Supporting Information

Room Temparature, Open-flask C-H Arylation of Electron-deficient Heteroarenes with Aryl Triazenes: Rapid Synthesis of Heterobiaryls

Rui Wang* and John R. Falck

Division of Chemistry, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038, United States

E-mail: rwang@albany.edu; shairwang@gmail.com

Table of Contents

I. Introduction	S-01
II. General experiment procedure	S-02
III. Screening of the reaction conditions	S-02
IV. Calculated, elucidated and plausible mechanistic pathway	S-06
V. Part I-Key compounds characterization data	S-07
VI. Part II-Key compounds characterization data	S-15
VII. Triazenes general synthesis	S-23
VIII. References	S-27
VIV. ¹ H and ¹³ C NMR Spectra	S-28

I. Introduction

All reactions were conducted open to air atomphosphere unless otherwise stated. All solvents (CH₂Cl₂, CH₃CN and water) were purchased from Fisher Scientific Company and used without further purification. Flash chromatography (FC) was performed using E. Merck silica gel 60 (240-400 mesh). Thin layer chromatography (TLC) was performed using pre-coated plates purchased from E. Merck (silica gel 60 PF254, 0.25 mm). NMR spectra were recorded in CDCl₃, unless otherwise stated, on spectrometers at operating frequencies of 400 MHz (¹H) or 100 MHz (¹C) as indicated in the individual spectrum. Chemical shifts (δ) are given in ppm relative to residual solvent (usually chloroform δ = 7.26 for ¹H NMR or δ = 77.3 for proton decoupled ¹³C NMR) and coupling constants (*J*) in Hz. Multiplicity is tabulated as s for singlet, d for doublet, t for triplet, q for quartet, and m for multiplet. Low resolution LC-MS spectrum were obtained with an Agilent 1200 series API-LC/MSD spectrometer. High resolution mass spectral analyses were kindly provided by Professor Kevin A. Schug at Department of Chemistry & Biochemistry, The University of Texas at Arlington. All starting material compounds were purchased from Sigma-Aldrich or TCI America.

II. General experiment procedure

To a stirred solution of heteroarenes (0.4 mmol) in CH_2Cl_2 (1.5 mL) at ambient temperature under open-flask was added TFA (0.32 mL) and the triazenes (0.6 mmol), the mixture was then stirred vigorously for 5 minutes. H_2O (1.5 mL) and AgNO₃ solution (20 mol % in 1.0 mL water) and $K_2S_2O_8$ (0.32 g) was added successively. Reaction was monitored by TLC plate. If the starting material was not completely consumed, 3 hours later, additional AgNO₃ solution (20 mol % in 1.0 mL water) and $K_2S_2O_8$ (0.32 g) was added and the mixture was stirred vigorously for overnight. 2N NaOH was added to quench excess TFA, extracted with CH_2Cl_2 (5 X 20 mL), dried over Na₂SO₄. Solvent was evaporated under reduced pressure and the crude residue was purified by silica gel flash chromatography using fluent (10% MeOH in CH_2Cl_2) to provide corresponding products.

III. Screening of the reaction conditions

	-	-	1		-	-	1	
Entry	Solvents (2 mL)	Metals	Oxidant	Acids	Temp.	Time	Conv.(%)	Yield(%)
1	CF ₃ CH ₂ OH	AgNO ₃ (20 mol %)	$K_2S_2O_8$ (3.0 equiv)	TFA (0.16 mL)	RT	12	0	0
2	CH ₂ Cl ₂ /H ₂ O 3/4	AgNO ₃ (20 mol %)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (0.02 mL)	RT	12	60-70	43
3	Et ₂ O/H ₂ O 3/4	AgNO ₃ (20 mol %)	$K_2S_2O_8$ (3.0 equiv)	TFA (0.02 mL)	RT	12	>95	<5
4	THF/H ₂ O 3/4	AgNO ₃ (20 mol %)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (0.02 mL)	RT	12	40-50	30
5	Toluene/H ₂ O 3/4	AgNO ₃ (20 mol %)	$K_2S_2O_8$ (3.0 equiv)	TFA (0.02 mL)	RT	12	70	40
6	PhCl/H ₂ O 3/4	AgNO ₃ (20 mol %)	$K_2S_2O_8$ (3.0 equiv)	TFA (0.16 mL)	RT	12	90	67
7	PhCF ₃ /H ₂ O 3/4	AgNO3 (20 mol %)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (0.16 mL)	RT	12	90	70
8	DME/H ₂ O 3/4	AgNO ₃ (20 mol %)	$K_2S_2O_8$ (3.0 equiv)	TFA (0.02 mL)	RT	12	>95	trace
9	CH ₃ CN/H ₂ O 3/4	AgNO ₃ (20 mol %)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (0.02 mL)	RT	12	>95	messy
10	DMF/H ₂ O 3/4	AgNO ₃ (20 mol %)	$K_2S_2O_8$ (3.0 equiv)	TFA (0.02 mL)	RT	12	>95	messy
11	DMSO/H ₂ O 3/4	AgNO ₃ (20 mol %)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (0.02 mL)	RT	12	>95	10
12	MeOH/H ₂ O 3/4	AgNO ₃ (20 mol %)	$K_2S_2O_8$ (3.0 equiv)	TFA (0.02 mL)	RT	12	>90	messy
13	CH ₃ NO ₂ /H ₂ O 3/4	AgNO ₃ (20 mol %)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (0.02 mL)	RT	12	>90	messy

14	(CICH ₂) ₂ /H ₂ O 3/4	AgNO ₃ (20 mol %)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (0.02 mL)	RT	12	>90	messy
15	(CICH ₂) ₂ /H ₂ O 3/4	AgNO ₃ (20 mol %)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (0.02 mL)	RT	12	>90	messy
16	CHCl ₃ /H ₂ O 3/4	AgNO3 (20 mol %)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (0.02 mL)	RT	12	>80	40
17	1,4-dioxane/H ₂ O 3/4	AgNO ₃ (20 mol %)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (0.02 mL)	RT	12	>30	messy
18	Acetone/H ₂ O 3/4	AgNO3 (20 mol %)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (0.02 mL)	RT	12	>80	messy
19	CH ₃ NO ₂	AgNO ₃ (20 mol %)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (0.02 mL)	RT	12	30	trace
20	DMSO	AgNO ₃ (20 mol %)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (0.02 mL)	RT	12	30	trace
21	Acetone	AgNO ₃ (20 mol %)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (0.02 mL)	RT	12	20	trace
22	CH ₂ Cl ₂	AgNO ₃ (20 mol %)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (0.02 mL)	RT	12	30	trace
23	CH ₂ Cl ₂ /H ₂ O 3/4	AgNO ₃ (20 mol %)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (1.0 equiv)	RT	12	60	40
24	CH ₂ Cl ₂ /H ₂ O 3/4	AgNO ₃ (20 mol %)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (3.0 equiv)	RT	12	70	52
25	CH ₂ Cl ₂ /H ₂ O 3/4	AgNO ₃ (20 mol %)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (6.0 equiv)	RT	12	75	55
26	CH ₂ Cl ₂ /H ₂ O 3/4	AgNO ₃ (20 mol %)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (9.0 equiv)	RT	12	80	60
27	CH ₂ Cl ₂ /H ₂ O 3/4	AgNO3 (20 mol %)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (10.5 equiv)	RT	12	100	80
28	CH ₂ Cl ₂ /H ₂ O 3/4	AgNO ₃ (20 mol %)	K ₂ S ₂ O ₈ (3.0 equiv)	36% HCl (2 equiv)	RT	12	0	0
29	CH ₂ Cl ₂ /H ₂ O 3/4	AgNO ₃ (20 mol %)	K ₂ S ₂ O ₈ (3.0 equiv)	48% HBr (2 equiv)	RT	12	0	0
30	CH ₂ Cl ₂ /H ₂ O 3/4	AgNO ₃ (20 mol %)	K ₂ S ₂ O ₈ (3.0 equiv)	AcOH (2 equiv)	RT	12	70	50
31	CH ₂ Cl ₂ /H ₂ O 3/4	AgNO ₃ (20 mol %)	K ₂ S ₂ O ₈ (3.0 equiv)	65% HClO ₄ (2 equiv)	RT	12	95	73
32	CH ₂ Cl ₂ /H ₂ O 3/4	AgNO ₃ (20 mol %)	K ₂ S ₂ O ₈ (3.0 equiv)	MeSO ₃ H (2 equiv)	RT	12	100	trace
33	CH ₂ Cl ₂ /H ₂ O 3/4	AgNO ₃ (20 mol %)	K ₂ S ₂ O ₈ (3.0 equiv)	85% H ₃ PO ₄ (2 equiv)	RT	12	60	40
34	CH ₂ Cl ₂	AgNO ₃ (20 mol %)	K ₂ S ₂ O ₈ (3.0 equiv)	BF ₃ ·OEt ₂ (2 equiv)	RT	12	100	trace
35	CH ₂ Cl ₂ /H ₂ O 3/4	AgNO ₃ (20 mol %)	K ₂ S ₂ O ₈ (3.0 equiv)	TsOH·H ₂ O (2 equiv)	RT	12	0	0
36	CH ₂ Cl ₂ /H ₂ O 3/4	AgNO ₃ (20 mol %)	$K_2S_2O_8$ (3.0 equiv)	CSA (2 equiv)	RT	12	0	0
37	CH ₂ Cl ₂ /H ₂ O 3/4	Ag ₂ O (2 equiv)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (10.5 equiv)	RT	12	81	67
38	CH ₂ Cl ₂ /H ₂ O 3/4	AgF ₂ (2 equiv)	$K_2S_2O_8$ (3.0 equiv)	TFA (10.5 equiv)	RT	12	90	72
39	CH ₂ Cl ₂ /H ₂ O 3/4	Ag ₂ O (2equiv), AgSF ₆ (30 mol%)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (10.5 equiv)	RT	12	65	48
40	CH ₂ Cl ₂ /H ₂ O 3/4	Cu(OAc) ₂ H ₂ O (2 equiv)	$K_2S_2O_8$ (3.0 equiv)	TFA (10.5 equiv)	RT	12	0	0
41	CH ₂ Cl ₂	Cu(OAc) ₂ H ₂ O (2 equiv)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (10.5 equiv)	RT	12	0	0
42	CH ₂ Cl ₂ /H ₂ O 3/4	AgF (30 mol %)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (10.5 equiv)	RT	12	0	0

