4-(*p*-Tolylethynyl)phenyl)ethanone (**3h**): synthesized from **1a** (0.109 g, 0.5 mmol) and 1-(4-ethynylphenyl)ethanone (**2f**, 0.087 g, 0.6 mmol), yield 0.0714 g (61%), m.p. 122.7-123.0 °C (ref.⁹ 126-127 °C). ¹H NMR spectrum (cf. ref.⁹) ((CD₃)₂)CO): δ 8.09 (d, J = 8.8, 2H), 7.67 (d, J = 8.6, 2H), 7.47 (d, J = 8.1, 2H), 7.27 (d, J = 7.8, 2H), 2.61 (s, 3H), 2.37 (s, 3H).

1-Fluoro-4-(phenylethynyl)benzene (**3i**): synthesized from **1b** (0.102 g, 0.5 mmol) and 1ethynyl- 4-fluorobenzene (**2g**, 0.072 g, 0.6 mmol), yield 0.0716 g (73%), m.p. 107.8-109.7 °C (ref.¹⁰ 108-111 °C). ¹H NMR spectrum (cf. ref.¹⁰) (CDCl₃): δ 7.53 (m, 4H), 7.35 (m, 3H), 7.05 (m, 2H). ¹³C NMR spectrum ((CD₃)₂)CO): δ 165.7 (C), 135.5 (2xCH), 133.3 (2xCH), 130.4 (2xCH), 125.5 (C), 121.4 (C), 117.7 (2xCH), 117.5 (CH), 90.7 (C), 89.9 (C).

1-Fluoro-4-(*p*-tolylethynyl)benzene (**3j**): synthesized from **1a** (0.109 g, 0.5 mmol) and **2g** (0.072 g, 0.6 mmol), yield 0.0651 g (62%), m.p. 97.6-98.2 °C (ref.¹¹ 91-92 °C). ¹H NMR spectrum (cf. ref.¹¹) ((CD₃)₂)CO): δ 7.58 (m, 2H), 7.42 (m, 2H), 7.19 (m, 4H), 2.90 (s, 3H). ¹³C NMR spectrum ((CD₃)₂)CO): δ 165.6 (C), 140.6 (C), 135.4 (2xCH), 133.2 (2xCH), 131.1 (2xCH), 121.8 (C), 121.6 (C), 117.6 (2xCH), 90.9 (C), 89.2 (C), 22.4 (CH₃).

4-(Pyridin-3-ylethynyl)benzaldehyde (**3k**): synthesized from 4-iodobenzaldehyde (**1d**, 0.116 g, 0.5 mmol) and **2d** (0.062 g, 0.6 mmol), yield 0.0466 g (45%), m.p. 96.5-98.0 °C (ref.¹² 98.5-99.3 °C). ¹H NMR spectrum (cf. ref.¹³) (CDCl₃): δ 10.09 (s, 1H), 8.83 (br s, 1H), 8.66 (br s, 1H), 7.99 (d, *J* = 8.1, 2H), 7.95 (d, *J* = 6.1, 1H), 7.80 (d, *J* = 8.1, 2H), 7.49 (br m, 1H).

1-Bromo-2-(*p*-tolylethynyl)benzene (**3l**): synthesized from **1a** (0.109 g, 0.5 mmol) and **2e** (0.108 g, 0.6 mmol), catalyst: (5% Pd on alumina powder) : (0.1% Cu₂O on alumina powder) = 50:1; yield 0.0786 g (58%), isolated as colorless oil. ¹H NMR spectrum (cf. ref.¹⁴) ((CD₃)₂)CO): δ 7.70 (d, *J* = 8.1, 1H), 7.62 (d, *J* = 7.6, 1H), 7.48 (d, *J* = 8.1, 2H), 7.41 (m, 1H), 7.31 (m, 1H), 7.25 (d, *J* = 7.8, 2H), 2.36 (s, 3H). ¹³C NMR spectrum ((CD₃)₂)CO): δ 141.1 (C), 135.1 (CH), 134.4 (CH), 133.3 (2xCH), 131.7 (2xCH), 131.2 (CH), 129.4 (CH), 127.2 (C), 126.8 (C), 121.6 (C), 95.9 (C), 89.0 (C), 22.5 (CH₃).

3-(Phenylethynyl)pyridine (**3m**): synthesized from **1b** (0.102 g, 0.5 mmol) and **2d** (0.062 g, 0.6 mmol), yield 0.0582 g (65%), m.p. 50.5-52 °C (ref.¹⁵ 50-51 °C). ¹H NMR spectrum (CDCl₃): δ 8.77 (d, 1H, *J* = 1.5 Hz), 8.55 (dd, 1H, *J* = 5.0, 1.5 Hz), 7.81 (dt, 1H, *J* = 1.75, 8.0 Hz), 7.56-7.53 (m, 2H), 7.38-7.36 (m, 3H), 7.30-7.27 (m, 1H).

