HBr-Catalyzed C-Si Bond Cleavage of Benzylsilanes and Subsequent Oxidation

 into Benzoic Acids with Air as Terminal OxidantJing Sun, ${ }^{\text {a,b,e }}$ Yu Wang, ${ }^{\text {c,e }}$ Liqiong Han, ${ }^{\text {a }}$ Dawen Xu, ${ }^{\text {a }}$ Yiyong Chen, ${ }^{a}$ Xinhua Peng, ${ }^{\text {b }}$ and Hao Guo*a,d

${ }^{\text {a }}$ Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, P. R. China. Tel: +86-21-55664361, Fax: +86-21-55664361, E-mail: Hao_Guo@fudan.edu.cn
${ }^{\mathrm{b}}$ School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
${ }^{c}$ Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
${ }^{d}$ Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences
${ }^{\mathrm{e}}$ They contributed equally.

Supplementary Information

Experimental Section	S2
NMR Spectra	S14
References	S29

Experimental Section

General experimental methods

All reactions were carried out using a PLS-SXE300UV reactor with Xe lamp (300 W) as the irradiation source. Melting points were determined on a WRS-2 apparatus. IR spectra were recorded on a Avatar 360 FT-IR spectrometer. ${ }^{1} \mathrm{H}(400 \mathrm{MHz}),{ }^{13} \mathrm{C}(100$ MHz), ${ }^{19} \mathrm{~F}$ (376 MHz), and ${ }^{31} \mathrm{P}(162 \mathrm{MHz})$ NMR spectra of samples in CDCl_{3} (unless stated otherwise) were recorded on an AVANCE III 400 spectrometer. MS (EI, 70 eV) determinations were carried out on a HP 5973 spectrometer. HRMS (EI) determinations were carried out on a Water GCT CA176 spectrometer. HRMS (ESI) determinations were carried out on a Bruker Daltonics micrOTOF II spectrometer. Compound $\mathbf{1 f}$ was commercial available. Compounds $\mathbf{1 a},{ }^{1} \mathbf{1 b},{ }^{2} \mathbf{1 c},{ }^{3} \mathbf{1 d},{ }^{4} \mathbf{1 e},{ }^{5} \mathbf{1 g},{ }^{6} \mathbf{1 h},{ }^{7}$ $\mathbf{1 j},{ }^{8} \mathbf{1 k},{ }^{9} \mathbf{1 l},{ }^{10} \mathbf{1 m},{ }^{11} \mathbf{1 n},{ }^{12} \mathbf{1 q},{ }^{5} \mathbf{1 r},{ }^{5} \mathbf{1 s},{ }^{5} \mathbf{1 t},{ }^{5} \mathbf{4},{ }^{13}$ and $\mathbf{5}^{14}$ were prepared according to literature procedures.

Synthesis of diphenyl(4-((trimethylsilyl)methyl)phenyl)phosphine

A solution of (4-bromobenzyl)trimethylsilane ($187 \mathrm{mg}, 0.77 \mathrm{mmol}$) in anhydrous $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was cooled with ice-salt bath. Then TMEDA ($0.4 \mathrm{~mL}, 2.7 \mathrm{mmol}$) and $n-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, $2.0 \mathrm{~mL}, 3.2 \mathrm{mmol})$ were added subsequently. The reaction mixture was stirred for 1.5 hour, then warmed to rt , and stirred for another 1 hour at rt . After which the reaction mixture was cooled with ice-salt bath, and then chlorodiphenylphosphine ($0.5 \mathrm{~mL}, 2.8 \mathrm{mmol}$) was added dropwise and stirred for 1 hour with ice-salt bath. Then the mixture was allowed to warm to rt and stirred for 13 hours. The solvent was removed under reduced pressure. Purification by silica gel chromatography (eluent: petroleum ether) afforded a white solid (192 mg, 72\%); mp 84.2-84.8 ${ }^{\circ} \mathrm{C}$ (n-hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.41-7.28 (m, 10 H), 7.24-7.17 (m, 2 H), 7.01 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.12$ (s, 2 H), 0.03 (s, 9 H$) ;{ }^{13} \mathrm{C}$ NMR
$\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.8,137.9\left(\mathrm{~d}, J_{\mathrm{PC}}=10.3 \mathrm{~Hz}\right), 133.9\left(\mathrm{~d}, J_{\mathrm{PC}}=19.7 \mathrm{~Hz}\right), 133.7$ $\left(\mathrm{d}, J_{\mathrm{PC}}=19.0 \mathrm{~Hz}\right), 131.4\left(\mathrm{~d}, J_{\mathrm{PC}}=8.1 \mathrm{~Hz}\right), 128.5\left(\mathrm{~d}, J_{\mathrm{PC}}=5.8 \mathrm{~Hz}\right), 128.4,128.3,27.2$, $-1.8 ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-6.4 \mathrm{ppm}$; IR (neat) $1595,1494,1476,1436 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{PSi} 349.1541$, found. 349.1532.