43	CH ₂ Cl ₂ /H ₂ O 3/4	Ag ₂ CrO ₄ (30 mol %)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (10.5 equiv)	RT	12	70	50
44	CH ₂ Cl ₂ /H ₂ O 3/4	Ag ₂ CO ₃ (30 mol %)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (10.5 equiv)	RT	12	80	72
45	CH ₂ Cl ₂ /H ₂ O 3/4	none	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (10.5 equiv)	RT	12	0	0
46	CH ₂ Cl ₂ /H ₂ O 3/4	BQ (2 equiv)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (10.5 equiv)	RT	12	0	0
47	CH ₂ Cl ₂ /H ₂ O 3/4	DDQ (2 equiv)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (10.5 equiv)	RT	12	0	0
48	CH ₂ Cl ₂ /H ₂ O 3/4	TBHP (2 equiv)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (10.5 equiv)	RT	12	0	0
49	CH ₂ Cl ₂ /H ₂ O 3/4	'BuOOBz (2 equiv)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (10.5 equiv)	RT	12	0	0
50	CH ₂ Cl ₂ /H ₂ O 3/4	PhI(OAc) ₂ (2 equiv)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (10.5 equiv)	RT	12	0	0
51	CH ₂ Cl ₂ /H ₂ O 3/4	Oxane (2 equiv)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (10.5 equiv)	RT	12	0	0
52	CH ₂ Cl ₂ /H ₂ O 3/4	CuCl (2 equiv)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (10.5 equiv)	RT	12	0	0
53	CH ₂ Cl ₂ /H ₂ O 3/4	CuBr (2 equiv)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (10.5 equiv)	RT	12	0	0
54	CH ₂ Cl ₂ /H ₂ O 3/4	Cu ₂ O (2 equiv)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (10.5 equiv)	RT	12	0	0
55	CH ₂ Cl ₂ /H ₂ O 3/4	Mn(OAc) ₃ (2 equiv)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (10.5 equiv)	60 °C	12	10	5
56	CH ₂ Cl ₂	Mn(OAc) ₃ (2 equiv)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (10.5 equiv)	60 °C	12	0	0
57	CH ₂ Cl ₂ /H ₂ O 3/4	Fe(acac) ₃ (20 mol%)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (10.5 equiv)	RT	12	30	10
58	CH ₂ Cl ₂ /H ₂ O 3/4	FeSO ₄ (20 mol%)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (10.5 equiv)	RT	12	0	0
59	CH ₂ Cl ₂ /H ₂ O 3/4	AgNO ₃ (20 mol %)	K ₂ S ₂ O ₈ (3.0 equiv)	none	60 °C	12	0	0
60	CH ₂ Cl ₂ /H ₂ O 3/4	Ag(TFA)(20 mol %)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (10.5 equiv)	RT	12	0	0
61	CH ₂ Cl ₂ /H ₂ O 3/4	HgCl ₂ (2 equiv)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (10.5 equiv)	RT	12	95	trace
62	CH ₂ Cl ₂ /H ₂ O 3/4	HgBr ₂ (2 equiv)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (10.5 equiv)	RT	12	0	0
63	CH ₂ Cl ₂ /H ₂ O 3/4	HgO (2 equiv)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (10.5 equiv)	RT	12	0	0
64	CH ₂ Cl ₂ /H ₂ O 3/4	Hg(CF ₃ CO ₂) ₂ (2 equiv)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (10.5 equiv)	RT	12	0	0
65	CH ₂ Cl ₂ /H ₂ O 3/4	HgCl ₄ (2 equiv)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (10.5 equiv)	RT	12	0	0
66	CH ₂ Cl ₂ /H ₂ O 3/4	HgO, Ag ₂ O (2 equiv)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (10.5 equiv)	RT	12	0	0
67	CH ₂ Cl ₂ /H ₂ O 3/4	AgNO ₃ (20 mol %)	(NH4)2S2O8	TFA (10.5 equiv)	RT	12	95	70

Additional more strict control experiments were employed, which was suggested by one of the reviewer, see following table 2,

Table 2

Entry	Solvents (2 mL)	Metals	Oxidant	Acids	Temp.	Time	Conv.(%)	Yield(%)
1	CH ₂ Cl ₂ /H ₂ O 3/4	none	none	TFA (0.16 mL)	Air, RT	24	< 5%	< 5 %

2	CH ₂ Cl ₂ /H ₂ O 3/4	none	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (0.16 mL)	Air, RT	24	< 5%	< 5%
3	CH ₂ Cl ₂ /H ₂ O 3/4	AgNO ₃ (20 mol %)	none	TFA (0.16 mL)	Air, RT	24	< 5%	< 5%
4	CH2Cl2/H2O 3/4	AgNO ₃ (20 mol %)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (0.16 mL)	Air, RT	24	100 %	80 %
5	CH ₂ Cl ₂ /H ₂ O 3/4	AgNO ₃ (20 mol %)	K ₂ S ₂ O ₈ (3.0 equiv)	TFA (0.16 mL)	Ar, RT	24	98 %	78 %

Note: Under standard reaction condition, if no AgNO₃ and $K_2S_2O_8$, all the 3-CN pyridine was left (entry 1, table 2); if no AgNO₃, we can detect trace mount of arylated product, almost all the 3-CN pyridine was left (entry 2); if no $K_2S_2O_8$, the 3-CN pyridine was almost left (entry 3); interestingly, there is no difference between the two reactions that were conducted under air or Ar atomosphere.

Also, a referred experiment was conducted, TEMPO was selected as initial reagent instead of $AgNO_3/K_2S_2O_8$, open to air under room temperture for 12 hours, only trace mount of arylated pyridine was detected, most of 3-CN pyridine was left.

However, if CH₃NO₂ was selected as solvent, the 3-CN pyridine was almost left.

0.2 mmol 0.3 mmol

3-CN pyridine was left.

In sharp contrast, if CH₃CN was chosen as reaction medium, we detected a major product.

Using 2N NaOH to quench the reaction, we found that most of 3-CN pyridine was consumed, but desired arylated product was < 5% yield. The major product of the reaction under current reaction condition is *N*-(p-tolyl)acetamide. Pale-yellow solid: $[M+H]^+$ 150.1698, $[M-H]^+$ 148.0761; ¹H NMR 7.43 (br s, 1H), 7.37 (d, *J* = 8.0 Hz, 2H), 7.10 (d, *J* = 8.0 Hz, 2H), 2.30 (s, 3H), 2.15 (s, 3H); ¹³C NMR 168.3, 135.2, 133.9, 129.4, 119.9, 24.4, 20.8.

Possible mechanistic pathway:

IV. Calculated, elucidated and plausible mechanism pathway

The possible transformation of intermediates Ag(I)/Ag(II) and $K_2S_2O_8$.

The possible pathway to obtain aromatic radicals from triazenes. The triazenes are firstly protonated; Secondly, the activated forms are transformed to C-N/N-N cleavage species, N-N cleavages are preferred; Finally, aromatic diazonium intermediate are transferred to phenyl radicals and the a sulfate radical anion is regenerated by the sulfate dianion as shown in eq. (1), (2) and scheme shown above.

Mechanistic hypothesis: heterocycles are activated firstly by Ag(I), aromatic radical intermediates attack the activated heterocycles; the corresponding radical intermediates lose one electron to provide the arylated products and either the Ag(I)/Ag(II) circles or tetrahedyopyrrole transformations are involved.

Consequently, we run a control experiment using 4-methoxyaniline. In situ generated phenyl dizonium salt was conducted in standard reaction condition,

We still isolated C2/C3 arylated products in 60% yield with ratio 1.1/1. This result indicated that without the tetrahydropyrrole group, the reaction still proceeded in moderate yield. This exclude the reduction function of tetrahydropyrrole group in such transformation.

Intermolecular Competition Experiment

Given the rapid and efficient arylation of heteroaromatics, we tried to elucidate its mode of action. Firstly, we conducted intermolecular competition studies with differently substituted triazenes (Me and F), which indicated the electron-rich methyl-substituted triazene to react preferentially. Secondly, another competition experiments between heterocycles (CF_3 and 'Bu) revealed that the electron-deficient heterocycle (CF_3 -substituted) dominated the corresponding arylated products. These results can be rationalized with the so-called polar effect which is thought to involve a charge transfer process, in which the aromatic radicals (initiated from triazenes, electron donor) to pyridinium ion (originated from heterocycles, electron acceptor).

V. Part I-Key compounds characterization data

AgNO₃ (20 mol %) K₂S₂O₈ (3 equiv) TFA (0.32 mL) CH₂Cl₂/H₂O (1.5 mL/2.5 mL) RT, 12 h

2-(p-tolyl)isonicotinonitrile (6a-C2):¹

White solid, 54% yield, 41.9 mg, m.p. 83-84 °C; R_f 0.5 (25% EtOAc in n-Hexane); ¹H NMR (CDCl₃, 400MHz) δ 2.42 (s, 3H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.40 (d, *J* = 8.0 Hz, 1H), 7.88 (s, 1H), 7.91-7.90 (m, 2H), 7.82 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (CDCl₃, 100MHz) δ 21.3, 116.8, 121.1, 121.7, 122.8, 126.8, 129.8, 134.5, 140.5, 150.5, 158.7; ESI-HRMS *m*/z Calcd for C₁₃H₁₀N₂ [M+H]·: 195.0917, Found: 195.0912.

3-(p-tolyl)isonicotinonitrile (6a-C3):^{1,2}

Colorless solid, 45% yield, 35.3 mg, m.p. 98-100 °C; R_f 0.4 (25% EtOAc in n-Hexane); ¹H NMR (CDCl₃, 400MHz) δ 2.44 (s, 3H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.48 (d, *J* = 8.0 Hz, 2H), 7.61 (d, *J* = 4.0 Hz, 1H), 8.72 (d, *J* = 8.0 Hz, 1H), 8.85 (s, 1H); ¹³C NMR (CDCl₃, 100MHz) δ 21.4, 116.5, 118.7, 126.0, 128.6, 129.9, 131.5, 138.7, 139.8, 148.4, 150.9; ESI-HRMS *m*/*z* Calcd for C₁₃H₁₀N₂ [M+H]·: 195.0917, Found: 195.0910.

2-(4-fluorophenyl)isonicotinonitrile (6b):³

Yellow solid, 100% yield, 79.2 mg, m.p. 143-145 °C; R_f 0.3 (25% EtOAC in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.19 (t, *J* = 8.0 Hz, 2H), 7.45 (d, *J* = 4.0 Hz, 1H), 7.90 (s, 1H), 8.02-7.98 (dd, *J* = 8.0, 4.0 Hz, 2H), 8.84 (d, *J* = 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 116.0 (d, *J* _{*C-F*} = 21.0 Hz), 116.6, 121.3, 121.7, 123.1, 129.0 (d, *J* _{*C-F*} = 9.0 Hz), 133.5 (d, *J* _{*C-F*} = 3.0 Hz), 150.6, 157.6, 164.2 (d, *J* _{*C-F*} = 249.5 Hz); ESI-HRMS *m*/*z* Calcd for C₁₂H₇FN₂ [M+H]: 199.0666, Found: 199.0660.

2-(4-fluorophenyl)nicotinonitrile (6ba-C2):

Brown solid, 35% yield, 190 mg (5 mmol scale, unoptimized), m.p. 145-147 °C; R_f 0.3 (50% EtOAc in n-Hexane); Major, ¹H NMR (400 MHz, CDCl₃) δ 8.86 (d, *J* = 4.0 Hz, 1H), 8.05 (d, *J* = 4.0 Hz, 1H), 7.94 (t, *J* = 8.0 Hz, 2H), 7.37 (t, *J* = 8.0 Hz, 1H), 7.22 (dd, *J* = 4.0 Hz, 8.0Hz, 2H); ¹³C NMR (100 MHz, 100 MHz)

CDCl₃) δ 164.0 (d, *J* _{*C-F*} = 250.0 Hz), 159.9, 152.7, 141.9, 133.3 (d, *J* _{*C-F*} = 5.0 Hz), 131.0 (d, *J* _{*C-F*} = 9.0 Hz), 121.6, 117.6, 115.8 (d, *J* _{*C-F*} = 22.0 Hz), 107.3; ESI-HRMS *m*/*z* Calcd for C₁₂H₇FN₂ [M+H]·: 199.0666, Found: 199.0664.