4-(Cyclopropylethynyl)toluene (**3n**): synthesized from **1a** (0.109 g, 0.5 mmol) and **2c** (0.040 g, 0.6 mmol), yield 0.0663 g (85%), oil. ¹H NMR spectrum (cf. ref.⁶) ((CD₃)₂)CO): δ 7.23 (d, J = 8.1, 2H), 7.11 (d, J = 7.8, 2H), 2.30 (s, 3H), 1.46 (m, 1H), 0.87 (m, 2H), 0.70 (m, 2H). ¹³C

NMR spectrum ((CD₃)₂)CO): δ 139.2 (C), 133.2 (2xCH), 130.8 (2xCH), 122.9 (C), 94.3 (C), 77.4 (C), 22.3 (CH₃), 9.8 (2xCH₂), 1.6 (CH).

2-Methyl-4-phenylbut-3-yn-2-ol (**3o**): synthesized from **1b** (0.102 g, 0.5 mmol) and **2b** (0.050 g, 0.6 mmol), yield 0.0504 g (63%), m.p. 53.5-53.8 °C (ref.¹⁶ 52-54 °C). ¹H NMR spectrum (cf. ref.¹⁶) ((CD₃)₂)CO): δ 7.41 (m, 2H), 2.03 (br s, 1H), 1.62 (s, 6H). ¹³C NMR spectrum ((CD₃)₂)CO): δ 133.2 (2xCH), 130.2 (2xCH), 129.9 (CH), 125.3 (C), 97.1 (C), 82.6 (C), 66.1 (C), 33.0 (2xCH₃).

4-(Phenylethynyl)benzaldehyde (**3p**): synthesized from **1d** (0.123 g, 0.5 mmol) and **2a** (0.062 g, 0.6 mmol), yield 0.0773 g (75%), m.p. 95.5-98 °C (ref.¹⁷ 96.5-98 °C). ¹H NMR spectrum (CDCl₃): δ 10.02 (s, 1H), 7.87 (ddd, *J* = 0.4, 1.6, 8.1, 2H), 7.68 (ddd, *J* = 0.4, 1.6, 8.1, 2H), 7.58-7.54 (m, 2H), 7.36 – 7.40 (m, 3H).

4. Preparation of Compounds 5 and 6

Sonogashira cross-coupling of base-sensitive substrate (batch reaction): 1-Benzyltetrahydro-1*H*-thiophenium hexafluorophosphate¹⁸ (**4**, 0.128 g, 0.4 mmol), phenylacetylene (**2a**, 0.042 g, 0.4 mmol) and potassium carbonate (0.5 g) were suspended in DMA (5 mL). The catalyst (5% Pd on alumina powder) : (0.1% Cu₂O on alumina powder) = 17:1; 0.040 g was added and the reaction mixture heated to 80 °C with stirring under Ar atmosphere. After 16 h, the UPLC analysis showed complete conversion of the starting sulfonium salt. The reaction mixture was poured to 5% HCl (30 mL) and shaken with ether (5x30 mL). The collected ether portion was washed with brine and dried by MgSO₄. After evaporation, the residue was purified by column chromatography on silica gel (hexane:ether:acetone (30:1:2). The obtained colorless oil (0.040 g) was identified as 2-*o*-tolyltetrahydrothiophene (**6**, Scheme 3), which is the usual product of the Sommelet-Hauser rearrangement of the starting sulfonium salt in the presence of bases¹⁹. Yield 57%, *m/z* (EI) 178, ¹H NMR spectrum (CDCl₃) (cf. ref.¹⁹): δ 7.61 (d, *J* = 7.0, 1H), 7.12-7.24 (m, 3H), 4.76 (dd, *J* = 8.0, 5.9, 1H), 3.12-3.18 (m, 1H), 3.00-3.08 (m, 1H), 2.40 (s, 3H), 2.25-2.39 (m, 2H), 1.93-2.09 (m, 2H).