Synthesis of diphenyl(4-((trimethylsilyl)methyl)phenyl)phosphine oxide (1i)

$1 i$
Diphenyl(4-((trimethylsilyl)methyl)phenyl)phosphine ($350 \mathrm{mg}, 1.0 \mathrm{mmol}$) was added to a solution of $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%)(0.4 \mathrm{~mL})$, methanol (15 mL), and dichloromethane (15 mL). After stirred for 2 hours at rt , it was quenched with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution $(10 \mathrm{~mL})$. The resulting mixture was extracted with dichloromethane (20 mL). The organic layer was washed with water (10 mL), dried over MgSO_{4}, and concentrated to dryness. Purification by silica gel chromatography (eluent: ethyl acetate) afforded $\mathbf{1 i}$ as a white solid ($300 \mathrm{mg}, 82 \%$); $\mathrm{mp} 152.9-154.4^{\circ} \mathrm{C}$ (petroleum ether/ethyl acetate); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70-7.62(\mathrm{~m}, 4 \mathrm{H}), 7.56-7.42(\mathrm{~m}, 8 \mathrm{H}), 7.09-7.04$ (m, $2 \mathrm{H}), 2.14(\mathrm{~s}, 2 \mathrm{H}),-0.02(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.7$, $133.0\left(\mathrm{~d}, J_{\mathrm{PC}}\right.$ $=103.6 \mathrm{~Hz}), 132.1\left(\mathrm{~d}, J_{\mathrm{PC}}=9.5 \mathrm{~Hz}\right), 131.8,128.4\left(\mathrm{~d}, J_{\mathrm{PC}}=11.6 \mathrm{~Hz}\right), 128.1\left(\mathrm{~d}, J_{\mathrm{PC}}=\right.$ 12.4 Hz), $127.3\left(\mathrm{~d}, J_{\mathrm{PC}}=108.0 \mathrm{~Hz}\right), 27.8,-1.9 ;{ }^{31} \mathrm{P} \operatorname{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.6$ ppm; IR (neat) 1601, 1473, $1433 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{26}$ OPSi 365.1491, found. 365.1482.

Synthesis of (3-(trifluoromethyl)benzyl)trimethylsilane (10)

Under argon atmosphere, Mg ($121 \mathrm{mg}, 5.0 \mathrm{mmol}$), anhydrous THF (3 mL), chlorotrimethylsilane ($691 \mu \mathrm{~L}, 8.0 \mathrm{mmol}$), and a drop of I_{2} were added into a dry 50
mL Schlenk flask. The mixture was stirred at rt for 15 min . Then a solution of 1-(bromomethyl)-3-(trifluoromethyl)benzene ($611 \mu \mathrm{~L}, 4.0 \mathrm{mmol}$) in anhydrous THF (7 mL) was added dropwise. After stirred at rt for 24 hours, the reaction was quenched by water (10 mL) and HCl (aq., 1 M$)(10 \mathrm{~mL})$. The mixture was extracted with ethyl acetate ($30 \mathrm{~mL} x \mathrm{3}$). The combined organic layer was dried over MgSO_{4}. Filtration, concentration, and purification by flash chromatography on silica gel (eluent: petroleum ether) afforded $\mathbf{1 0}$ as a colorless oil ($491 \mathrm{mg}, 53 \%$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.36-7.29 (m, 2 H), $7.24(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 2 \mathrm{H})$, $0.00(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.7$ (s), 131.3 (s), 130.5 ($\mathrm{q}, ~ J=31.5$ $\mathrm{Hz}), 128.5(\mathrm{q}, J=2.8 \mathrm{~Hz}), 124.5(\mathrm{q}, J=3.8 \mathrm{~Hz}), 124.4(\mathrm{q}, J=270.8 \mathrm{~Hz}), 120.8(\mathrm{q}, J$ $=3.8 \mathrm{~Hz}$), $27.2(\mathrm{~s}),-2.12(\mathrm{~s}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.6 \mathrm{ppm}$; IR (neat) 1593, 1491, 1445, $1424 \mathrm{~cm}^{-1}$; MS (EI, 70 eV) m/z 232 (${ }^{+}$6.46), 140 (100); HRMS (EI, 70 eV) calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{Si}$ 232.0895, found. 232.0892.

