Supporting Information

Functionalized Imidazoliniums from Three-Component Domino Reaction of *N*-Formylmethylcarboxamides with Amines and Isocyanides

Chuan-Hu Lei,^{*a,b*} Liang Zhao,^{*a*} De-Xian Wang,^{*b*} Jieping Zhu,^{*c*} and Mei-Xiang Wang^{*a*}

^a Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education),

Department of Chemistry, Tsinghua University, Beijing 100084, China.

^b Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and

Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

^c Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015 Lausanne, Switzerland.

E-mail: wangmx@mail.tsinghua.edu.cn

Table of Contents

1. General Information	S1
2. Scope of Substrates	S2
2.1. General Procedure for the Synthesis of 2-Imidazolinium Salts 4a-d	S2
2.2. Characterization Data for 2-Imidazolinium Salts 4a-d	S2
2.3. General Procedure for the Synthesis of 2-Imidazolinium Salts 4e-j	S4
2.4. Characterization Data for 2-Imidazolinium Salts 4e-j	S6
3. Synthesis and Characterization for β-Amino-γ-benzamido Ketones 8a-c	S9
4. Characterization Data for 2-Imidazolinium Chloride•ZnCl ₂ •H ₂ O and [Cu(PMPNC) ₄]PF ₆ Complex	S10
5. Synthesis and Characterization of ¹⁸ O-1e	S11
6. HRMS Spectra for ¹⁸ O-1e and ¹⁸ O-4e	S14
7. Crystallographic Data	S14
8. References	S19
9. Copies of ¹ H and ¹³ C NMR Spectra	S20

1. General Information

Unless otherwise noted, all reactions were carried out in oven dried glasswares. Anhydrous solvents were purified and dried following standard procedures. All commercially available reagents were used as received. TLC analysis was performed on pre-coated, glass-backed silica gel plates and visualized with UV light. Flash column chromatography was performed on silica gel (200-300 mesh).

Melting points were uncorrected. The ¹H NMR and ¹³C NMR spectra were recorded on a JEOL ECX-400 400 MHz spectrometers. ¹H NMR chemical shifts were reported relative to residual DMSO- d_6 (2.50 ppm), CDCl₃ (7.26 ppm) or acetone- d_6 (2.05 ppm). ¹³C NMR chemical shifts were reported relative to the central line of DMSO- d_6 (39.52 ppm), CDCl₃ (77.16 ppm) or acetone- d_6 (29.84 ppm, 206.26 ppm). Abbreviations are used in the description of NMR data as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, m = multiplet), coupling constant (*J*, Hz). Low-resolution mass spectra (MS) were recorded on a Shimadzu GC-MS QP 2010 Plus spectrometer. The high resolution mass spectra (HRMS) were recorded on a Shimadzu LCMS-IT-TOF spectrometer or a Thermo Exactive spectrometer. Infrared spectra were recorded using a PerkinElmer Spectrum 100 FT-IR spectrometer with KBr pellets in the 4000-400 cm⁻¹ region.

2. Scope of Substrates

2.1. General Procedure for the Synthesis of 2-Imidazolinium Salts 4a-d

Scheme S1. Synthesis of 2-imidazolinium salts 4a-d

To a solution of **1** (0.3 mmol), **2a** (36 μ L, 0.33 mmol) and 4-methoxyphenyl isocyanide **3** (79.6 mg, 0.36 mmol) in CH₃CN (15 mL) was added Zn(OTf)₂ (109.1 mg, 0.3 mmol), the resulting mixture was stirred at room temperature for 1 h to 2 h, After completion of the reaction (monitored by TLC), the reaction was quenched by saturated NaHCO₃ solution (5 mL) and extracted with dichloromethane (4×15 mL). The combined organic extracts were washed with brine, dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel (acetone/petroleum ether) to afford product **4a-d**.

2.2. Characterization Data for 2-Imidazolinium Salts 4a-d

1-benzyl-5-(4-methoxyphenylcarbamoyl)-2-methyl-3-(1-phenylvinyl)-4,5-dihydro -1*H*-imidazol-3-ium triflate (4a)

Colorless solid (162 mg, yield: 85%). **m.p.** 181 – 182 °C; ¹**H NMR** (400 MHz, Acetone- d_6) δ 9.75 (s, 1H), 7.75 (d, J = 7.1 Hz, 2H), 7.66 – 7.62 (m, 1H), 7.60 – 7.54 (m, 6H), 7.40 – 7.30 (m, 8H), 6.92 (d, J = 9.1 Hz, 2H), 5.80 (d, J = 1.5 Hz, 1H), 5.66

(d, J = 1.5 Hz, 1H), 5.24 (dd, J = 11.7, 4.8 Hz, 1H), 4.99 (t, J = 11.7 Hz, 1H), 4.90 (d, J = 15.5 Hz, 1H), 4.72 (d, J = 15.5 Hz, 1H), 4.57 (dd, J = 11.7, 4.7 Hz, 1H), 3.80 (s, 3H); ¹⁹F NMR (376 MHz, Acetone- d_6) δ -78.77; ¹³C NMR (100 MHz, Acetone- d_6) δ 168.3, 165.9, 157.7, 143.1, 134.9, 134.0, 133.6, 131.9, 130.5, 130.3, 129.8, 129.7, 129.6, 129.5, 127.0, 123.3, 122.45, 122.36, 115.8, 114.7, 63.4, 57.2, 55.7, 52.2; IR (KBr, cm⁻¹) v 1692, 1573, 1551, 1513, 1283, 1257, 1241, 1170, 1155, 1030; MS (ESI) 488 [M-OTf]⁺; Anal. Calcd. for: C: 62.16, H: 4.74, N: 6.59. found: C: 62.30, H: 4.79, N: 6.52.