Continuous flow reaction: 1-Benzyltetrahydro-1*H*-thiophenium hexafluorophosphate¹⁸ (**4**, 0.128 g, 0.4 mmol) and phenylacetylene (**2a**, 0.042 g, 0.4 mmol) were dissolved in DMA (10 mL) and passed through the cartridges packed with (5% Pd on alumina powder) : (0.1% Cu₂O on alumina powder) = 17:1 at 80 °C at flow 0.3 mL/min. To the solution was then added water (30 mL) and the mixture shaken with hexane (3x30 mL). The collected hexane portion

was washed with brine and dried by MgSO₄. After evaporation, the residue was purified by column chromatography on silica gel (hexane:ether:acetone 30:1:2). The obtained colorless oil (0.052 g) was identified as the Sonogashira product, 1,3-diphenylpropyne (**5**). Yield 70%, m/z (EI) 192, ¹H NMR spectrum (CDCl₃) (cf. ref.²⁰): δ 7.39-7.44 (m, 4H), 7.18-7.36 (m, 6H), 3.81 (s, 2H).

5. Control Experiments

Reaction of copper acetylide with HI in batch regime: Copper(I) phenylacetylide (0.033 g, 0.2 mmol), lithium chloride (0.0084 g, 0.2 mmol), 4-iodotoluene (**1a**, 0.044 g, 0.2 mmol), degassed dried DMA (4 mL), and Pd(PPh₃)₄ (0.002 g, cat.) were stirred at 90 °C for 3 h in the presence of 0.00, 0.25, 0.50, 0.75 and 1.00 equivalents of 48% hydriodic acid. The course of the reaction was monitored with GC-MS.

Control experiments in batch regime: **Sonogashira protocol:** 4-Iodotoluene (**1a**, 0.109 g, 0.5 mmol) and phenylacetylene (**2a**, 0.062 g, 0.6 mmol) were dissolved in THF-DMA 9:1 (10 mL). The catalyst (5% Pd on alumina powder) : (0.1% Cu₂O on alumina powder) = 17:1; 1.900 g was added and the reaction mixture heated to 75 °C with stirring under Ar atmosphere. After 72 h, less than 2 % of the Sonogashira product **3a** was formed in the reaction mixture (detection: UPLC-MS, GC-MS).

6. Optimization Procedures

The continuous flow Sonogashira reaction between 4-iodotoluene (1a) and phenylacetylene (2a) was optimized on catalyst (Table 1), Cu₂O content (Table 2), and solvent (Table 3). Table 1. Optimization of the continuous flow Sonogashira reaction on catalyst^a

	Catalyst	GC yield (%)
1	10% Pd/C	7
2	Polymer-bound Pd(PPh ₃) ₄	12
3	Polyurea-encapsulated palladium (Pd(0)EnCat [™] 30)	50
4	Polyurea-encapsulated Pd(OAc) ₂ (Pd(II)EnCat [™] 30)	74
5	5% Pd/Al ₂ O ₃ (EsCat TM 1241)	76
6	Pd(OAc) ₂ on polymer fibre (FibreCat [™] 1001)	84 ^b

^aReaction conditions: mixed catalyst with 0.1% Cu₂O/Al₂O₃ (Pd:Cu catalyst 17:1); 0.1 mmol 4-iodotoluene (**1a**), 0.12 mmol phenylacetylene (**2a**), 2 mL DMA, flow 0.3 mL/min, 80 °C. ^bStrong Pd leaching was observed.

	Cu ₂ O content	(EsCat TM 1241):	GC total yield	Sonogashira/Glaser product
	on Al_2O_3 (%)	$(Cu_2O \text{ on } Al_2O_3)$	(%)	
1	10	1:2	79	11/89
2	5	1:2	70	71/29
3	1	1:1	67	80/20
4	0.1	17:1	76	100/0

Table 2. Dependence of the Sonogashira/Glaser product ratio on the Cu₂O content^a

^aReaction conditions: mixed catalyst (Escat[™] 1241) : (Cu₂O on alumina powder); 0.1 mmol 4-iodotoluene (**1a**), 0.12 mmol phenylacetylene (**2a**), 2 mL DMA, flow 0.3 mL/min, 80 °C.

	Solvent	GC yield (%)
1	THF	<1
2	EtOH	6
3	dioxane	8
4	DMF	15
5	NMP ^b	28
6	DMA	76
7	THF:DMA 9:1	76

Table 3. Optimization of the continuous flow Sonogashira reaction on solvent^a

^aReaction conditions: mixed catalyst (EscatTM 1241) : $(0.1\% \text{ Cu}_2\text{O} \text{ on alumina powder}) = 17:1; 0.1 \text{ mmol } 4-$ iodotoluene (**1a**), 0.12 mmol phenylacetylene (**2a**), 2 mL of solvent, flow 0.3 mL/min, 80 °C. ^bAt 120 °C.