6-(4-fluorophenyl)nicotinonitrile (6bb-C6):⁴

Gray solid, 35% yield, 190 mg (5 mmol scale, unoptimized), m.p. 140-141 °C; R_f 0.1 (50% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 8.86 (d, *J* = 4.0 Hz, 1H), 8.05 (d, *J* = 4.0 Hz, 1H), 7.94 (t, *J* = 8.0 Hz, 2H), 7.37 (t, *J* = 8.0 Hz, 1H), 7.21 (d, *J* = 4.0 Hz, 1H), 7.23 (d, *J* = 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 165.2 (d, *J* _{C-F} = 250.0 Hz), 154.0, 152.9, 151.2, 131.5 (d, *J* _{C-F} = 3.0 Hz), 130.5 (d, *J* _{C-F} = 9.0 Hz), 123.6, 116.6, 116.4 (d, *J* _{C-F} = 22.0 Hz), 108.5; ESI-HRMS *m*/*z* Calcd for C₁₂H₇FN₂ [M+H]·: 199.0666, Found: 199.0658.

2-(4-chlorophenyl)isonicotinonitrile (6c-C2):³

White solid, 94% yield, 80.5 mg, m.p. 161-162 °C; R_f 0.6 (25% EtOAC in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.43 (m, 3H), 7.91 (s, 1H), 7.95 (d, *J* = 8.0 Hz, 2H), 8.85 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 116.6, 121.4, 121.8, 123.4, 128.2, 129.3, 135.7, 136.5, 150.7, 157.5; ESI-HRMS *m*/*z* Calcd for C₁₂H₇CIN₂ [M+H]: 215.0371, Found: 215.0360.

2-(4-(benzyloxy)phenyl)isonicotinonitrile (6d-C2):

Red-solid, 18% yield, 18.3 mg, m.p. 143-144 °C; R_f 0.4 (25% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 5.14 (s, 2H), 7.09 (d, *J* = 8.0 Hz, 2H), 7.47-7.33 (m, 6H), 7.87 (s, 1H), 7.96 (d, *J* = 8.0 Hz, 2H), 8.80 (d, *J* = 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 70.1, 115.3, 116.9, 121.1, 121.3, 122.3, 127.5, 128.1, 128.4, 128.7, 130.1, 136.5, 150.5, 158.3, 160.6; ESI-HRMS *m/z* Calcd for C₁₉H₁₄N₂O [M+H]·: 287.1179, Found: 287.1165.

3-(4-(benzyloxy)phenyl)isonicotinonitrile (6d-C3):

White-solid, 24% yield, 27.2 mg, m.p. 113-114 °C; R_f 0.1 (25% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 5.14 (s, 2H), 7.14 (d, *J* = 8.0 Hz, 2H), 7.47-7.35 (m, 5H), 7.54 (d, *J* = 8.0 Hz, 2H), 7.59 (d, *J* = 8.0 Hz, 1H), 8.70 (d, *J* = 4.0 Hz, 1H), 8.84 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 70.2, 115.5, 116.6, 118.4, 126.0, 126.9, 127.5, 128.2, 128.7, 130.2, 136.4, 138.4, 148.1, 150.9, 159.9; ESI-HRMS *m/z* Calcd for C₁₉H₁₄N₂O [M+H]: 287.1179, Found: 287.1167. **2-(4-benzoylphenyl)isonicotinonitrile (6e-C2):**

Red solid, 27% yield, 31.1 mg, m.p. 130-132 °C; R_f 0.4 (25% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.53-7.49 (m, 3H), 7.62 (d, *J* = 8.0 Hz, 1H), 7.83 (d, *J* = 8.0 Hz, 2H), 7.94 (d, *J* = 8.0 Hz, 2H), 8.02 (s, 1H), 8.13 (d, *J* = 8.0 Hz, 2H), 8.91 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 116.5, 121.5, 122.4, 123.9, 126.9, 128.4, 130.1, 130.7, 132.7, 137.3, 138.8, 140.7, 150.9, 157.6, 196.1; ESI-HRMS *m*/*z* Calcd for C₁₉H₁₂N₂O [M+H]·: 285.1022, Found: 285.1028.

3-(4-benzoylphenyl)isonicotinonitrile (6e-C3):

White solid, 36% yield, 40.2 mg, m.p. 160-162 °C; $R_f 0.1$ (25% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.52 (t, *J* = 8.0 Hz, 2H), 7.63 (t, *J* = 8.0 Hz, 1H), 7.68 (d, *J* = 8.0 Hz, 1H), 7.72 (d, *J* = 8.0 Hz, 2H), 7.85 (d, *J* = 8.0 Hz, 2H), 7.98 (d, *J* = 8.0 Hz, 2H), 8.83 (d, *J* = 4.0 Hz, 1H), 8.92 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 116.0, 118.9, 126.2, 128.5, 128.8, 130.1, 130.7, 132.8, 137.1, 138.1, 138.4, 149.4, 150.4, 150.8, 195.9; ESI-HRMS *m*/*z* Calcd for C₁₉H₁₂N₂O [M+H]·: 285.1022, Found: 285.1007.

methyl 4-(4-cyanopyridin-2-yl)benzoate (6f-C2):

Light-red solid, 61⁹/₀ yield, 41.5 mg, m.p. 99-100 °C; R_f 0.4 (25% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 3.96 (s, 3H), 7.51 (d, *J* = 4.0 Hz, 1H), 8.00 (s, 1H), 8.08 (d, *J* = 8.0 Hz, 2H), 8.18 (d, *J* = 8.0 Hz, 2H), 8.90 (d, *J* = 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 52.3, 116.5, 121.4, 122.4, 123.9, 126.9, 130.3, 131.5, 141.2, 150.8, 157.5, 166.5; ESI-MS [M+MeOH+H]·: 271.3. **2-(4-(trifluoromethoxy)phenyl)isonicotinonitrile (6g-C2):**⁵

Light-yellow solid, 54% yield, 45.9 mg, m.p. 64-65 °C; R_f 0.5 (25% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, *J* = 8.0 Hz, 2H), 7.48 (d, *J* = 4.0 Hz, 1H), 7.92 (s, 1H), 8.04 (d, *J* = 4.0 Hz, 2H), 8.86 (d, *J* = 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 116.5, 120.4 (q, *J* _{*C-F*} = 257.0 Hz), 121.3, 121.4, 121.9, 123.5, 124.2, 128.5, 135.8, 150.7, 157.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -57.7; ESI-HRMS *m*/*z* Calcd for C₁₃H₇F₃N₂O [M+H]: 265.0583, Found: 265.0578.

3-(4-(trifluoromethoxy)phenyl)isonicotinonitrile (6g-C3):

White solid, 18% yield, 15.3 mg, m.p. 71-72 °C; $R_f 0.4$ (25% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, J = 8.0 Hz, 2H), 7.64-7.61 (m, 3H), 8.79 (d, J = 4.0 Hz, 1H), 8.85 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 116.1, 118.8, 120.4 (q, J_{C-F} = 257.2 Hz), 121.5, 126.1, 130.4, 132.9, 137.3, 149.2, 150.2, 150.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -57.8; ESI-HRMS *m*/*z* Calcd for C₁₃H₇F₃N₂O [M+H]·: 265.0583, Found: 265.0578.

2-phenylisonicotinonitrile (6h-C2):

Colorless solid, 71% yield, 51.1 mg, m.p. 75-76 °C; $R_f 0.5 (25\% EtOAc in n-Hexane)$; ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 8.0 Hz, 1H), 7.54-7.48 (m, 3H), 7.95 (s, 1H), 8.00 (d, J = 8.0 Hz, 2H), 8.86 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 116.7, 121.2, 122.0, 123.1, 127.0, 129.1, 130.2, 137.3, 150.6, 158.8; ESI-HRMS *m/z* Calcd for C₁₂H₈N₂ [M+H]·: 181.0760, Found: 181.0758. **3-phenylisonicotinonitrile (6h-C3):**⁶

Colorless oil, 7% yield, 5.1 mg, m.p. 92-93 °C, R_f 0.2 (25% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.60-7.51 (m, 5H), 7.63 (d, *J* = 8.0 Hz, 1H), 8.76 (d, *J* = 4.0 Hz, 1H), 8.87 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 116.3, 118.8, 126.0, 128.8, 129.2, 129.6, 134.4, 138.7, 148.7, 151.0; ESI-HRMS *m/z* Calcd for C₁₂H₈N₂ [M+H]·: 181.0760, Found: 181.0752.

2-(3-(trifluoromethyl)phenyl)isonicotinonitrile (6i-C2):

Light-yellow solid, 41% yield, 41.1 mg, m.p. 73-74 °C; R_f 0.4 (25% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 4.0 Hz, 1H), 7.65 (d, *J* = 8.0 Hz, 1H), 7.75 (d, *J* = 8.0 Hz, 1H), 7.99 (s, 1H), 7.18 (d, *J* = 8.0 Hz, 1H), 8.31 (s, 1H), 8.90 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 157.1, 150.9, 138.0, 131.7 (q, *J* _{C-F} = 32.0 Hz), 130.0, 129.6, 126.8 (q, *J* _{C-F} = 3.0 Hz), 124.0, 123.9 (q, *J* _{C-F} = 4.0 Hz), 123.9 (q, *J* _{C-F} = 271.0 Hz), 122.0, 121.6, 116.4; ¹⁹F NMR (376 MHz, CDCl₃) δ - 62.8; ESI-HRMS *m*/*z* Calcd for C₁₃H₇F₃N₂ [M+H]⁺: 249.0634, Found: 249.0632.

3-(3-(trifluoromethyl)phenyl)isonicotinonitrile (6i-C3):

Colorless solid, 32% yield, 30.8 mg, m.p. 59-60 °C; $R_f 0.1$ (25% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 8.0 Hz, 1H), 7.71 (d, J = 8.0 Hz, 1H), 7.79 (s, 1H), 7.82 (d, J = 4.0 Hz, 2H), 8.83 (d, J = 4.0 Hz, 1H), 8.88 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 150.8, 149.6, 135.2, 132.2,

131.8 (q, J_{C-F} = 33.0 Hz), 129.7, 129.6, 126.4 (q, J_{C-F} = 4.0 Hz), 126.4 (q, J_{C-F} = 271.0 Hz), 126.1, 125.7 (q, J_{C-F} = 4.0 Hz), 119.1, 115.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.8; ESI-HRMS *m*/*z* Calcd for C₁₃H₇F₃N₂ [M+H]·: 249.0634, Found: 249.0631.