Synthesis of (2-(trifluoromethyl)benzyl)trimethylsilane (1p)

Under argon atmosphere, Mg ($125 \mathrm{mg}, 5.2 \mathrm{mmol}$), anhydrous THF (3 mL), chlorotrimethylsilane ($700 \mu \mathrm{~L}, 8.1 \mathrm{mmol}$), and a drop of I_{2} were added into a dry 50 mL Schlenk flask. The mixture was stirred at rt for 15 min . Then a solution of 1-(bromomethyl)-2-(trifluoromethyl)benzene ($969 \mathrm{mg}, 3.9 \mathrm{mmol}$) in anhydrous THF (6 mL) was added dropwise. After stirred at rt for 24 hours, the reaction was quenched by water $(10 \mathrm{~mL})$ and HCl (aq., 1 M$)(10 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 mL x 3). The combined organic layer was dried over MgSO_{4}. Filtration, concentration, and purification by flash chromatography on silica gel (eluent: petroleum ether) afforded $\mathbf{1 p}$ as a colorless oil ($302 \mathrm{mg}, 33 \%$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 2$ H), $0.07(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.2(\mathrm{q}, J=2.2 \mathrm{~Hz}), 131.2(\mathrm{q}, J=$ $1.5 \mathrm{~Hz}), 130.5(\mathrm{~s}), 127.3(\mathrm{q}, J=29.2 \mathrm{~Hz}), 126.1(\mathrm{q}, J=5.8 \mathrm{~Hz}), 124.8(\mathrm{q}, J=272.1$
$\mathrm{Hz}), 124.0(\mathrm{~s}), 23.7(\mathrm{q}, J=1.5 \mathrm{~Hz}),-1.37(\mathrm{~s}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-60.1$ ppm; IR (neat) 1607, 1577, 1491, $1455 \mathrm{~cm}^{-1}$; MS (EI, 70 eV) m/z 232 ($\mathrm{M}^{+} 1.32$), 140 (100); HRMS (EI, 70 eV) calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{Si} 232.0895$, found. 232.0900.

Typical Procedure I for the photoreaction.

Synthesis of 4-methoxybenzoic acid (3a) ${ }^{15}$

(4-Methoxybenzy)trimethylsilane ($38 \mathrm{mg}, 0.20 \mathrm{mmol}$), anhydrous acetonitrile (10 mL), and HBr (aq., 40%) ($5.9 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$) were added to a dry quartz reaction flask which was equipped with a magnetic stirrer and a condenser. The mixture was irradiated by a Xe lamp (300 W) at rt in the open air. The photoreaction was completed after 3.5 hours as monitored by TLC (eluent: petroleum ether : ethyl acetate $=10: 1$). The solvent was removed and the residue was purified by flash chromatography on silica gel (eluent: petroleum ether : ethyl acetate $=3: 1 \rightarrow 1: 1$) to afford 3a as a solid ($27 \mathrm{mg}, 91 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07$ (d, $J=8.0 \mathrm{~Hz}$, 2 H), $6.95(\mathrm{~d}, ~ J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H})$.

The following compounds were prepared according to typical procedure I.
(1) 3-Methoxybenzoic acid (3b) ${ }^{16}$

The reaction of $\mathbf{1 b}(39 \mathrm{mg}, 0.20 \mathrm{mmol})$ and $\mathrm{HBr}(\mathrm{aq} ., 40 \%)(5.9 \mu \mathrm{~L}, 0.04 \mathrm{mmol})$ in anhydrous acetonitrile (10 mL) afforded $\mathbf{3 b}$ as a solid ($14 \mathrm{mg}, 46 \%$); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 1 \mathrm{H})$, 7.19-7.13 (m, 1 H), 3.88 (s, 3 H).