1-benzyl-5-(4-methoxyphenylcarbamoyl)-2-methyl-3-(1-p-tolylvinyl)-4,5-dihydro -1*H*-imidazol-3-ium triflate (4b)

Yellow oil (158 mg, yield: 81%). ¹**H NMR** (400 MHz, Acetone- d_6) δ 9.76 (s, 1H), 7.76 (d, J = 7.2 Hz, 2H), 7.68 – 7.63 (m, 1H), 7.60 – 7.55 (m, 4H), 7.49 (d, J = 8.2 Hz, 2H), 7.40 – 7.30 (m, 5H), 7.19 (d, J = 7.9 Hz, 2H), 6.92 (d, J = 9.0 Hz, 2H), 5.76 (d, J = 1.4 Hz, 1H), 5.58 (d, J = 1.3 Hz, 1H), 5.24 (dd, J = 11.6, 4.8 Hz, 1H), 4.95 (d, J = 11.7 Hz, 1H), 4.89 (d, J = 15.3 Hz, 1H), 4.72 (d, J = 15.5 Hz, 1H), 4.53 (dd, J = 11.7, 4.8 Hz, 1H), 3.79 (s, 3H), 2.31 (s, 3H); ¹³**C NMR** (100 MHz, Acetone- d_6) δ 168.4, 165.9, 157.7, 143.0, 140.7, 134.0 133.6, 131.93, 131.86 130.4, 130.3, 129.8, 129.65, 129.60, 129.5, 126.9, 123.3, 122.5, 115.0, 114.7, 63.4, 57.1, 55.7, 52.1; **IR** (KBr, cm⁻¹) v 1689, 1555, 1513, 1248, 1162, 1031; **HRMS** (ESI) calcd. for C₃₃H₃₂N₃O₂ [M-OTf]⁺ 502.2489, found 502.2484.

1-benzyl-3-(1-(4-chlorophenyl)vinyl)-5-(4-methoxyphenylcarbamoyl)-2-methyl-4, 5-dihydro-1*H*-imidazol-3-ium triflate (4c)

Yellow oil (165 mg, yield: 82%). ¹**H NMR** (400 MHz, Acetone- d_6) δ 9.76 (s, 1H), 7.77 – 7.74 (m, 2H), 7.67 – 7.63 (m, 1H), 7.61 – 7.55 (m, 6H), 7.39 – 7.30 (m, 7H), 6.92 (d, J = 9.0 Hz, 2H), 5.84 (d, J = 1.7 Hz, 1H), 5.72 (d, J = 1.7 Hz, 1H), 5.24 (dd, J= 11.6, 4.6 Hz, 1H), 5.01 (t, J = 11.6 Hz, 1H), 4.90 (d, J = 15.4 Hz, 1H), 4.72 (d, J = 15.4 Hz, 1H), 4.59 (dd, J = 11.6, 4.6 Hz, 1H), 3.80 (s, 3H); ¹³**C NMR** (100 MHz, Acetone- d_6) δ 168.3, 165.9, 157.7, 142.2, 135.8, 134.1, 133.9, 133.5, 131.9, 130.4, 129.80, 129.77, 129.7, 129.6, 128.8, 123.2, 122.5, 122.4, 116.4, 114.7, 63.4, 57.2, 55.7, 52.2; **IR** (KBr, cm⁻¹) v 1687, 1560, 1513, 1249, 1165, 1031; **HRMS** (ESI) calcd. for C₃₂H₂₉ClN₂O₃ [M-OTf]⁺ 522.1943, found 522.1936.

1-benzyl-5-(4-methoxyphenylcarbamoyl)-2-methyl-3-(1-phenylvinyl)-4,5-dihydro -1*H*-imidazol-3-ium triflate (4d)

Yellow oil (152 mg, yield: 88%). ¹**H NMR** (400 MHz, Acetone- d_6) δ 9.72 (s, 1H), 7.68 – 7.66 (m, 2H), 7.52 – 7.46 (m, 7H), 7.37 – 7.30 (m, 4H), 6.86 (d, J = 9.0 Hz, 2H), 6.09 (d, J = 1.1 Hz, 1H), 5.79 (d, J = 1.1 Hz, 1H), 5.13 – 5.07 (m, 2H), 4.88 (d, J = 15.7 Hz, 1H), 4.58 (t, J = 11.6 Hz, 1H), 4.24 (dd, J = 11.4, 5.5 Hz, 1H), 3.75 (s, 3H), 2.53 (s, 3H); ¹³C NMR (100 MHz, Acetone- d_6) δ 169.1, 165.8, 157.4, 142.3, 134.0, 133.8, 131.8, 130.8, 130.0, 129.6, 129.4, 129.3, 126.7, 122.4, 116.3, 114.5, 63.4, 55.9, 55.6, 51.4, 12.9; **IR** (KBr, cm⁻¹) v 1690, 1592, 1513, 1258, 1174, 1032; **HRMS** (ESI) calcd. for C₂₇H₂₈N₃O₂ [M-OTf]⁺ 426.2176, found 426.2172.