2-(3-fluorophenyl)isonicotinonitrile (6j-C2):

Colorless solid, 52% yield, 41.4 mg, m.p. 133-134 °C; R_f 0.5 (25% EtOAc in n-Hexane); ¹H NMR (400 MHz, CD₃OD) δ 7.22 (dt, *J* = 8.0, 4.0 Hz, 1H), 7.51 (dd, *J* = 12.0, 8.0 Hz, 1H), 7.65 (dd, *J* = 5.4, 1.6 Hz, 1H), 7.85 (td, *J* = 10.4, 2.0 Hz, 1H), 7.88 (ddd, *J* = 7.2, 1.6, 0.8 Hz, 1H), 8.24 (s, 1H), 8.84 (dd, *J* = 5.2, 0.8 Hz, 1H); ¹³C NMR (100 MHz, CD₃OD) δ 113.4 (d, *J* _{*C-F*} = 23.0 Hz), 116.2, 116.4 (d, *J* _{*C-F*} = 22.0 Hz), 121.5, 122.3 (d, *J* _{*C-F*} = 3.0 Hz), 122.5 (d, *J* _{*C-F*} = 3.0 Hz), 124.1, 130.5 (d, *J* _{*C-F*} = 8.0 Hz), 139.7 (d, *J* _{*C-F*} = 7.7 Hz), 150.4, 156.9 (d, *J* _{*C-F*} = 2.8 Hz), 163.3 (d, *J* _{*C-F*} = 243.0 Hz); ¹⁹F NMR (376 MHz, CD₃OD) δ -114.0; ESI-HRMS *m*/*z* Calcd for C₁₂H₇FN₂ [M+H]⁺: 199.0666, Found: 199.0658. **3-(3-fluorophenyl)isonicotinonitrile (6j-C3):**

Light-yellow solid, 33% yield, 25.9 mg, m.p. 96-97 °C; R_f 0.1 (25% EtOAc in n-Hexane); ¹H NMR (400 MHz, CD₃OD) δ 7.30 (dt, *J* = 8.0, 4.0 Hz, 1H), 7.47-7.41 (m, 2H), 7.65 (dd, *J* = 16.0, 8.0 Hz, 1H), 7.85 (dd, *J* = 8.0, 4.0 Hz, 1H), 8.78 (d, *J* = 4.0, 1H), 8.85 (s, 1H); ¹³C NMR (100 MHz, CD₃OD) δ 115.5 (d, *J* _{*C-F*} = 5.0 Hz), 115.7, 116.0 (d, *J* _{*C-F*} = 21.0 Hz), 119.3, 124.7 (d, *J* _{*C-F*} = 5.0 Hz), 126.4, 130.7 (d, *J* _{*C-F*} = 9.0 Hz), 136.8 (d, *J* _{*C-F*} = 8.0 Hz), 137.5 (d, *J* _{*C-F*} = 2.0 Hz), 148.9, 150.1, 162.8 (d, *J* _{*C-F*} = 245.0 Hz); ¹⁹F NMR (376 MHz, CD₃OD) δ -114.0; ESI-HRMS *m*/*z* Calcd for C₁₂H₇FN₂ [M+H]·: 199.0666, Found: 199.0659.

2-(3-chlorophenyl)isonicotinonitrile (6k-C2):

White solid, 44% yield, 37.7 mg, m.p. 113-114 °C; R_f 0.7 (25% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.44 (m, 3H), 7.86 (dd, *J* = 8.0, 4.0 Hz, 1H), 7.92 (s, 1H), 8.03 (s, 1H), 8.87 (d, *J* = 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 116.5, 121.4, 122.0, 123.8, 125.0, 127.2, 130.2, 130.3, 135.3, 139.0, 150.7, 157.2; ESI-HRMS *m/z* Calcd for C₁₂H₇ClN₂ [M+H]·: 215.0371, Found: 215.0373. **3-(3-chlorophenyl)isonicotinonitrile (6k-C3):**

White solid, 40% yield, 34.2 mg, m.p. 145-147 °C; R_f 0.5 (25% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.48 (m, 3H), 7.56 (d, *J* = 4.0 Hz, 1H), 7.65 (d, *J* = 4.0 Hz, 1H), 8.80 (d, *J* = 4.0 Hz, 1H), 8.85 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 115.9, 118.9, 126.1, 127.1, 128.8, 129.7, 130.4,

135.2, 136.1, 137.3, 149.3, 150.7; ESI-HRMS *m*/*z* Calcd for C₁₂H₇ClN₂ [M+H]-: 215.0371, Found: 215.0369.

ethyl 3-(4-cyanopyridin-2-yl)benzoate (6l):

Light-yellow oil, 80% yield, 80.6 mg, R_f 0.4 (25% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 1.44 (t, *J* = 8.0 Hz, 3H), 4.44 (q, *J* = 8.0 Hz, 2H), 7.49 (d, *J* = 8.0 Hz, 1H), 7.62 (t, *J* = 4.0 Hz, 1H), 8.01 (s, 1H), 8.16 (d, *J* = 4.0 Hz, 1H), 8.22 (d, *J* = 4.0 Hz, 1H), 8.64 (d, *J* = 4.0 Hz, 1H), 8.89 (d, *J* = 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 14.4, 61.5, 116.6, 121.4, 122.1, 123.6, 128.0, 129.2, 131.1, 131.2, 131.4, 137.6, 150.8, 157.7, 166.1; ESI-HRMS *m/z* Calcd for C₁₅H₁₂N₂O₂ [M+H]⁺: 253.0972, Found: 253.0968.

2-(3-methoxyphenyl)isonicotinonitrile (6m):

Yellow solid, 31% yield, 26.0 mg, m.p. 87-89 °C; R_f 0.6 (25% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 3.90 (s, 3H), 7.04 (dd, *J* = 8.0, 4.0 Hz, 1H), 7.46-7.40 (m, 2H), 7.54 (d, *J* = 8.0 Hz, 1H), 7.58 (s, 1H), 7.94 (s, 1H), 8.86 (d, *J* = 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.4, 95.0, 112.1, 116.3, 116.7, 119.3, 121.2, 122.2, 123.3, 130.1, 138.7, 150.5, 160.3; ESI-HRMS *m*/z Calcd for C₁₃H₁₀N₂O [M+H]: 211.0866, Found: 211.0869.

2-(3-formylphenyl)isonicotinonitrile (6n):

White solid, 25% yield, 20.8 mg, m.p. 158-160 °C; $R_f 0.3$ (25% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 8.0 Hz, 1H), 7.70 (t, J = 8.0 Hz, 1H), 8.03-8.00 (m, 2H), 8.30 (d, J = 8.0 Hz, 1H), 8.53 (s, 1H), 8.91(d, J = 4.0 Hz, 1H), 10.1 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 116.4, 121.6, 122.0, 123.9, 128.2, 129.9, 131.0, 132.6, 137.1, 138.3, 150.9, 157.2, 191.7; ESI-HRMS *m/z* Calcd for C₁₃H₈N₂O [M+H]·: 209.0709, Found: 209.0713.

2-(o-tolyl)isonicotinonitrile (6o):

Colorless oil, 18% yield, 14.0 mg, R_f 0.6 (25% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 2.38 (s, 3H), 7.35-7.31 (m, 2H), 7.38 (t, *J* = 8.0 Hz, 2H), 7.48 (d, *J* = 8.0 Hz, 1H), 7.65 (s, 1H), 8.88 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 20.3, 116.6, 120.6, 122.9, 125.6, 126.2, 129.3, 129.6, 131.1, 135.9, 138.3, 150.2, 161.5; ESI-HRMS *m*/*z* Calcd for C₁₃H₁₀N₂ [M+H][.]: 195.0917, Found: 195.0913.

2-(2-bromophenyl)isonicotinonitrile (6p):

Colorless oil, 25% yield, 25.8 mg, R_f 0.3 (25% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, *J* = 8.0 Hz, 1H), 7.45 (d, *J* = 8.0 Hz, 1H), 7.55-7.52 (m, 2H), 7.71 (d, *J* = 8.0 Hz, 1H), 7.88 (s, 1H), 8.90 (d, *J* = 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 116.5, 120.3, 121.5, 123.7, 126.5, 127.8, 130.7, 131.4, 133.6, 139.2, 150.4, 159.6; ESI-HRMS *m*/*z* Calcd for C₁₂H₇BrN₂ [M+H]: 258.9865, Found: 258.9852.

2-(2-(phenylsulfonyl)phenyl)isonicotinonitrile (6q):

Yellow solid, 24% yield, 30.7 mg, m.p. 145-147 °C; R_f 0.9 (25% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.20 (d, *J* = 8.0 Hz, 1H), 7.31 (t, *J* = 8.0 Hz, 1H), 7.54-7.49 (m, 4H), 7.62-7.57 (m, 2H), 7.95 (d, *J* = 8.0 Hz, 1H), 8.00 (d, *J* = 8.0 Hz, 2H), 8.25 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 119.9, 124.8, 127.7, 128.3, 128.5, 128.8, 129.3, 129.4, 130.4, 131.1, 133.2, 133.3, 134.9, 139.0, 140.8, 141.6; ESI-HRMS *m*/*z* [H+MeOH+H]⁺ = 353.1

2-(3-chloro-4-fluorophenyl)isonicotinonitrile (6r-C2):

Yellow solid, 36% yield, 33.3 mg, m.p. 109-110 °C; R_f 0.6 (25% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.25 (t, *J* = 8.0 Hz, 1H), 7.80 (d, *J* = 4.0 Hz, 1H), 7.95- 7.92 (m, 1H), 8.16 (t, *J* = 8.0 Hz, 1H), 8.24 (s, 1H), 8.82 (d, *J* = 8.0 Hz, 1H); * impurities 4.00 (s, 3H) ¹³C NMR (100 MHz, CDCl₃) δ 116.9 (d, *J* _{*C-F*} = 21.0 Hz), 119.4, 121.6, 121.8 (d, *J* _{*C-F*} = 18.0 Hz), 126.7 (d, *J* _{*C-F*} = 8.0 Hz), 129.4, 135.7 (d, *J* _{*C-F*} = 4.0 Hz), 138.4, 150.6, 156.1, 159.0 (d, *J* _{*C-F*} = 251.0 Hz), 165.5; * impurities 52.9; ¹⁹F NMR (376 Mhz, CDCl₃) δ -114.5; ESI-HRMS *m*/*z* Calcd for C₁₂H₆CIFN₂ [M+H]-: 233.0276, Found: 233.0265.

3-(3-chloro-4-fluorophenyl)isonicotinonitrile (6r-C3):

Colorless solid, 18% yield, 17.1 mg, m.p. 148-151 °C; R_f 0.2 (25% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.33 (t, *J* = 8.0 Hz, 1H), 7.48 (q, *J* = 4.0 Hz, 1H), 7.65-7.61 (m, 2H), 8.80 (d, *J* = 4.0 Hz, 1H), 8.83 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 115.8, 117.5 (d, *J* _{*C-F*} = 21.0 Hz), 118.9, 122.2 (d, *J* _{*C-F*} = 19.0 Hz), 126.0, 128.9 (d, *J* _{*C-F*} = 7.0 Hz), 131.1, 131.5 (d, *J* _{*C-F*} = 4.0 Hz), 136.4, 149.4, 150.6, 159.0 (d, *J* _{*C-F*} = 252.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -113.3; ESI-HRMS *m*/z Calcd for C₁₂H₆CIFN₂ [M+H]: 233.0276, Found: 233.0265.

2-(2-chloro-4-(trifluoromethyl)phenyl)isonicotinonitrile (6s-C2):

Yellow solid, 35% yield, 39.5 mg, m.p. 125-127 °C; R_f 0.4 (25% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 6.69 (d, *J* = 8.0 Hz, 1H), 7.76 (d, *J* = 8.0 Hz, 1H), 6.93 (d, *J* = 8.0 Hz, 1H), 7.05 (d, *J* = 4.0 Hz, 1H), 7.32 (d, *J* = 8.0 Hz, 1H), 7.61 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 113.5, 121.5, 121.7, 123.4 (q, *J* _{C-F} = 34.0 Hz), 123.4 (q, *J* _{C-F} = 271.0 Hz), 124.7, 125.2 (q, *J* _{C-F} = 4.0 Hz), 126.9 (q, *J* _{C-F} = 3.0 Hz), 132.2, 133.9, 138.8, 142.3, 143.6; * impurities 176.2, 138.5; ¹⁹F NMR (376 MHz, CDCl₃) δ - 62.0. * impurities -75.5, -63.0, -62.6, -62.2, -61.4; ESI-MS *m/z* 283.2

2-(3,4-dimethoxyphenyl)isonicotinonitrile (6t):

Colorless solid, 10% yield, 9.6 mg, m.p. 86-88 °C; $R_f 0.6 (25\% EtOAc in n-Hexane)$; ¹H NMR (400 MHz, CDCl₃) δ 3.49 (s, 6H), 7.03 (d, *J* = 8.0 Hz, 1H), 7.43 (d, *J* = 8.0 Hz, 1H), 7.53 (d, *J* = 8.0 Hz, 1H), 7.59 (s, 1H), 7.93 (s, 1H), 8.86 (d, *J* = 4.0 Hz, 1H); * impurities 3.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 55.4, 112.1, 116.3, 116.7, 119.3, 121.2, 122.2, 123.3, 130.1, 138.7, 150.5, 158.5, 160.3; * impurities 30.9, 50.9; ESI-HRMS *m*/z Calcd for C₁₄H₁₂N₂O₂ [M-OMe+H]: 211.1.