(2) 2-Methoxybenzoic acid (3c) ${ }^{17}$

The reaction of $\mathbf{1 c}(38 \mathrm{mg}, 0.20 \mathrm{mmol})$ and $\mathrm{HBr}(\mathrm{aq} ., 40 \%)(5.9 \mu \mathrm{~L}, 0.04 \mathrm{mmol})$ in anhydrous acetonitrile (10 mL) afforded 3c as a solid ($15 \mathrm{mg}, 50 \%$); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.88(\mathrm{brs}, 1 \mathrm{H}), 8.20-8.17(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.05(\mathrm{~m}$, $2 \mathrm{H}), 4.09$ (s, 3 H).

(3) 4-Tert-butylbenzoic acid (3d) ${ }^{18}$

The reaction of $\mathbf{1 d}(43 \mathrm{mg}, 0.20 \mathrm{mmol})$ and $\mathrm{HBr}(\mathrm{aq} ., 40 \%)(5.9 \mu \mathrm{~L}, 0.04 \mathrm{mmol})$ in anhydrous acetonitrile (10 mL) afforded $3 \mathbf{d}$ as a solid ($23 \mathrm{mg}, 66 \%$); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H})$.

(4) 4-Phenylbenzoic acid (3e) ${ }^{19}$

The reaction of $\mathbf{1 e}(47 \mathrm{mg}, 0.20 \mathrm{mmol})$ and $\mathrm{HBr}(\mathrm{aq} ., 40 \%)(5.9 \mu \mathrm{~L}, 0.04 \mathrm{mmol})$ in anhydrous acetonitrile (10 mL) afforded $\mathbf{3 e}$ as a solid ($32 \mathrm{mg}, 83 \%$); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.99$ (brs, 1 H), 8.03 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.80 (d, $J=8.4 \mathrm{~Hz}, 2$ H), 7.74 (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 1 \mathrm{H})$.

(5) Benzoic acid (3f) ${ }^{20}$

The reaction of $1 \mathrm{f}(33 \mathrm{mg}, 0.20 \mathrm{mmol})$ and $\mathrm{HBr}(\mathrm{aq} ., 40 \%)(5.9 \mu \mathrm{~L}, 0.04 \mathrm{mmol})$ in anhydrous acetonitrile (10 mL) afforded 3 f as a solid ($18 \mathrm{mg}, 74 \%$) ; ${ }^{1} \mathrm{H} \mathrm{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.26($ brs, 1 H$), 8.13(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.55(\mathrm{~m}, 1 \mathrm{H})$, 7.54-7.30 (m, 2 H$)$.

(6) 4-Chlorobenzoic acid (3g) ${ }^{16}$

The reaction of $\mathbf{1 g}(40 \mathrm{mg}, 0.20 \mathrm{mmol})$ and $\mathrm{HBr}(\mathrm{aq} ., 40 \%)(5.9 \mu \mathrm{~L}, 0.04 \mathrm{mmol})$ in anhydrous acetonitrile (10 mL) afforded 3 g as a solid ($22 \mathrm{mg}, 70 \%$) ; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 13.12(\mathrm{brs}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2$ H).
(7) 4-Fluorobenzoic acid (3h) ${ }^{15}$

The reaction of $\mathbf{1 h}(35 \mathrm{mg}, 0.19 \mathrm{mmol})$ and $\mathrm{HBr}(\mathrm{aq} ., 40 \%)(5.9 \mu \mathrm{~L}, 0.04 \mathrm{mmol})$ in anhydrous acetonitrile $(10 \mathrm{~mL})$ afforded $\mathbf{3 h}$ as a solid $(22 \mathrm{mg}, 82 \%) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.19-8.10(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.09(\mathrm{~m}, 2 \mathrm{H})$.

(8) 4-(Diphenylphosphoryl)benzoic acid (3i) ${ }^{21}$

The reaction of $\mathbf{1 i}(71 \mathrm{mg}, 0.19 \mathrm{mmol})$ and $\mathrm{HBr}(\mathrm{aq} ., 40 \%)(5.9 \mu \mathrm{~L}, 0.04 \mathrm{mmol})$ in anhydrous acetonitrile (10 mL) afforded $3 \mathbf{i}$ as a solid ($39 \mathrm{mg}, 62 \%$); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) δ 8.11-8.05 (m, 2 H), 7.78-7.69 (m, 2 H), 7.68-7.52 (m, 10 H).
(9) 4-Acetylbenzoic acid (3j) ${ }^{22}$

The reaction of $\mathbf{1 j}$ ($39 \mathrm{mg}, 0.19 \mathrm{mmol}$) and HBr (aq., 40%) ($5.9 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$) in anhydrous acetonitrile (10 mL) afforded $\mathbf{3 j}$ as a solid ($25 \mathrm{mg}, 81 \%$); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 13.33$ (brs, 1 H), 8.06 ($\mathrm{s}, 4 \mathrm{H}$), 2.63 ($\mathrm{s}, 3 \mathrm{H}$).