2.3. General Procedure for the Synthesis of 2-Imidazolinium Salts 4e-j

Substrates **1e** and **1f** was synthesized according to literature procedure^{2,3}.

Method A: One-pot Manner

Scheme S2. Synthesis of 2-imidazolinium salts 4e-j

To a solution of **1** (0.3 mmol), **2** (0.33 mmol) and isocyanide **3** (0.36 mmol) in CH₃CN (15 mL) was added Zn(OTf)₂ (109.1 mg, 0.3 mmol), the resulting mixture was stirred at room temperature for 30 minutes, After completion of the reaction (monitored by TLC), the reaction was quenched with saturated NaHCO₃ solution (5 mL) and extracted with dichloromethane (4×15 mL). The combined organic extracts were washed with brine, dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel (acetone/petroleum ether) to afford product **4e-j**.

Method B: Step-wise Manner

Scheme S3. Synthesis of 2-imidazolinium salts 4e-j

To a solution of 1 (0.3 mmol) in dichloromethane (5 mL) was added amine 2 (0.33 mmol). The reaction mixture was stirred at ambient temperature for 2 h, and then dichloromethane was removed under reduced pressure and dried *in vacuo* for another 10 min to give the corresponding imine.

The imine was dissolved in acetonitrile (15 mL) at ambient temperature, isocyanide **3** (0.36 mmol) and $Zn(OTf)_2$ (109.1 mg, 0.3 mmol) was added subsequently. After completion of the reaction (monitored by TLC), the reaction was quenched with saturated NaHCO₃ solution (5 mL). The resulting mixture was then extracted with dichloromethane (4×15 mL). The combined organic extracts were washed with brine,

dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The residue was subjected to silica gel column chromatography (acetone/petroleum ether) to give product **4e-j**.

2.4. Characterization Data for 2-Imidazolinium Salts 4e-j

1-benzyl-5-(4-methoxyphenylcarbamoyl)-3-methyl-2-phenyl-4,5-dihydro-1*H*-imi dazol-3-ium triflate (4e)

Yellow oil (155 mg, yield: 94%). ¹**H NMR** (400 MHz, Acetone- d_6) δ 9.76 (s, 1H), 7.79 – 7.72 (m, 5H), 7.55 (d, J = 9.0 Hz, 2H), 7.29 – 7.28 (m, 5H), 6.88 (d, J = 9.0 Hz, 2H), 5.04 (dd, J = 12.1, 6.5 Hz, 1H), 4.71 – 4.53 (m, 3H), 4.28 (dd, J = 12.0, 6.5 Hz, 1H), 3.76 (s, 3H), 3.14 (s, 3H); ¹³**C NMR** (100 MHz, Acetone- d_6) δ 167.4, 165.2, 156.7, 133.4, 133.2, 131.3, 130.0, 128.9, 128.7, 128.4, 128.2, 122.1, 121.6, 113.9, 62.0, 55.2, 54.9, 50.6; **IR** (KBr, cm⁻¹) v 1694, 1602, 1552, 1513, 1251, 1168, 1031; **HRMS** (ESI) calcd. for C₂₅H₂₆N₃O₂ [M-OTf]⁺ 400.2020, found 400.2014.

1-allyl-5-(4-methoxyphenylcarbamoyl)-3-methyl-2-phenyl-4,5-dihydro-1*H*-imida zol-3-ium triflate (4f)

Yellow oil (134 mg, yield: 89%). ¹**H NMR** (400 MHz, Acetone- d_6) δ 9.87 (s, 1H), 7.81 – 7.76 (m, 5H), 7.66– 7.64 (m, 2H), 6.92 – 6.90 (m, 2H), 5.88 – 5.78 (m, 1H), 5.27 (dd, J = 17.1, 1.1 Hz, 1H), 5.20 – 5.16 (m, 2H), 4.59 (t, J = 12.1 Hz, 1H), 4.27 (dd, J = 11.9, 6.6 Hz, 1H), 4.07 (dd, J = 16.1, 5.5 Hz, 1H), 3.96 (dd, J = 16.1, 6.7 Hz, 1H), 3.78 (s, 3H), 3.13 (s, 3H); ¹³**C NMR** (100 MHz, Acetone- d_6) δ 167.9, 166.1, 157.4, 134.0, 132.2, 131.5, 130.6, 129.4, 123.4, 122.8, 122.2, 120.5, 120.3, 114.6, 62.8, 55.9, 55.6, 50.3, 34.9; **IR** (KBr, cm⁻¹) v 1695, 1603, 1514, 1253, 1174, 1035; **MS** (CI) 350 [M-OTf]⁺ (100), 199 (97); **HRMS** (ESI) calcd. for C₂₁H₂₄N₃O₂ [M-OTf]⁺ 350.1863, found 350.1859.