7. NMR Spectra

4-(Phenylethynyl)toluene (**3a**)

1,2-Diphenylethyne (**3b**)

7.296 7.317 7.114 7.095

- 10 -

 $(Cyclopropylethynyl) benzene \ (3e)$

١L.

2.5

3.0

7.5

7.0

6.5

6.0

5.5

5.0

4.5

4.0

3.5

7.733 7.713 7.637 7.637 7.603 7.594 7.588 7.437 7.437 7.338 7.334

8.0

8.5

1-Fluoro-4-(phenylethynyl)benzene (3i)

7.326 7.351 7.347 7.053

1-Fluoro-4-(*p*-tolylethynyl)benzene (**3j**)

7.586 7.577 7.416 7.418

3.0

 $\label{eq:constraint} \mbox{4-(Pyridin-3-ylethynyl)benzaldehyde} \ (3k)$

7.717 7.631 7.631 7.631 7.493 7.473 7.473 7.473 7.473 7.416 7.312 7.312 7.242

4-(Cyclopropylethynyl)toluene (**3n**)

7.249 7.228 7.124 7.104

Compound **3n** (¹³C NMR)

140 130 120 110 100 90 80 70 60 50 40 30 20 10 10 10 10 0

2-Methyl-4-phenylbut-3-yn-2-ol (30)

130 120 110 100 90 80 70 60 50 40

1,3-Diphenylpropyne (5)

76 74 72 70 68 66 64 62 60 58 56 54 52 50 48 46 44 42 40 38

8. References

- [¹] EscatTM 1241 (5% Pd on alumina powder).
- [²] Seyferth, D.; Damrauer, R. J. Org. Chem. **1966**, *31*, 1965.
- [³] Glass, R. S.: ARKIVOC (Gainesville, FL, United States) 2005, 185.
- ^[4] Shchukin, A. *Russ. J. Org. Chem.* **2007**, *43*, 784-786.

[⁵] Jiang Cheng, J.; Sun, Y.; Wang, F.; Guo, M.; Jian-Hua Xu, J.-H.; Pan, Y.; Zhang, Z. J. Org. Chem. 2004, 69, 5428-5432. [6] Chia-Wen Li, C.-W.; Pati, K.; Lin, G.-Y.; Abu Sohel, S. Md.; Hung, H.-H.; Liu, R.-S. Angew. Chem. Int. Ed. 2010, 49, 9891-9894.

[7] Park, K.; Bae, G.; Moon, J.; Choe, J.; Song, K. H.; Lee, S. J. Org. Chem. 2010, 75, 6244-6251.

[8] Chen, H.-J.; Lin, Z.-Y.; Li, M.-Y.; Lian, R.-J.; Xue, Q.-W.; Chung, J.-L.; Chen S.-C.; Chen, Y.-J. *Tetrahedron* 2010, 66, 7755-7761.

[9] Gholap, A. R.; Venkatesan, K.; Pasricha, R.; Daniel, T.; Lahoti, R. J.; Srinivasan, K.
V. J. Org. Chem. 2005, 70, 4869-4872.

[¹⁰] Bandini, M.; Luque, R.; Budarina, V.; Macquarrie, D. J. *Tetrahedron* 2005, *61*, 9860–9868.

- [¹¹] Yang, D; Li, B.; Yang, H.; Fu, H; Hub, L. *Synlett* **2011**, 702-706.
- ^[12] Sorensen, U. S.; Pombo-Villar, E. *Tetrahedron* **2005**, *61*, 2697-2703.
- ^[13] Richardson, C.; Reed, C. A. J. Org. Chem. **2007**, 72, 4750-4755.
- [¹⁴] Kuhn, M.; Falk, F. C.; Paradies, J. Org. Lett. **2011**, 13, 4100–4103.
- [¹⁵] Novak, Z.; Nemes, P.; Kotschy, A. Org. Lett. **2004**, *6*, 4917-4920.
- [¹⁶] Pal, M.; Subramanian, V.; Parasuraman K.; Yeleswarapu, K. R. *Tetrahedron* 2003, *59*, 9563–9570.
- [¹⁷] Tolosa, J.; Kub, C.; Bunz, U. H. F. *Angew. Chem. Int. Ed.* **2009**, *48*, 4610.
- [¹⁸] Endo, T.; Uno, H. J. Polymer Sci., Polymer Letters Ed. **1985**, 23, 359-63.
- [¹⁹] Aggarwal, V. K., Smith, H. W., Hynd, G. R., Jones, V. H., Fieldhouse, R., Spey, S. E. J. Chem. Soc., Perkin Trans. 1 2000, 3267-3276.
- ^[20] Rosini, G.; Ranza, R. J. Org. Chem. **1971**, 36, 1915-1918.