VI. Part II-Key compounds characterization data

2-(p-tolyl)-4-(trifluoromethyl)pyridine (8a):1

Colorless oil, 80% yield brsm, 75.8 mg, R_f 0.7 (50% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 2.43 (s, 3H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.42 (d, *J* = 4.0 Hz, 1H), 7.90 (s, 1H), 7.93 (d, *J* = 8.0 Hz, 2H), 8.84 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.3, 115.6 (q, *J*_{*C-F*} = 4.0 Hz), 117.2 (q, *J*_{*C-F*} = 4.0 Hz), 123.0 (q, *J*_{*C-F*} = 273.0 Hz), 126.9, 129.7, 135.2, 139.1 (q, *J*_{*C-F*} = 34.0 Hz), 140.1, 150.5, 158.8; ESI-HRMS *m*/z Calcd for C₁₃H₁₀F₃N [M+H]·: 238.0838, Found: 238.0831. **4-(tert-butyl)-2-(p-tolyl)pyridine (8b):**¹

Yellow oil, 54% yield brsm, 31.2 mg, R_f 0.8 (50% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 1.36 (s, 9H), 2.41 (s, 3H), 7.21 (d, *J* = 4.0 Hz, 1H), 7.28 (d, *J* = 8.0 Hz, 2H), 7.68 (s, 1H), 7.87 (d, *J* = 8.0 Hz, 2H), 8.58 (d, *J* = 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.3, 30.6, 34.8, 117.5, 119.0, 126.9, 129.4, 137.2, 138.7, 149.4, 157.5, 160.6; ESI-HRMS *m*/z Calcd for C₁₆H₁₉N [M+H]·: 226.1590, Found: 226.1582.

2-(p-tolyl)nicotinonitrile (8d-C2):7

White solid, 42% yield brsm, 32.5 mg, m.p. 83-84 °C; R_f 0.5 (50% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 8.86 (d, *J* = 4.0 Hz, 1H), 8.05 (t, *J* = 4.0 Hz, 1H), 7.83 (s, 2H), 7.36-7.33 (m, 3H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.0, 152.6, 141.8, 140.5, 134.4, 129.4, 128.8, 121.2, 117.8, 107.2, 21.4; ESI-HRMS *m*/z Calcd for C₁₃H₁₁N₂ [M+H]-: 195.0917, Found: 195.0915.

6-(p-tolyl)nicotinonitrile (8d-C6):⁸

Me

Yellow solid, 38% yield brsm, 29.6 mg, m.p. 100-102 °C; R_f 0.4 (50% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 8.92 (s, 1H), 8.78 (d, *J* = 4.0 Hz, 1H), 7.52 (d, *J* = 8.0 Hz, 2H), 7.46 (d, *J* = 4.0 Hz, 1H), 7.34 (d, *J* = 4.0 Hz, 2H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.0, 152.7, 152.3, 140.7, 132.5, 129.9, 128.3, 123.6, 116.9, 108.4, 21.4; ESI-HRMS *m/z* Calcd for C₁₃H₁₁N₂ [M+H][.]: 195.0917, Found: 195.0911.

1-(2-(p-tolyl)pyridin-3-yl)ethanone (8e-C2):¹

8e-C2 \sim Me Yellow solid, 44% yield brsm, 37.4 mg, m.p. 101-102 °C; Rf 0.7 (10% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 2.07 (s, 3H), 2.41 (s, 3H), 7.27 (d, *J* = 8.0 Hz, 2H), 7.32 (dd, *J* = 8.0, 4.0 Hz, 1H), 7.46 (d, *J* = 8.0 Hz, 2H), 7.83 (d, *J* = 8.0 Hz, 1H), 8.75 (d, *J* = 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.3, 30.3, 121.6, 129.0, 129.5, 136.1, 136.2, 136.8, 139.5, 150.8, 157.2, 203.9; ESI-HRMS *m/z* Calcd for C₁₄H₁₃NO [M+H]: 212.1070, Found: 212.1071.

1-(6-(p-tolyl)pyridin-3-yl)ethanone (8e-C6):¹

Colorless oil, 32% yield brsm, 26.7 mg, R_f 0.9 (10% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 2.42 (s, 3H), 2.65 (s, 3H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.97 (d, *J* = 8.0 Hz, 2H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.97 (d, *J* = 8.0 Hz, 2H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.97 (d, *J* = 8.0 Hz, 2H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.97 (d, *J* = 8.0 Hz, 2H), 7.81 (d, J = 8.0 Hz), 8.81 (d, J = 8.

2H), 8.27 (d, J = 12.0 Hz, 1H), 9.21 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.4, 26.7, 119.8, 127.2, 129.7, 130.3, 135.3, 136.3, 140.4, 150.1, 160.9, 196.5; ESI-HRMS *m*/*z* Calcd for C₁₄H₁₃NO [M+H]·: 212.1061, Found: 212.1066.

ethyl 2-(p-tolyl)nicotinate (8f-C2):

Colorless oil, 40% yield brsm, 23.2 mg, R_f 0.6 (50% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 1.09 (t, *J* = 8.0 Hz, 3H), 2.40 (s, 3H), 4.18 (q, *J* = 8.0 Hz, 2H), 7.23 (d, *J* = 8.0 Hz, 2H), 7.30 (t, *J* = 8.0 Hz, 1H), 7.44 (d, *J* = 4.0 Hz, 2H), 8.06 (d, *J* = 8.0 Hz, 1H), 8.75 (d, *J* = 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 13.7, 21.3, 61.5, 121.2, 127.3, 128.5, 128.8, 137.2, 137.7, 138.6, 151.1, 158.8, 168.3; ESI-HRMS *m*/z Calcd for C₁₅H₁₅NO₂ [M+H]: 242.1176, Found: 242.1189.

ethyl 6-(p-tolyl)nicotinate (8f-C6):

Yellow solid, 27% yield brsm, 15.8 mg, m.p. 79-80 °C; R_f 0.8 (50% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 1.42 (t, *J* = 8.0 Hz, 3H), 2.42 (s, 3H), 4.42 (q, *J* = 8.0 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.77 (d, *J* = 8.0 Hz, 1H), 7.96 (d, *J* = 8.0 Hz, 2H), 8.32 (d, *J* = 12.0 Hz, 1H), 9.26 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 14.3, 21.4, 61.3, 119.4, 124.1, 127.2, 129.6, 135.5, 137.7, 140.2, 150.9, 160.8, 165.5; ESI-HRMS *m*/z Calcd for C₁₅H₁₅NO₂ [M+H]·: 242.1176, Found: 242.1168.

3-phenyl-2-(p-tolyl)pyridine (8g-C2):9

Me

Colorless oil, 28% yield brsm, 27.1 mg, R_f 0.6 (10% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 2.31 (s, 3H), 7.04 (d, *J* = 8.0 Hz, 2H), 7.19 (t, *J* = 4.0 Hz, 2H), 7.32-7.24 (m, 6H), 7.70 (d, *J* = 8.0 Hz, 1H), 8.68 (d, *J* = 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.2, 121.8, 127.1, 128.3, 128.6, 129.5, 129.8, 135.9, 137.2, 137.5, 138.5, 140.2, 148.3, 157.1; ESI-HRMS *m/z* Calcd for C₁₈H₁₅N [M+H]: 246.1277, Found: 246.1274.

5-phenyl-2-(p-tolyl)pyridine (8g-C6):

Yellow solid, 17% yield brsm, 17.0 mg, m.p. 80-81 °C; R_f 0.8 (10% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 2.42 (s, 3H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.42 (q, *J* = 8.0 Hz, 1H), 7.50 (t, *J* = 8.0 Hz, 2H), 7.64 (d, *J* = 8.0 Hz, 2H), 7.79 (q, *J* = 8.0 Hz, 1H), 7.95 (m, 3H), 8.92 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.3, 120.0, 126.7, 127.0, 128.0, 129.1, 129.5, 134.6, 135.0, 136.2, 137.7, 139.0, 148.0, 156.2; ESI-HRMS *m*/z Calcd for C₁₈H₁₅N [M+H]·: 246.1277, Found: 246.1283. **N,N-diethyl-2-(p-tolyl)nicotinamide (8h-C2):**

Colorless solid, 17% yield brsm, 18.0 mg, m.p. 71-72 °C; R_f 0.3 (25% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 0.71 (t, *J* = 4.0 Hz, 3H), 1.03 (t, *J* = 4.0 Hz, 3H), 2.37 (s, 3H), 2.72-2.65 (m, 1H), 2.95-2.86 (m, 1H), 3.16-3.08 (m, 1H), 3.97-3.70 (m, 1H), 7.21 (d, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 1H), 7.65 (d, *J* = 8.0 Hz, 2H), 7.69 (d, *J* = 8.0 Hz, 1H), 8.71 (d, *J* = 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 12.0, 13.3, 21.3, 38.8, 42.5, 121.7, 128.7, 129.1, 131.6, 135.7, 136.1, 139.0, 149.8, 154.6, 169.3; ESI-HRMS *m*/*z* Calcd for C₁₇H₂₀N₂O [M+H]·: 269.1648, Found: 269.1641.

N,N-diethyl-6-(p-tolyl)nicotinamide (8h-C6):

Yellow oil, 35% yield brsm, 37.8 mg, R_f 0.4 (25% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 1.19 (br s, 3H), 1.25 (br s, 3H), 2.41 (s, 3H), 3.34 (br s, 2H), 3.57 (br s, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.74 (d, *J* = 8.0 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.91 (d, *J* = 8.0 Hz, 2H), 8.69 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 12.9, 14.4, 21.3, 39.6, 43.5, 119.8, 126.9, 129.6, 130.8, 135.3, 135.5, 139.6, 147.1, 158.0, 168.8; ESI-HRMS *m*/*z* Calcd for C₁₇H₂₀N₂O [M+H]·: 269.1648, Found: 269.1640. **2-(p-tolyl)pyridine (8i-C2):**¹

Me

Colorless oil, 38% yield brsm, 25.4 mg, R_f 0.7 (25% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 8.68 (d, *J* = 4.0 Hz, 1H), 7.89 (d, *J* = 8.0 Hz, 2H), 7.75-7.69 (m, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 7.22-7.18 (m, 1H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 21.1, 120.4, 122.0, 126.7, 129.7, 136.6, 136.8, 139.1, 149.7, 157.6; ESI-HRMS *m/z* Calcd for C₁₂H₁₁N [M+H]⁺: 170.0964, Found: 170.0957. **4-(p-tolyl)pyridine (8i-C6)**:¹

White solid, 23% yield brsm, 15.9 mg, m.p. 86-87 °C; R_f 0.1 (25% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 2.42 (s, 3H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.49 (d, *J* = 8.0 Hz, 2H), 7.55 (d, *J* = 8.0 Hz, 2H), 8.64 (d, *J* = 4.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 21.2, 121.4, 126.8, 129.8, 135.2, 139.2, 148.2, 150.2; ESI-HRMS *m*/*z* Calcd for C₁₂H₁₁N [M+H]·: 170.0964, Found: 170.0957.