1-benzhydryl-5-(4-methoxyphenylcarbamoyl)-3-methyl-2-phenyl-4,5-dihydro-1*H* -imidazol-3-ium triflate (4g)

Yellow oil (80 mg, yield: 43%). ¹**H NMR** (400 MHz, Acetone- d_6) δ 9.02 (s, 1H), 7.78 – 7.61 (m, 3H), 7.44 – 7.40 (m, 4H), 7.33 – 7.15 (m, 11H), 6.83 (d, J = 9.1 Hz, 2H), 6.21 (s, 1H), 5.26 (dd, J = 11.5, 4.6 Hz, 1H), 4.80 (t, J = 11.9 Hz, 1H), 4.18 (dd, J = 12.2, 4.5 Hz, 1H), 3.76 (s, 3H), 3.12 (s, 3H); ¹³C NMR (100 MHz, Acetone- d_6) δ 168.9, 166.5, 157.2, 136.6, 133.4, 131.9, 131.4, 130.5, 130.2, 129.6, 129.5, 129.3, 129.1, 128.8, 128.4, 123.4, 122.2, 66.4, 62.6, 56.4, 55.6, 35.0; **IR** (KBr, cm⁻¹) v 1694, 1622, 1513, 1253, 1171, 1032; **HRMS** (ESI) calcd. for C₃₁H₃₀N₃O₂ [M-OTf]⁺ 476.2333, found 476.2329.

1-benzyl-3-methyl-2-phenyl-5-(phenylcarbamoyl)-4,5-dihydro-1*H*-imidazol-3-iu m triflate (4h)

Yellow oil (149 mg, yield: 96%). ¹**H NMR** (400 MHz, Acetone- d_6) δ 9.84 (s, 1H), 7.80 – 7.75 (m, 5H), 7.67 (d, J = 7.8 Hz, 2H), 7.35 – 7.25 (m, 7H), 7.13 (t, J = 7.4 Hz, 1H), 5.08 (dd, J = 12.2, 6.3 Hz, 1H), 4.71 – 4.55 (m, 3H), 4.30 (dd, J = 12.1, 6.2 Hz, 1H), 3.15 (s, 3H); ¹³**C NMR** (100 MHz, Acetone- d_6) δ 168.1, 166.3, 139.0, 134.1, 133.9, 130.7, 129.6, 129.5, 129.4, 129.1, 128.9, 125.2, 122.8, 120.6, 62.6, 56.0, 51.3, 35.0; **IR** (KBr, cm⁻¹) v 1699, 1601, 1554, 1252, 1163, 1031; **MS** (CI) 370 [M-OTf]⁺ (74), 249 (100), 159 (76), 91 (97); **HRMS** (ESI) calcd. for C₂₄H₂₄N₃O [M-OTf]⁺ 370.1914, found 370.1909.

1-benzyl-5-(benzylcarbamoyl)-3-methyl-2-phenyl-4,5-dihydro-1*H*-imidazol-3-iu m triflate (4i)

Yellow oil (154 mg, yield: 96%). ¹**H NMR** (400 MHz, Acetone- d_6) δ 8.40 (t, J = 5.7 Hz, 1H), 7.80 – 7.72 (m, 5H), 7.35 – 7.22 (m, 11H), 4.89 (dd, J = 12.3, 7.0 Hz, 1H), 4.61 (d, J = 15.7 Hz, 1H), 4.54 (t, J = 12.1 Hz, 1H), 4.46 – 4.34 (m, 3H), 4.18 (dd, J = 11.9, 7.0 Hz, 1H), 3.10 (s, 3H); ¹³**C NMR** (100 MHz, Acetone- d_6) δ 168.0, 167.9, 139.1, 133.85, 133.80, 130.6, 129.6, 129.4, 129.22, 129.17, 128.9, 128.5, 128.0, 123.4, 122.8, 120.2, 61.8, 55.7, 51.1, 43.9, 35.0; **IR** (KBr, cm⁻¹) v 1692, 1602, 1259, 1171, 1034; **HRMS** (ESI) calcd. for C₂₅H₂₆N₃O [M-OTf]⁺ 384.2070, found 384.2064.