(10) 4-(Methoxycarbonyl)benzoic acid (3k) ${ }^{23}$

The reaction of $\mathbf{1 k}(43 \mathrm{mg}, 0.19 \mathrm{mmol})$ and $\mathrm{HBr}(\mathrm{aq} ., 40 \%)(5.9 \mu \mathrm{~L}, 0.04 \mathrm{mmol})$ in anhydrous acetonitrile (10 mL) afforded $\mathbf{3 k}$ as a solid ($30 \mathrm{mg}, 86 \%$); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.05(\mathrm{~s}, 4 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H})$.
(11) 4-(Ethoxycarbonyl)benzoic acid (31) ${ }^{24}$

The reaction of 11 ($46 \mathrm{mg}, 0.19 \mathrm{mmol}$) and HBr (aq., 40%) ($5.9 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$) in anhydrous acetonitrile (10 mL) afforded $\mathbf{3 l}$ as a solid ($34 \mathrm{mg}, 90 \%$); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22-8.12(\mathrm{~m}, 4 \mathrm{H}), 4.42(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3$ H).
(12) 4-(Diisopropylcarbamoyl)benzoic acid (3m)

The reaction of $\mathbf{1 m}(55 \mathrm{mg}, 0.20 \mathrm{mmol})$ and $\mathrm{HBr}(\mathrm{aq} ., 40 \%)(5.9 \mu \mathrm{~L}, 0.04 \mathrm{mmol})$ in anhydrous acetonitrile (10 mL) afforded $\mathbf{3 m}$ as a solid ($40 \mathrm{mg}, 81 \%$); mp 251.1-252.9 ${ }^{\circ} \mathrm{C}$ (petroleum ether/ethyl acetate); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.53$ (brs, 1 H), 8.11 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.41 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 3.75 (brs, 1 H), 3.56 (brs, 1 H), 1.56 (brs, 6 H), 1.15 (brs, 6 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.5,170.2,143.4,130.5$, 129.8, 125.7, 50.7, 45.8, 20.6; IR (neat) 1705, 1632, 1473, $1439 \mathrm{~cm}^{-1} ;$ HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{3} 250.1443$, found. 250.1433.

(13) 4-(Trifluoromethyl)benzoic acid (3n) ${ }^{23}$

The reaction of $1 \mathrm{n}(46 \mathrm{mg}, 0.20 \mathrm{mmol})$ and $\mathrm{HBr}($ aq., $40 \%)(5.9 \mu \mathrm{~L}, 0.04 \mathrm{mmol})$ in
anhydrous acetonitrile (10 mL) afforded $\mathbf{3 n}$ as a solid ($30 \mathrm{mg}, 80 \%$); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$.

(14) 3-(Trifluoromethyl)benzoic acid (3o) ${ }^{23}$

The reaction of $\mathbf{1 0}(46 \mathrm{mg}, 0.20 \mathrm{mmol})$ and $\mathrm{HBr}($ aq., $40 \%)(5.9 \mu \mathrm{~L}, 0.04 \mathrm{mmol})$ in anhydrous acetonitrile (10 mL) afforded 3 Bo as a solid ($28 \mathrm{mg}, 74 \%$); ${ }^{1} \mathrm{HNMR}$ (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.40(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.81-7.50 (m, 1 H).

(15) 2-(Trifluoromethyl)benzoic acid (3p) ${ }^{23}$

The reaction of $\mathbf{1 p}(46 \mathrm{mg}, 0.20 \mathrm{mmol})$ and $\mathrm{HBr}(\mathrm{aq} ., 40 \%)(5.9 \mu \mathrm{~L}, 0.04 \mathrm{mmol})$ in anhydrous acetonitrile (10 mL) afforded 3 p as a solid ($29 \mathrm{mg}, 77 \%$); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 13.58$ (brs, 1 H), 7.85-7.69 (m, 4 H).