5-bromo-2-(p-tolyl)pyrimidine (8j-C2):¹⁰

Br

White solid, 62% yield brsm, 61.7 mg, m.p. 79-80 °C; R_f 0.7 (10% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 2.44 (s, 3H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.75 (d, *J* = 8.0 Hz, 2H), 8.90 (s, 1H), 9.14 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.5, 119.0, 129.0, 129.3, 133.9, 140.7, 156.8, 160.1, 164.2; ESI-HRMS *m*/*z* Calcd for C₁₁H₉BrN₂ [M+H]: 249.0022, Found: 249.0014.

2-(p-tolyl)pyrimidine (8k-C2):1

Colorless solid, 52% yield brsm, 35.5 mg, m.p. 93-94 °C; R_f 0.6 (50% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 2.43 (s, 3H), 7.16 (t, *J* = 4.0 Hz, 1H), 7.30 (d, *J* = 8.0 Hz, 2H), 8.33 (d, *J* = 8.0 Hz, 2H), 8.79 (d, *J* = 4.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 21.5, 118.8, 128.1, 129.4, 134.8, 141.0, 157.2, 164.8; ESI-HRMS *m*/*z* Calcd for C₁₁H₁₀N₂ [M+H]·: 171.0917, Found: 171.0908. **4-(p-tolyl)pyrimidine (8k-C4)**:¹

White solid, 25% yield brsm, 16.9 mg, m.p. 71-72 °C; R_f 0.4 (50% EtOAc in n-Hexane);¹H NMR (400 MHz, CDCl₃) δ 2.42 (s, 3H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.68 (d, *J* = 4.0 Hz, 1H), 7.99 (d, *J* = 8.0 Hz, 2H), 8.73 (d, *J* = 4.0 Hz, 1H), 9.24 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.4, 116.7, 127.0, 129.8, 133.6, 141.6, 157.3, 159.0, 163.9; ESI-HRMS *m*/*z* Calcd for C₁₁H₁₀N₂ [M+H]⁻: 171.0917, Found: 171.0908.

3-(p-tolyl)pyridazine (8I-C2):1

Colorless solid, 20% yield brsm, 13.9 mg, m.p. 90-92 °C; R_f 0.3 (50% EtOAc in n-Hexane); ¹H NMR (400 MHz, CD₃OD) δ 2.42 (s, 3H), 7.37 (d, *J* = 8.0 Hz, 2H), 7.76 (dd, *J* = 8.0, 4.0 Hz, 1H), 7.96 (d, *J* = 8.0 Hz, 2H), 8.13 (d, *J* = 8.0 Hz, 1H), 9.11 (d, *J* = 4.0 Hz, 1H); ¹³C NMR (100 MHz, CD₃OD) δ 19.9, 125.0, 126.7, 128.0, 129.4, 133.1, 140.5, 149.6, 159.9; ESI-HRMS *m*/*z* Calcd for C₁₁H₁₀N₂ [M+H]·: 171.0917, Found: 171.0900.

4-(p-tolyl)pyridazine (8I-C3):¹

Colorless solid, 33% yield brsm, 22.2 mg, m.p. 49-50 °C; R_f 0.2 (50% EtOAc in n-Hexane); ¹H NMR (400 MHz, CD₃OD) δ 2.38 (s, 3H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.69 (d, *J* = 8.0 Hz, 2H), 7.91 (d, *J* = 4.0 Hz, 1H), 9.13 (d, *J* = 4.0 Hz, 1H), 9.46 (s, 1H); ¹³C NMR (100 MHz, CD₃OD) δ 19.9, 123.7, 126.7, 129.9, 130.8, 139.4, 140.8, 149.3, 151.2; ESI-HRMS *m*/*z* Calcd for C₁₁H₁₀N₂ [M+H]⁺: 171.0917, Found: 171.0904.

2-(p-tolyl)pyrazine (8m):¹

Yellow solid, 46% yield brsm, 31.3 mg, m.p. 126-127 °C; R_f 0.4 (25% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 2.43 (s, 3H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.92 (d, *J* = 8.0 Hz, 2H), 8.48 (d, *J* = 4.0

Hz, 1H), 8.61 (d, J = 4.0 Hz, 1H), 9.01 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.4, 126.8, 129.8, 133.5, 140.1, 142.0, 142.5, 144.1, 152.9; ESI-HRMS *m*/z Calcd for C₁₁H₁₀N₂ [M+H]: 171.0917, Found: 171.0910.

1-(p-tolyl)phthalazine (8n):¹

Colorless oil, 52% yield brsm, 45.8 mg, R_f 0.3 (25% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 2.47 (s, 3H), 7.37 (d, *J* = 8.0 Hz, 2H), 7.66 (d, *J* = 8.0 Hz, 2H), 7.92-7.83 (m, 2H), 8.01 (d, *J* = 8.0 Hz, 1H), 8.10 (d, *J* = 8.0 Hz, 1H), 9.50 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.4, 125.5, 126.3, 126.6, 127.1, 129.3, 130.3, 132.1, 132.5, 133.2, 139.5, 150.4, 159.9; ESI-HRMS *m/z* Calcd for C₁₅H₁₂N₂ [M+H]⁻: 221.1073, Found: 221.1064.

2-(p-tolyl)quinoxaline (8o-C2):11

Yellow solid, 67% yield brsm, 28.5 mg, m.p. 84-86 °C; R_f 0.5 (25% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 2.46 (s, 3H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.77-7.73 (m, 2H), 8.15-8.10 (m, 4H), 9.31 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.4, 127.4, 129.1, 129.3, 129.5, 129.9, 130.2, 134.0, 140.5, 141.4, 142.3, 143.3, 151.8; ESI-HRMS *m*/*z* Calcd for C₁₅H₁₂N₂ [M+H]·: 221.1073, Found: 221.1063. **2-((2-aminophenyl)imino)-2-(p-tolyl)acetaldehyde (8o-CX):**

Colorless oil, 20% yield brsm, 8.5 mg, R_f 0.7 (25% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 2.44 (s, 3H), 7.24 (d, *J* = 8.0 Hz, 1H), 7.37 (t, *J* = 8.0 Hz, 1H), 7.45-7.42 (m, 2H), 7.75 (d, *J* = 8.0 Hz, 2H), 7.95 (d, *J* = 8.0 Hz, 2H), 10.06 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.5, 124.5, 127.7, 128.1, 128.9, 129.2, 129.7, 130.2, 135.1, 138.7, 139.7, 147.4, 192.0; ESI-MS *m/z* 239.1. **2-(p-tolyl)guinoline (8p-C2):**¹

White solid, 12% yield, 10.2 mg, m.p. 81-82 °C; R_f 0.6 (25% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 2.44 (s, 3H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.51 (t, *J* = 8.0 Hz, 1H), 7.72 (t, *J* = 8.0 Hz, 1H), 7.82 (d, *J* = 8.0 Hz, 1H), 7.86 (d, *J* = 8.0 Hz, 1H), 8.08 (d, *J* = 8.0 Hz, 2H), 8.17 (d, *J* = 8.0 Hz, 1H), 8.20 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.4, 118.9, 126.1, 127.1, 127.4, 127.5, 129.5, 129.6, 136.7, 136.8, 139.4, 148.2, 157.3; ESI-HRMS *m*/*z* Calcd for C₁₆H₁₃N [M+H]·: 220.1121, Found: 220.1119.

4-(p-tolyl)quinoline (8p-C4):¹

8p-C4

Yellow oil, 39% yield brsm, 34.5 mg, R_f 0.2 (25% EtOAc in n-Hexane), Major one; ¹H NMR (400 MHz, CDCl₃) δ 2.46 (s, 3H), 7.34-7.32 (m, 2H), 7.42-7.38 (m, 2H), 7.49 (t, *J* = 8.0 Hz, 1H), 7.72 (t, *J* = 8.0 Hz, 1H), 7.95 (d, *J* = 8.0 Hz, 1H), 8.19-8.11 (m, 2H), 8.93 (d, *J* = 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.3, 121.3 (121.1), 125.9, 126.5 (126.6), 126.9, 127.8 (128.3), 129.3, 129.5 (129.4), 129.7, 135.0, 136.1, 138.4, 148.2 (148.6), 149.9 (150.4); ESI-HRMS *m*/*z* Calcd for C₁₆H₁₃N [M+H]-: 220.1121, Found: 220.1129.

6-chloro-2-(p-tolyl)quinoline (8q):

White solid, 68% yield brsm, 30.2 mg, m.p. 160-161 °C; R_f 0.6 (25% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 2.44 (s, 3H), 7.34 (d, *J* = 4.0 Hz, 2H), 7.64 (d, *J* = 8.0 Hz, 1H), 7.79 (s, 1H), 7.88 (d, *J* = 8.0 Hz, 1H), 8.12-8.05 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 21.4, 119.6, 126.1, 127.4, 127.6, 129.6, 130.5, 131.2, 131.6, 135.7, 136.4, 139.7, 146.7, 157.6; ESI-HRMS *m*/*z* Calcd for C₁₆H₁₂CIN [M+H]·: 254.0371, Found: 254.0723.

1-(p-tolyl)isoquinoline (8r-C2):¹

Colorless oil, 29% yield brsm, 25.0 mg, Rf 0.4 (25% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 2.46 (s, 3H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.53 (t, *J* = 8.0 Hz, 1H), 7.66-7.59 (m, 3H), 7.69 (t, *J* = 4.0 Hz, 1H), 7.88 (d, *J* = 8.0 Hz, 1H), 8.13 (d, *J* = 8.0 Hz, 1H), 8.61 (d, *J* = 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.4, 119.7, 126.7, 126.9, 127.1, 127.7, 129.0, 129.9, 130.0, 136.6, 136.9, 138.5, 142.1, 160.8; ESI-HRMS *m*/*z* Calcd for C₁₆H₁₃N [M+H]·: 220.1121, Found: 220.1133.

5-bromo-1-(p-tolyl)isoquinoline (8s-C2):

White solid, 31% yield brsm, 20.2 mg, m.p. 83-84 °C; $R_f 0.5$ (25% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 2.46 (s, 3H), 7.39-7.33 (m, 3H), 7.57 (d, *J* = 8.0 Hz, 2H), 7.97 (d, *J* = 4.0 Hz, 1H), 8.01 (d, *J* = 4.0 Hz, 1H), 8.10 (d, *J* = 8.0 Hz, 1H), 8.70 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.4, 118.5, 121.9, 127.2, 127.6, 127.9, 129.1, 129.9, 133.7, 135.9, 136.3, 138.7, 143.5, 161.3; ESI-HRMS *m/z* Calcd for C₁₆H₁₂BrN [M+H]·: 298.0226, Found: 298.0225. **5-bromo-3-(p-tolyl)isoquinoline (8s-C10):**

White solid, 8% yield brsm, 5.3 mg, m.p. 99-101 °C; R_f 0.2 (25% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 2.47 (s, 3H), 7.39-7.32 (m, 5H), 8.00 (d, J = 8.0 Hz, 1H), 8.05 (d, J = 8.0 Hz, 1H), 8.66 (d, J = 4.0 Hz, 1H), 9.29 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.3, 119.4, 120.5, 128.6, 129.3, 129.9, 133.5, 134.9, 135.2, 138.1, 141.1, 144.2, 146.1, 151.6; ESI-HRMS *m*/*z* Calcd for C₁₆H₁₂BrN [M+H]·: 298.0226, Found: 298.0211.