1-benzyl-5-(4-methoxyphenylcarbamoyl)-2-methyl-3-phenyl-4,5-dihydro-1*H*-imi dazol-3-ium triflate (4j)

Yellow oil (128 mg, yield: 78%). ¹**H NMR** (400 MHz, Acetone- d_6) δ 9.74 (s, 1H), 7.65 – 7.49 (m, 10H), 7.38 – 7.30 (m, 7H), 6.86 (d, J = 9.1 Hz, 2H), 5.16 – 5.07 (m, 2H), 4.91 – 4.72 (m, 3H), 4.52 (dd, J = 11.2, 6.8 Hz, 1H), 3.76 (s, 3H), 2.55 (s, 3H); ¹³**C NMR** (100 MHz, Acetone- d_6) δ 168.3, 165.7, 157.4, 136.7, 133.8, 131.8, 130.9, 130.5, 129.7, 129.4, 129.3, 126.9, 123.3, 122.4, 120.2, 114.5, 63.2, 56.8, 55.6, 51.3, 12.9; **IR** (KBr, cm⁻¹) v 1513, 1252, 1173, 1035; **HRMS** (ESI) calcd. for C₂₅H₂₆N₃O₂ [M-OTf]⁺ 400.2020, found 400.2016.

3. Synthesis and Characterization for β-Amino-γ-benzamido Ketones 8a-c

Compound **1a-d** was synthesized according to our previous reported procedure¹.

Scheme S4. Synthesis of β -amino- γ -benzamido ketone 8a-c

General procedure: To a solution of **1a** (79.6 mg, 0.3 mmol) in DCM (5 mL) was added aromatic amine **5** (0.33 mmol) and $Zn(OTf)_2$ (109.1 mg, 0.3 mmol). The reaction mixture was stirred at ambient temperature until the disappearance of **1a** (monitored by TLC), and then concentrated under reduced pressure. The crude residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate) to afford product **8a-c**.

N-(4-oxo-4-phenyl-2-(phenylamino)butyl)benzamide (8a)

Colorless solid (59 mg, yield: 55%). **m.p.** 163 – 165 °C; ¹**H NMR** (400 MHz, DMSO- d_6) δ 8.63 (t, J = 5.8 Hz, 1H), 7.93 – 7.91 (m, 2H), 7.81 – 7.79 (m, 2H), 7.64–7.60 (m, 1H), 7.53 – 7.42 (m, 5H), 7.06 (t, J = 7.9 Hz, 2H), 6.67 (d, J = 7.7 Hz, 2H), 6.51 (t, J = 7.2 Hz, 1H), 5.57 (d, J = 8.4 Hz, 1H), 4.25 – 4.16 (m, 1H), 3.63 – 3.57 (m, 1H), 3.30 – 3.23 (m, 3H); ¹³**C NMR** (100 MHz, DMSO- d_6) δ 198.5, 166.8, 147.9, 136.9, 134.5, 133.2, 131.2, 129.0, 128.7, 128.3, 128.0, 127.2, 115.8, 112.4, 48.8, 42.7, 41.3; **IR** (KBr, cm⁻¹) v 3380, 1682, 1636, 1603, 1523; **HRMS** (ESI) calcd. for C₂₃H₂₃O₂N₂ [M+H]⁺ 359.1754, Found 359.1751.

N-(2-(4-methoxyphenylamino)-4-oxo-4-phenylbutyl)benzamide (8b)

Yellow solid (49 mg, yield: 42%). **m.p.** 119 – 121 °C; ¹**H NMR** (400 MHz, Acetone- d_6) δ 7.99 – 7.97 (m, 3H), 7.85– 7.83 (m, 2H), 7.62 – 7.57 (m, 1H), 7.51 – 7.46 (m, 3H), 7.42 (t, J = 7.4 Hz, 2H), 6.80 – 6.60 (m, 4H), 4.72 (d, J = 7.8 Hz, 1H), 4.29 – 4.26 (m, 1H), 3.82 – 3.75 (m, 1H), 3.66 (s, 3H), 3.60 – 3.54 (m, 1H), 3.40 – 3.29 (m, 2H); ¹³**C NMR** (100 MHz, Acetone- d_6) δ 199.3, 168.1, 152.8, 143.0, 138.3, 135.9, 133.8, 131.9, 129.4, 129.1, 128.9, 128.0, 115.5, 115.2, 55.8, 52.0, 44.1, 42.0; **IR** (KBr, cm⁻¹) v 3374, 1677, 1638, 1514; **MS** (CI) 388 [M]⁺ (5), 160 (35), 105 (100); **HRMS** (ESI) calcd. for C₂₄H₂₅N₂O₃ [M+H]⁺ 389.1860, found 389.1856.