(16) Synthesis of benzoic acid ($\mathbf{3 f})^{20}$ from 1q

The reaction of $\mathbf{1 q}(41 \mathrm{mg}, 0.20 \mathrm{mmol})$ and $\mathrm{HBr}($ aq., $40 \%)(5.9 \mu \mathrm{~L}, 0.04 \mathrm{mmol})$ in anhydrous acetonitrile (10 mL) afforded $\mathbf{3 f}$ as a solid ($20 \mathrm{mg}, 83 \%$).

(17) Synthesis of benzoic acid ($\mathbf{3 f})^{20}$ from $\mathbf{1 r}$

The reaction of $\mathbf{1 r}(41 \mathrm{mg}, 0.20 \mathrm{mmol})$ and HBr (aq., 40%) ($5.9 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$) in anhydrous acetonitrile (10 mL) afforded $\mathbf{3 f}$ as a solid ($17 \mathrm{mg}, 70 \%$).
(18) Synthesis of benzoic acid (3f) ${ }^{20}$ from 1s

The reaction of $1 \mathbf{s}$ ($45 \mathrm{mg}, 0.20 \mathrm{mmol}$) and HBr (aq., 40%) ($5.9 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$) in anhydrous acetonitrile (10 mL) afforded $\mathbf{3 f}$ as a solid ($20 \mathrm{mg}, 82 \%$).

(19) Synthesis of benzoic acid (3f) ${ }^{20}$ from 1t

The reaction of $\mathbf{1 t}(59 \mathrm{mg}, 0.20 \mathrm{mmol})$ and $\mathrm{HBr}(\mathrm{aq} ., 40 \%)(5.9 \mu \mathrm{~L}, 0.04 \mathrm{mmol})$ in anhydrous acetonitrile (10 mL) afforded $3 \mathbf{f}$ as a solid ($15 \mathrm{mg}, 60 \%$).

(20) Synthesis of benzoic acid (3f) ${ }^{20}$ from 4

The reaction of 4 ($39 \mathrm{mg}, 0.21 \mathrm{mmol}$) and HBr (aq., 40%) ($5.9 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$) in anhydrous acetonitrile (10 mL) afforded $3 \mathbf{f}$ as a solid ($20 \mathrm{mg}, 80 \%$).

(21) Synthesis of benzoic acid (3f) ${ }^{20}$ from 5

The reaction of 5 ($42 \mathrm{mg}, 0.22 \mathrm{mmol}$) and HBr (aq., 40\%) ($5.9 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$) in
anhydrous acetonitrile (10 mL) afforded 3 f as a solid ($23 \mathrm{mg}, 86 \%$).

Gram-scale synthesis of 3d

The reaction of $\mathbf{1 d}(1.10 \mathrm{~g}, 5.0 \mathrm{mmol})$ and $\mathrm{HBr}(\mathrm{aq} ., 40 \%)(148 \mu \mathrm{~L}, 1.0 \mathrm{mmol})$ in anhydrous acetonitrile (60 mL) afforded $\mathbf{3 d}$ as a solid ($677 \mathrm{mg}, 76 \%$).

The conversion of 2a to 3a under Conditions A

2a ($29 \mathrm{mg}, 0.21 \mathrm{mmol}$), anhydrous acetonitrile (10 mL), and $\mathrm{HBr}(\mathrm{aq} ., 40 \%)(5.9 \mu \mathrm{~L}$, 0.04 mmol) were added to a dry quartz reaction flask which was equipped with a magnetic stirrer and a condenser. The mixture was irradiated by a Xe lamp (300 W) at rt in the open air. The photoreaction was completed after 2.5 hours as monitored by TLC (eluent: petroleum ether : ethyl acetate $=10: 1$). The solvent was removed and the residue was purified by flash chromatography on silica gel (eluent: petroleum ether : ethyl acetate $=3: 1$) to afford 3a as a solid ($32 \mathrm{mg}, 99 \%$).