2-(p-tolyl)-1H-benzo[d]imidazole (8t):¹²

Light-yellow solid, 17% yield, 14.1 mg, m.p. 265-266 °C; R_f 0.5 (25% EtOAc in n-Hexane); ¹H NMR (400 MHz, CD₃OD) δ 2.42 (s, 3H), 7.26-7.22 (m, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.59 (dd, *J* = 8.0, 4.0 Hz, 2H), 7.97 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 21.5, 124.5, 127.7, 128.1, 128.9, 129.2, 130.2, 135.1, 138.7, 139.7, 147.4, 191.9; ESI-HRMS *m*/*z* Calcd for C₁₄H₁₂N₂ [M+H]·: 209.1073, Found: 209.1065.

3,6-dichloro-4-(p-tolyl)pyridazine (8u):¹³

Colorless solid, 5% yield, 4.8 mg, m.p. 95-96 °C; R_f 0.7 (25% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 2.45 (s, 3H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.41 (d, *J* = 8.0 Hz, 2H), 7.48 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.4, 128.8, 129.4, 129.6, 130.2, 140.8, 142.8, 154.9, 156.0; ESI-HRMS *m/z* Calcd for C₁₁H₈Cl₂N₂ [M+H]-: 239.0137, Found: 239.0148.

2-(4-fluorophenyl)pyrazine (10):

Yellow solid, 56% yield, 1.23 g, m.p. 96-97 °C; R_f 0.7 (25% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.20 (app t, *J* = 8.0 Hz, 2H), 8.02 (app t, *J* = 8.0 Hz, 2H), 8.50 (br s, 1H), 8.61 (br s, 1H), 9.00 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 116.1 (d, *J* _{*C-F*} = 22.0 Hz), 128.9 (d, *J* _{*C-F*} = 8.0 Hz), 132.5 (d, *J* _{*C-F*} = 4.0 Hz), 141.9, 142.9, 144.1, 151.8, 164.0 (d, *J* _{*C-F*} = 249.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -111.2; ESI-HRMS *m*/*z* Calcd for C₁₀H₇FN₂ [M+H]+: 175.0666, Found: 175.0652.

4'-methyl-[1,1'-biphenyl]-2,5-dione (12):14

Yellow solid, 71% yield, 56.3 mg, m.p. 134-135 °C; R_f 0.5 (25% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 2.40 (s, 3H), 6.87-6.80 (m, 3H), 7.26 (d, *J* = 8.0 Hz, 2H), 7.39 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 21.4, 129.2, 129.3, 129.8, 132.0, 136.2, 137.0, 140.6, 145.8, 186.8, 187.6; ESI-HRMS *m/z* Calcd for C₁₃H₁₀O₂ [M-H]: 197.0608, Found: 197.0611.

(S)-2,6-bis(4-fluorophenyl)-3-(1-methylpyrrolidin-2-yl)pyridine (13):

Colorless oil, 38% yield, 26.6 mg, R_f 0.5 (25% EtOAc in n-Hexane); ¹H NMR (400 MHz, CDCl₃) δ 1.82-1.71 (m, 2H), 2.05-1.90 (m, 1H), 2.06 (s, 3H), 2.23-2.12 (m, 2H), 3.25-3.17 (m, 2H), 7.12 (d, *J* = 8.0 Hz, 2H), 7.14 (d, *J* = 8.0 Hz, 2H), 7.48 (t, *J* = 4.0 Hz, 2H), 7.71 (d, *J* = 8.0 Hz, 2H), 8.04 (dd, *J* = 8.0, 4.0 Hz, 2H), 8.09 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 22.9, 35.4, 40.2, 56.8, 66.1, 115.0 (d, *J* _{C-F} = 21.0 Hz), 115.5 (d, *J* _{C-F} = 21.0 Hz), 119.4, 128.7 (d, *J* _{C-F} = 8.0 Hz), 131.0 (d, *J* _{C-F} = 8.0 Hz), 135.4 (d, *J* _{C-F} = 3.0 Hz), 135.5, 136.6 (d, *J* _{C-F} = 3.0 Hz), 136.8, 154.0, 157.7, 162.6 (d, *J* _{C-F} = 245.0 Hz), 163.4 (d, *J* _{C-F} = 247.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ - 114.4, -113.4; ESI-HRMS *m*/z Calcd for C₂₂H₂₀F₂N₂ [M+H]⁻: 351.1667, Found: 351.1659.

VII. Triazenes general synthesis¹⁵

General procedure: In a 100 mL RBF was weighted aniline (10 mmol), conc. hydrochloric acid (4.0 mL) was added under ice-water bath. Sodium sulfate (850 mg) in ice-water (20 mL) was poured into the mixture for 30 minutes. In another 250 mL RBF, in a mixture of acetonitrile (40 mL) and water (20 mL) was added potassium carbonate (13.8 g) and pyrrolidine (4.0 mL). After 5 minutes, the previous diazonium mixtures were poured into the 250 mL flask under 0 °C over 10 minitues, the reaction was warm to ambient temperature for 12 hours. The mixture was extracted with EtOAc (5 x 40 mL), washed with brine, dried over Na₂SO₄. Solvents were removed under vacuum and the residue was purified by silica-gel flash chromatography using fluent (25% EtOAc in hexane) to provide corresponding products.

(*E*)-1-(p-tolyldiazenyl)pyrrolidine (4a)

Red solid, m.p. 79-81 °C, 90%. ¹H NMR (CDCl₃, 400 MHz) δ 2.03-1.99 (br s, 4H), 2.33 (s, 3H), 3.78 (br s, 4H), 7.12 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 12.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 21.0, 23.8, 120.1, 129.4, 134.7, 149.1.

(*E*)-1-((4-fluorophenyl)diazenyl)pyrrolidine (4b)

Yellow solid, m.p. 58-59 °C, 85%. ¹H NMR (CDCl₃, 400 MHz) δ 2.03-2.00 (br s, 4H), 3.77 (br s, 4H), 7.03-6.97 (m, 2H), 7.39-7.34 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 18.6, 110.2 (d, *J*_{C-F} = 22.0 Hz), 116.3 (d, *J*_{C-F} = 22.0 Hz), 142.6 (d, *J*_{C-F} = 3.0 Hz), 155.4 (d, *J*_{C-F} = 242.0 Hz). (*E*)-1-((4-chlorophenyl)diazenyl)pyrrolidine (4c)

Yellow solid, m.p. 62 °C, 56%. ¹H NMR (CDCl₃, 400 MHz) δ 2.02 (br s, 4H), 3.77 (br s, 4H), 7.27 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 23.8, 121.5, 128.8, 130.1, 150.0.

(E)-1-((4-(benzyloxy)phenyl)diazenyl)pyrrolidine (4d)

Yellow solid, m.p. 122-124 °C, 63%. ¹H NMR (CDCl₃, 400 MHz) δ 2.02-1.99 (m, 4H), 3.76 (br s, 4H), 5.06 (s, 2H), 6.96-6.92 (m, 2H), 7.45-7.30 (m, 7H); ¹³C NMR (100 MHz, CDCl₃) δ 23.8, 70.2, 115.1, 121.2, 127.5, 127.9, 128.5, 137.2, 145.5, 156.6. *(E)*-phenyl(4-(pyrrolidin-1-yldiazenyl)phenyl)methanone **(4e)**

Orange solid, m.p. 105-106 °C, 78%. ¹H NMR (CDCl₃, 400 MHz) δ 2.04 (br s, 4H), 3.70 (br s, 2H), 3.95 (br s, 2H), 7.47 (m, 5H), 7.83-7.77 (m, 4H); ¹³C NMR (CDCl₃, 100 MHz) δ 23.8, 46.6, 51.3, 120.0, 128.2, 129.8, 131.5, 131.9, 133.7, 138.3, 154.9, 196.1. (*E*)-methyl 4-(pyrrolidin-1-yldiazenyl)benzoate (**4f**)

MeO₂C

White solid, m.p. 113-114 °C, 82%. ¹H NMR (CDCl₃, 400 MHz) δ 2.04 (br s, 4H), 3.69 (br s, 2H), 3.89 (s, 3H), 3.95 (br s, 2H), 7.43 (d, J = 12.0 Hz, 2H), 8.00 (d, J = 12.0 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 23.8, 46.5, 51.8, 51.9, 120.0, 126.2, 130.6, 155.1, 167.2. (*E*)-1-((4-(trifluoromethoxy)phenyl)diazenyl)pyrrolidine (**4g**)

Yellow solid, m.p. 42 °C, 87%. ¹H NMR (CDCl₃, 400 MHz) δ 2.02 (br s, 4H), 3.77 (br s, 4H), 7.16 (d, J = 8.0 Hz, 2H), 7.4 (d, J = 4.0 Hz, 1H), 7.43 (d, J = 4.0 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 23.8, 46.2, 51.0, 120.5 (q, J_{C-F} = 255.0 Hz), 121.2, 121.4, 146.4, 150.1. (*E*)-1-(phenyldiazenyl)pyrrolidine (**4h**)

Light yellow solid, m.p. 51-53 °C, 87%. ¹H NMR (CDCl₃, 400 MHz) δ 2.02 (br s, 4H), 3.80 (br s, 4H), 7.13 (t, *J* = 8.0 Hz, 1H), 7.33 (t, *J* = 8.0 Hz, 2H), 7.42 (d, *J* = 4.0 Hz, 2H); ¹³C NMR (CDCl₃, 400 MHz) δ 2.02 (br s, 4H), 3.80 (br s, 4H), 7.13 (t, *J* = 8.0 Hz, 1H), 7.33 (t, *J* = 8.0 Hz, 2H), 7.42 (d, *J* = 4.0 Hz, 2H); ¹³C NMR (CDCl₃, 400 MHz) δ 2.02 (br s, 4H), 3.80 (br s, 4H), 7.13 (t, *J* = 8.0 Hz, 1H), 7.33 (t, *J* = 8.0 Hz, 2H), 7.42 (d, *J* = 4.0 Hz, 2H); ¹³C NMR (CDCl₃, 400 MHz) δ 2.02 (br s, 4H), 3.80 (br s, 4H), 7.13 (t, *J* = 8.0 Hz, 2H), 7.42 (d, *J* = 4.0 Hz, 2H); ¹³C NMR (CDCl₃, 400 MHz) δ 2.02 (br s, 4H), 7.13 (t, *J* = 8.0 Hz, 2H), 7.42 (d, *J* = 4.0 Hz, 2H); ¹³C NMR (CDCl₃, 400 Mz) δ 2.02 (br s, 4H), 7.13 (t, *J* = 8.0 Hz, 2H), 7.42 (d, *J* = 4.0 Hz, 2H); ¹³C NMR (CDCl₃, 400 Hz) δ 2.02 (br s, 4H), 7.13 (t, *J* = 8.0 Hz) δ 2.02 (br s, 4H), 7.13 (t, *J* = 8.0 Hz) δ 2.02 (br s, 4H), 7.13 (t, *J* = 8.0 Hz) δ 2.02 (br s, 4H), 7.13 (t, *J* = 8.0 Hz) δ 2.02 (br s, 4H), 7.13 (t, *J* = 8.0 Hz) δ 2.02 (br s, 4H), 7.13 (t, *J* = 8.0 Hz) δ 2.02 (br s, 4H), 7.13 (t, *J* = 8.0 Hz) δ 2.02 (br s, 4H), 7.13 (t, *J* = 8.0 Hz) δ 2.02 (br s, 4H), 7.13 (t, *J* = 8.0 Hz) δ 2.02 (br s, 4H), 7.13 (t, *J* = 8.0 Hz) δ 2.02 (br s, 4H), 7.13 (t, *J* = 8.0 Hz) δ 2.02 (br s, 4H), 7.13 (t, *J* = 8.0 Hz) δ 2.02 (br s, 4H), 7.13 (t, *J* = 8.0 Hz) δ 2.02 (br s, 4H), 7.13 (t, *J* = 8.0 Hz) δ 2.02 (br s, 4H), 8.14 (t, J) δ 2.04 (t, J) δ 2.05 (t, J) δ 2.05

100 MHz) δ 23.8, 120.3, 125.1, 128.8, 151.4. (*E*)-1-((3-(trifluoromethyl)phenyl)diazenyl)pyrrolidine **(4i)**

Yellow oil, 91%. ¹H NMR (CDCl₃, 400 MHz) δ 2.04 (br s, 4H), 3.93-3.68 (m, 4H), 7.35 (d, J = 8.0 Hz, 1H), 7.41 (d, J = 8.0 Hz, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.68 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 23.7, 46.4, 51.2, 117.1 (q, J_{C-F} = 4.0 Hz), 121.3 (q, J_{C-F} = 4.0 Hz), 123.6, 124.3 (q, J_{C-F} = 271.0 Hz), 129.2, 131.2 (q, J_{C-F} = 32.0 Hz), 151.8.