N-(2-(4-chlorophenylamino)-4-oxo-4-phenylbutyl)benzamide (8c)

Colorless solid (52 mg, yield: 42%). **m.p.** 160 – 161 °C; ¹**H NMR** (400 MHz, Acetone- d_6) δ 7.97 (d, J = 7.4 Hz, 2H), 7.61 (t, J = 7.4 Hz, 1H), 7.50 (t, J = 7.6 Hz, 2H), 7.34 – 7.29 (m, 5H), 7.06 (d, J = 8.8 Hz, 2H), 6.69 (d, J = 8.7 Hz, 2H), 6.65 – 6.57 (m, 1H), 5.13 (d, J = 8.5 Hz, 1H), 5.08 – 5.01 (m, 2H), 4.26 – 4.21 (m, 1H), 3.53 – 3.47 (m, 1H), 3.37 – 3.31 (m, 3H); ¹³**C NMR** (100 MHz, Acetone- d_6) δ 199.1, 157.9, 147.7, 138.1, 138.0, 133.9, 129.5, 129.4, 129.1, 128.8, 128.6, 121.0, 114.9, 66.6, 50.7, 44.8, 41.6; **IR** (KBr, cm⁻¹) v 3391, 1679, 1634, 1601, 1536; **HRMS** (ESI) calcd. for C₂₃H₂₂³⁵ClN₂O₂ [M+H]⁺, C₂₃H₂₂³⁷ClN₂O₂ [M+2+H]⁺ 393.1364, 395,1340, found 393.1359, 393.1331.

4. Characterization Data for 2-Imidazolinium Chloride•ZnCl₂•H₂O and [Cu(PMPNC)₄]PF₆ Complex

Yellow solid (105 mg, yield: 52%). **m.p.** 177 – 178 °C; ¹**H** NMR (400 MHz, Acetone- d_6) δ 9.70 (s, 1H), 7.75 (d, J = 7.3 Hz, 2H), 7.61 – 7.51 (m, 7H), 7.42 – 7.25

(m, 8H), 6.90 - 6.87 (m, 2H), 5.78 (d, J = 1.6 Hz, 1H), 5.68 (d, J = 1.6 Hz, 1H), 5.51 (dd, J = 11.7, 5.7 Hz, 1H), 5.08 (t, J = 11.7 Hz, 1H), 4.97 (d, J = 15.6 Hz, 1H), 4.75 (d, J = 15.6 Hz, 1H), 4.56 (dd, J = 11.7, 5.8 Hz, 1H), 3.78 (s, 3H); ¹³C NMR (100 MHz, Acetone- d_6) δ 168.3, 165.7, 157.7, 143.1, 134.8, 133.9, 133.7, 131.8, 130.5, 130.2, 129.8, 129.72, 129.66 129.6, 129.4, 127.1, 123.3, 122.5, 115.9, 114.6, 64.1, 57.2, 55.7, 52.5; **IR** (KBr, cm⁻¹) v 1697, 1563, 1542, 1512, 1239; **MS** (ESI) 488 [M-ZnCl₃•H₂O]⁺; **Anal**. Calcd. for: C: 56.66, H: 4.75, N: 6.19. found: C: 56.43, H: 4.74, N: 6.05.

Cu(PMPNC)₄•PF₆

Yellow solid (65 mg, yield: 97%). **m.p.** 178 – 179 °C; ¹**H NMR** (400 MHz, Acetone- d_6) δ 7.68 (d, J = 9.0 Hz, 2H), 7.11 (d, J = 9.0 Hz, 2H), 3.89 (s, 3H); ¹⁹**F NMR** (376 MHz, Acetone- d_6) δ -71.6, -73.5; ¹³**C NMR** (100 MHz, Acetone- d_6) δ 162.2, 129.3, 116.0, 56.3; **IR** (KBr, cm⁻¹) v 2165, 1602, 1505, 1263, 1024, 846.

5. Synthesis and Characterization of ¹⁸O-1e

Scheme S5. Synthesis of ¹⁸O-1e

 $\mathbf{PhC}^{18}\mathbf{O}_{2}\mathbf{H}^{4}$

In a sealed tube, α , α , α -trichlorotoluene (2.5 g, 12.5 mmol) and H₂¹⁸O (1 g, 50 mmol) were heated at 120 °C for 24 h. The reaction mixture was concentrated *in vavuo* to remove excess water and HCl, then a solution of NaOH (0.15 M, 75 mL) was added to the crude mixture. The aqueous phase was washed with AcOEt, acidified with an

aqueous HCl (1 N) solution and extracted with CH_2Cl_2 (3×15 mL). The combined organic layers were dried upon anhydrous Na₂SO₄, filtered, concentrated *in vacuo* to afford benzoic acid (1.568 g, yield: 99%) as colorless solid.

¹**H NMR** (400 MHz, CDCl₃) δ 11.16 (br, 1H), 8.15 – 8.12 (m, 2H), 7.63 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.7 Hz, 2H); ¹³**C NMR** (100 MHz, CDCl₃) δ 172.5, 134.0, 130.4, 129.4, 128.6; **MS** (CI) 127 [M+1]⁺ (10), 126 [M]⁺ (100), 107 (90); **HRMS** (ESI) calcd. for C₇H₅¹⁸O₂ [M-H]⁻ 125.0369, found 125.0371.

PhC¹⁸OCl⁴

¹⁸O-Labeled benzoic acid (1.32 g, 10.47 mmol) was placed in a 15 mL round bottomed flask and SOCl₂ (1.58 g, 13.2 mmol) was added drop by drop. The mixture was heated gently for 1 h at 100 °C (1.5 mL SOCl₂ was added after 20 min to make a clear solution), cooled, and then distilled (about 70 °C) at atmospheric pressure to remove excess SOCl₂. A vacuum was applied and the bath temperature was slowly increased to 130 °C to give one fraction of PhC¹⁸OCl (1.379 g, yield: 92%) as colorless liquid.