The photooxidation of 1a under the catalysis of Br_{2}

1a ($39 \mathrm{mg}, 0.20 \mathrm{mmol}$), anhydrous acetonitrile $(10 \mathrm{~mL})$, and $\mathrm{Br}_{2}(6.4 \mathrm{mg} / \mathrm{mL}$ in $\left.\mathrm{CH}_{3} \mathrm{CN}\right)(0.5 \mathrm{~mL}, 0.02 \mathrm{mmol})$ were added to a dry quartz reaction flask which was equipped with a magnetic stirrer and a condenser. The mixture was irradiated by a Xe
lamp (300 W) at rt in the open air. The photoreaction was completed after 3.5 hours as monitored by TLC (eluent: petroleum ether : ethyl acetate $=10: 1$). The solvent was removed and the residue was purified by flash chromatography on silica gel (eluent: petroleum ether : ethyl acetate $=3: 1 \rightarrow$ ethyl acetate $)$ to afford $\mathbf{2 a}(7 \mathrm{mg}, 26 \%)$ and $\mathbf{3 a}$ ($20 \mathrm{mg}, 65 \%$).

$1 i$

$1 i$

3a

3b

$3 g$

N M M

3j

$)^{80}$

31

References

[1] D. J. Coughlin, R.G. Salomon, J. Org. Chem. 1979, 44, 3784-3790.
[2] C. G. M. Janssen, E. F. Godefroi, J. Org. Chem. 1984, 49, 3600-3603.
[3] P. Fleming, D. F. O'Shea, J. Am. Chem. Soc. 2011, 133, 1698-1701.
[4] T. Sawada, M. Wakabayashi, H. Takeo, A. Miyazawa, M. Tashiro, T. Thiemann, S. Mataka, J. Chem. Soc., Perkin Trans. 1 1999, 403-407.
[5] J. R. Huckins, S. D. Rychnovsky, J. Org. Chem. 2003, 68, 10135-10145.
[6] S. Protti, D. Ravelli, B. Mannucci, A. Albini, M. Fagnoni, Angew. Chem. Int. Ed. 2012, 51, 8577-8580.
[7] T. Maruyama, Y. Mizuno, I. Shimizu, S. Suga, J. Yoshida, J. Am. Chem. Soc. 2007, 129, 1902-1903.
[8] V. Georgakilas, G. P. Perdikomatis, A. S. Triantafyllou, M. G. Siakos, A. K. Zarkadis, Tetrahedron 2002, 58, 2441-2447.
[9] J. S. Swenton, M. Platz, L. D. Venham, J. Org. Chem. 1988, 53, 2764-2768.
[10] H. Takahashi, K. M. Hossain, Y. Nishihara, T. Shibata, K. Takagi, J. Org. Chem. 2006, 71, 671-675.
[11] M. Das, D. F. O'Shea. Tetrahedron 2013, 69, 6448-6460.
[12] M. Tobisu, Y. Kita, Y. Ano, N. Chatani, J. Am. Chem. Soc. 2008, 130, 15982-15989.
[13] N. M. Betterley, P. Surawatanawong, S. Prabpai, P. Kongsaeree, C. Kuhakarn, M. Pohmakotr, V. Reutrakul, Org. Lett. 2013, 15, 5666-5669.
[14] G. E. Dobereiner, J. Yuan, R. R. Schrok, A. S. Goldman, J. D. Hackenberg, J. Am. Chem. Soc. 2013, 135, 12572-12575.
[15] C. S. Yeung, V. M. Dong, J. Am. Chem. Soc. 2008, 130, 7826-7827.
[16] A. Correa, R. Martín, J. Am. Chem. Soc. 2009, 131, 15974-15875.
[17] N. K. Jana, J. G. Verkade, Org. Lett. 2003, 5, 3787-3790.
[18] N. Tada, K. Hattori, T. Nobuta, T. Miura, A. Itoh, Green Chem. 2011, 13, 1669-1671.
[19] L. Gu, Y. Zhang, Y. J. Am. Chem. Soc. 2010, 132, 914-915.
[20] A. C. Schmidt, C. B. W. Stark, Org. Lett. 2011, 13, 4164-4167.
[21] S. M. Rummelt, M. Ranocchiari, J. A. van Bokhoven, Org. Lett. 2012, 14, 2188-2190.
[22] T. Dohi, N. Takenaga, A. Goto, H. Fujioka, Y. Kita, J. Org. Chem. 2008, 73, 7365-7368.
[23] X. Zhang, W. Zhang, L. Shi, C. Guo, L. Zhang, X. Lu, Chem. Commun. 2012, 48, 6292-6294.
[24] K. Kobayashi, Y. Kondo, Org. Lett. 2009, 11, 2035-2037.