(*E*)-1-((3-fluorophenyl)diazenyl)pyrrolidine (4j)

Yellow oil, 73%. ¹H NMR (CDCl₃, 400 MHz) δ 2.03 (br s, 4H), 3.87-3.80 (m, 4H), 6.82-6.80 (m, 1H), 7.29-7.12 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 106.5 (d, $J_{C-F} = 23.0$ Hz), 111.5, 116.8 (d, $J_{C-F} = 3.0$ Hz), 129.8 (d, $J_{C-F} = 3.0$ Hz), 153.4 (d, $J_{C-F} = 8.0$ Hz), 163.4 (d, $J_{C-F} = 243.0$ Hz). (*E*)-1-((3-chlorophenyl)diazenyl)pyrrolidine **(4k)**

Yellow solid, m.p. 52 °C, 70%. ¹H NMR (CDCl₃, 400 MHz) δ 2.03 (br s, 4H), 3.67 (br s, 2H), 3.88 (br s, 2H), 7.08 (d, J = 8.0 Hz, 1H), 7.23 (t, J = 8.0 Hz, 1H), 7.28 (d, J = 8.0 Hz, 1H), 7.43 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 23.8, 46.4, 51.2, 119.2, 119.9, 124.8, 129.8, 134.5, 152.7. (*E*)-ethyl 3-(pyrrolidin-1-yldiazenyl)benzoate (**4**)

Yellow oil, 75%. ¹H NMR (CDCl₃, 400 MHz) δ 1.39 (t, *J* = 8.0 Hz, 3H), 2.02 (br s, 4H), 3.74 (br s, 2H), 3.85 (br s, 2H), 4.37 (dd, *J* = 8.0 Hz, 2H), 7.37 (t, *J* = 8.0 Hz, 1H), 7.58 (d, *J* = 8.0 Hz, 1H), 7.79 (d, *J* = 8.0 Hz, 1H), 8.07 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 14.4, 23.8, 46.3, 51.0, 60.9, 121.4, 124.7, 126.0, 128.7, 131.2, 151.6, 166.8. (*E*)-1-((3-methoxyphenyl)diazenyl)pyrrolidine (4m)

Red oil, 89%. ¹H NMR (CDCl₃, 400 MHz) δ 1.97 (br s, 4H), 3.77 (br s, 4H), 3.82 (s, 3H), 6.71 (dd, J = 8.0, 4.0 Hz, 1H), 7.06-7.03 (m, 2H), 7.24 (t, J = 8.0 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 23.7, 55.2, 105.1, 111.4, 113.2, 129.5, 152.9, 160.3.

(*E*)-3-(pyrrolidin-1-yldiazenyl)benzaldehyde (4n)

Yellow oil, 18% (2 steps from 3-nitrobenzaldehyde). ¹H NMR (CDCl₃, 400 MHz) δ 2.03 (br s,

4H), 3.68 (br s, 2H), 3.91 (br s, 2H), 7.45 (t, J = 8.0 Hz, 1H), 7.66-7.61 (m, 2H), 7.90 (s, 1H), 10.00 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 23.9, 30.8, 46.4, 51.2, 121.3, 125.8, 126.7, 129.4, 137.2, 152.2, 192.6.

(*E*)-1-(o-tolyldiazenyl)pyrrolidine (40)

Red oil, 67%. ¹H NMR (CDCl₃, 400 MHz) δ 2.05-2.01 (m, 4H), 2.46 (s, 3H), 3.81 (br s, 4H), 7.07 (t, J = 8.0 Hz, 1H), 7.22-7.15 (m, 2H), 7.36 (d, J = 8.0 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) & 17.6, 23.8, 48.8, 116.5, 125.0, 126.2, 130.5, 132.3, 149.3. (*E*)-1-((2-bromophenyl)diazenyl)pyrrolidine (4p)

Yellow solid, m.p. 63-64 °C, 79%. ¹H NMR (CDCl₃, 400 MHz) δ 2.04 (br s, 4H), 3.74 (br s, 2H), 3.94 (br s, 2H), 6.97 (t, J = 8.0 Hz, 1H), 7.23 (t, J = 8.0 Hz, 1H), 7.39 (d, J = 8.0 Hz, 1H), 7.56 (d, J = 8.0 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 23.4, 23.8, 46.8, 51.2, 118.6, 119.4, 126.0, 127.8, 133.0, 148.7.

(*E*)-1-((2-(phenylsulfonyl)phenyl)diazenyl)pyrrolidine (4q)

Brown solid, m.p. 198 °C, 60%. ¹H NMR (CDCl₃, 400 MHz) δ 2.04-1.93 (m, 4H), 3.45 (t, J= 8.0 Hz, 2H), 3.86 (t, J = 8.0 Hz, 2H), 7.28-7.25 (m, 1H), 7.45-7.41(m, 2H), 7.51-7.48 (m, 3H), 7.92 (d, J = 8.0 Hz, 2H), 8.27 (d, J = 8.0 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 23.5, 23.9, 47.5, 51.2, 117.8, 124.4, 127.6, 128.2, 129.4, 132.1, 132.6, 134.3, 142.9, 148.9. (*E*)-1-((3-chloro-4-fluorophenyl)diazenyl)pyrrolidine (4r)

Light-yellow solid, m.p. 77-78 °C, 86%. ¹H NMR (CDCl₃, 400 MHz) & 2.04 (br s, 4H), 3.87-3.64 (m, 4H), 7.07 (t, J = 8.0 Hz, 1H), 7.23 (m, 1H), 7.47 (d, J = 8.0 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 23.8, 25.0, 46.2, 51.1, 116.3 (d, J_{C-F} = 22.0 Hz), 120.2 (d, J_{C-F} = 4.0 Hz), 121.0 (d, J_{C-F} = 19.0 Hz), 121.4, 148.3 (d, J_{C-F} = 3.0 Hz), 155.7 (d, J_{C-F} = 245.0 Hz).

(E)-1-((2-chloro-4-(trifluoromethyl)phenyl)diazenyl)pyrrolidine (4s)

Red solid, m.p. 57-58 °C, 46%. ¹H NMR (CDCl₃, 400 MHz) δ 2.10-2.03 (m, 4H), 3.75 (t, J = 8.0 Hz, 2H), 3.98 (t, J = 8.0 Hz, 2H), 7.42 (d, J = 8.0 Hz, 1H), 7.52 (d, J = 8.0 Hz, 1H), 7.64 (s, 1H); ¹³C NMR(CDCl₃, 100 MHz) δ 23.5, 23.9, 47.1, 51.4, 118.5, 123.8 (q, J_{C-F} = 271.0 Hz), 124.0 (q, $J_{C-F} = 4.0$ Hz), 127.1 (q, $J_{C-F} = 33.0$ Hz), 127.2 (q, $J_{C-F} = 4.0$ Hz), 129.0, 150.4 (q, $J_{C-F} = 4.0$ Hz), 120.4 (q, J_{C-F} = 4.0 Hz), 120.4 (q, J_{C- $_{F} = 2.0$ Hz). (*E*)-1-((3,4-dimethoxyphenyl)diazenyl)pyrrolidine (4t)

Yellow solid, m.p. 68 °C, 89%. ¹H NMR (CDCl₃, 400 MHz) δ 2.02-1.99 (m, 4H), 3.77 (br s, 4H), 3.88 (s, 3H), 3.91 (s, 3H), 6.83 (d, *J* = 8.0 Hz, 1H), 6.97 (d, *J* = 8.0 Hz, 1H), 7.06 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 23.8, 55.8, 56.0, 103.0, 111.1, 112.9, 145.5, 146.9, 149.2;

VIII. References

- (1) Seiple, I. B.; Su, S.; Rodriguez, R. A.; Gianatassio, R.; Fujiwara, Y.; Sobel, A. L.; Baran, P. S. J. Am. Chem. Soc. **2010**, *132*, 13194.
- (2) Fleckenstein, C. A.; Plenio, H. Chem. Eur. J. 2008, 14, 4267.
- (3) Wang, J.; Wang, S.; Wang, G.; Zhang, J.; Yu, X.-Q. Chem. Comm. 2012, 48, 11769.
- (4) Walford, G. L.; Jones, H.; Shan, T.-Y. J. Med. Chem. 1971, 14, 339.
- (5) Berthelot, D. J. C.; Gijsen, H. J. M.; Zaja, M.; Rech, J.; Lebsack, A.; Xiao, W.; Breitenbucher, J. G.; Branstetter, B. Heterocyclic Amides as Modulators as TRPA1. PCT Int. Appl. 2010141805, 09 Dec 2010.
- (6) Guo, P.-F.; Joo, J.-M.; Rakshit, S.; Sames, D.; J. Am. Chem. Soc. 2011, 133, 16338.
- (7) Cappelli, A.; Mohr, G. P.; Gallelli, A.; Rizzo, M.; Anzini, M.; Vomero, S.; Mennuni, L.; Ferrari, F.; Makovec, F.; Menziani, M. C.; De Benedetti, P. G.; Giorgi, G. J. Med. Chem. 2004, 47, 2574.
- (8) Zhang, N.; Thomas, L.; Wu, B.-Q. J. Org Chem. 2001, 66, 1500.
- (9) Kagabu, S.; Naruse, S.; Tagami, Y.; Watanabe, Y. J. Org. Chem. 1989, 54, 4275.
- (10) Kuribayashi, T.; Kubota, H.; Fukuda, T.; Takano, R.; Tsuji, T.; Sasaki, H.; Tanaka, N. Jpn. Kokai. Tokkyo Koho JP, 2011105708 A 20110602, 2011.
- (11) Kang, F.-A.; Sui, Z.-H.; Murray, W. V. J. Am. Chem. Soc. 2008, 130, 11300.
- (12) Peng, J.-S.; Ye, M.; Zong, C.-J.; Hu, F.-Y.; Feng, L.-T.; Wang, X.-Y.; Wang, Y.-F.; Chen, C.-X. J. Org. Chem. 2011, 76, 716.
- (13) Augustin, M.; Reinemann, P. Zeitschrift fuer Chemie 1973, 13, 12.
- (14) Fujiwara, Y.; Domingo, V.; Seiple, I. B.; Gianatassio, R.; Del Bel, M.; Baran, P. S. J. *Am. Chem. Soc.* **2011**, *133*, 3292.
- (15) For the synthesis of triazenes, see: (a) Goeminne, A.; Scammells, P. J.; Devine, S. M.; Flynn, B. L. *Tetrahedron Lett.* 2010, *51*, 6882. (b) Hafner, A.; Bräse, S. *Angew. Chem.* 2012, *124*, 3773. *Angew. Chem. Int. Ed.* 2012, *51*, 3713.