¹**H NMR** (400 MHz, CDCl₃) δ 8.13 (d, J = 7.6 Hz, 2H), 7.69 (t, J = 7.3 Hz, 1H), 7.52 (t, J = 7.8 Hz, 2H); ¹³**C NMR** (100 MHz, CDCl₃) δ 168.6, 135.5, 133.4, 131.6, 129.1.

¹⁸O-labled-N-methylbenzamide

To a solution of PhC¹⁸OCl (1.426 g, 10 mmol) in Et₂O (25 mL) was added aqueous CH₃NH₂ solution (15 mL) slowly at ambient temperature. The reaction mixture was stirred for another 1 h, and then concentrated *in vacuo* to afford the crude ¹⁸O-labled-*N*-methylbenzamide product (1.22 g, yield: 89%) as colorless solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.18 (s, 1H), 7.84 – 7.82 (m, 2H),, 7.52 – 7.42 (m, 3H), 2.81 (d, *J* = 4.6 Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 166.3, 134.5, 130.4, 127.7, 126.6, 25.7; **MS** (CI) 138 $[M+1]^+$ (8), 137 $[M]^+$ (38), 107 (100); **HRMS** (ESI) calcd. for $C_8H_{10}N^{18}O[M+H]^+$ 138.0799, found 138.0799.

¹⁸O-labled-*N*-allyl-*N*-methylbenzamide

To a solution of ¹⁸O-labled-*N*-methylbenzamide (686 mg, 10 mmol) in dry THF (10 mL) was added NaH (240 mg, 10 mmol) at 0 °C. The reaction mixture was stirred for 15 min, and then allyl bromide (1.21 g, 10 mmol) was added drop by drop. The resulting mixture was allowed to warm to room temperature and stirred for another 1 h, then quenched with ice water, extracted with EtOAc (3×15 mL), the combined organic extracts were dried over anhydrous Na₂SO₄. After filtration and concentration *in vavuo*, the residue was subject to silica gel column chromatography (petroleum ether/EtOAc) to give ¹⁸O-labled-*N*-allyl-*N*-methylbenzamide (863 mg, yield: 97%) as yellow oil.

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.44 – 7.37 (m, 5H), 5.89 - 5.79 (m, 1H), 5.22 – 5.18 (m, 2H), 2.91 (s, 3H); ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 136.3, 133.3, 129.1, 128.1, 116.8; **MS** (CI) 178 $[M+1]^+$ (3), 177 $[M]^+$ (10), 162 (13), 107 (100); **HRMS** (ESI) calcd. for C₁₁H₁₄N¹⁸O $[M+H]^+$ 178.1112, found 178.1111.

¹⁸O-labled-*N*-(2-oxoethyl)-*N*-phenylacetamide (¹⁸O-1e)

¹⁸O-labled-*N*-allyl-*N*-methylbenzamide (709 mg, 4 mmol) was dissolved in $CH_2Cl_2/MeOH$ (v:v = 5:1) (48 mL). After cooling to -78 °C, ozone and oxygen gas were bubbled into the solution, After 2 h, the ozone was evacuated with nitrogen for 15 min at -78 °C, and dimethyl sulfide (5.0 mL) was added. The resulting solution was allowed to warm to room temperature over 1 h. The clear solution was

concentrated *in vacuo* and then purified by flash column chromatography on silica gel (petroleum ether/EtOAc) to afford substrate ¹⁸O-1e (789 mg, yield: 89%) as yellow oil.

Yellow oil (789 mg, yield: 89%). ¹**H NMR** (400 MHz, DMSO- d_6) δ 9.56 (s, 1H), 7.46 – 7.40 (m, 5H), 4.24 (s, 2H), 2.98 (s, 3H); ¹³**C NMR** (100 MHz, DMSO- d_6) δ 198.1, 170.5, 135.5, 129.0, 127.8, 126.2; **IR** (KBr, cm⁻¹) v 1731, 1634, 1398; **HRMS** (ESI) calcd. for C₁₈H₁₁NO¹⁸O [M+H]⁺ 180.0910, found 180.0908.

6. HRMS Spectra for ¹⁸O-1e and ¹⁸O-4e

Figure S2. HRMS spectra of ¹⁸O-4e

7. Crystallographic Data

Crystal data and structure refinement for	r 4a
Identification code	4a
Empirical formula	$C_{33}H_{30}F_3N_3O_5S$

Formula weight	637.66
Temperature	173(2) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	$a = 8.012(2) \text{ Å}$ $\alpha = 102.467(3)^{\circ}$
	$b = 13.115(4) \text{ Å} \qquad \beta = 104.463(4)^{\circ}$
	$c = 15.516(5) \text{ Å} \qquad \gamma = 98.556(3)^{\circ}$
Volume	1505.7(8) Å ³
Z	2
Calculated density	1.407 Mg/m ³
Absorption coefficient	0.173 mm ⁻¹
F(000)	664
Crystal size	$0.39 \times 0.37 \times 0.33 \text{ mm}$
Theta range for data collection	2.64 to 27.51°
Limiting indices	-10<=h<=10, -16<=k<=17, -20<=l<=20
Reflections collected/unique	19349/6868[R(int) = 0.0407]
Completeness to theta = 27.48°	99.1%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.000 and 0.6542
Refinement method	Full-matrix least-squares on F ²
Data/restraints/parameters	6868/0/407
Goodness-of-fit on F ²	1.112
Final R indices [I>2sigma(I)]	R1 = 0.0491, wR2 = 0.1246
R indices (all data)	R1 = 0.0530, wR2 = 0.1286
Largest diff. peak and hole	0.328 and -0.433 e. Å ⁻³

Figure S3. ORTEP presentation of 4a

Crystal data and structure refinement for	or $Cu(PMPNC)_4 \cdot PF_6$
Identification code	Cu(PMPNC) ₄ •PF ₆
Empirical formula	$C_{32}H_{28}CuF_6N_4O_3P$
Formula weight	741.09
Temperature	173(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P2/n
Unit cell dimensions	$a = 16.002(10) \text{ Å} \alpha = 90^{\circ}$
	$b = 6.542(4) \text{ Å} \qquad \beta = 90.151(9)^{\circ}$
	$c = 16.026(10) \text{ Å} \qquad \gamma = 90^{\circ}$
Volume	1678.0(18) Å ³
Z	2
Calculated density	1.467 Mg/m ³
Absorption coefficient	0.774 mm ⁻¹
F(000)	756
Crystal size	$0.31 \times 0.11 \times 0.07 \text{ mm}$
Theta range for data collection	3.11 to 27.39°
Limiting indices	-20<=h<=20, -8<=k<=8, -20<=l<=20

Reflections collected/unique	11265/3673[R(int) = 0.0651]
Completeness to theta = 27.48°	96.1%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.000 and 0.5733
Refinement method	Full-matrix least-squares on F ²
Data/restraints/parameters	3673/0/221
Goodness-of-fit on F ²	1.222
Final R indices [I>2sigma(I)]	R1 = 0.0807, wR2 = 0.1849
R indices (all data)	R1 = 0.0901, wR2 = 0.1923
Largest diff. peak and hole	0.543 and -0.462 e. $Å^{-3}$

Figure S4. ORTEP presentation of Cu(PMPNC)₄•PF₆

Crystal data and structure refinement for 2-imidazolinium chloride •ZnCl₂•H₂O complex

Identification code	$\label{eq:limit} 2\mbox{-imidazolinium chloride} \mbox{-} ZnCl_2 \mbox{-} H_2O$
Empirical formula	$C_{32}H_{23}Cl_3N_3O_3Zn$
Formula weight	678.33
Temperature	173(2) K
Wavelength	0.71073 Å

Crystal system	Monoclinic
Space group	P2(1)/c
Unit cell dimensions	$a = 17.046(3) \text{ Å} \qquad \alpha = 90^{\circ}$
	$b = 8.1172(16) \text{ Å} \qquad \beta = 108.30(3)^{\circ}$
	$c = 24.185(5) \text{ Å} \qquad \gamma = 90^{\circ}$
Volume	3177.2(11) Å ³
Z	4
Calculated density	1.418 Mg/m ³
Absorption coefficient	1,062 mm ⁻¹
F(000)	1400
Crystal size	$0.27 \times 0.23 \times 0.10 \text{ mm}$
Theta range for data collection	1.77 to 27.48°
Limiting indices	-22<=h<=21, -10<=k<=8, -31<=l<=31
Reflections collected/unique	22011/7276[R(int) = 0.0967]
Completeness to theta = 27.48°	99.7%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.000 and 0.5652
Refinement method	Full-matrix least-squares on F ²
Data/restraints/parameters	7276/0/380
Goodness-of-fit on F ²	1.089
Final R indices [I>2sigma(I)]	R1 = 0.0553, wR2 = 0.1187
R indices (all data)	R1 = 0.0745, wR2 = 0.1262
Largest diff. peak and hole	0.465 and -0.382 e. Å ⁻³

Figure S5. ORTEP presentation of 2-imidazolinium chloride•ZnCl₂•H₂O complex

8. References

- C.-H. Lei, D.-X. Wang, L. Zhao, J. Zhu and M.-X. Wang, J. Am. Chem. Soc., 2013, 135, 4708-4711.
- N. Ohmura, A. Nakamura, A. Hamasaki and M. Tokunaga, *Eur. J. Org. Chem.*, 2008, 5042-5045.
- 3. S. Hanada, T. Ishida, Y. Motoyama and H. Nagashima, J. Org. Chem., 2007, 72, 7551-7559.
- 4. M. Kobayashi and R. Kiritani, Bull. Chem. Soc. Jpn., 1966, 39, 1782-1784.

9. Copies of ¹H and ¹³C NMR Spectra

ч- Р[.]

4b

S35

