Synthesis of Diaryldifluoromethanes by Pd-Catalyzed Difluoroalkylation of Arylboronic Acids

Ji-Wei Gu, Wen-Hao Guo and Xingang Zhang*

Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China xgzhang@mail.sioc.ac.cn

List of Contents

1) General Information	S3
2) Preparation of Compound 1a	S3
3) Screens for Palladimu-Catalyzed Cross-Coupling of 1a with 2a.	S4
4) Radical Inhibition Experiments	S5
5) Radical Clock Experiment	S5
6) General Procedure for Palladium-Catalyzed Cross-Coupling of 1 with Arylboronic Acids	S6
7) Data for compounds 3	S7
8) Data for compound 5	. S16
9) Data for compound 7	S17
10) References.	S17
11) Copies of ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectra of compound 1a	S18
12) Copies of ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectra of compound 9	S19
13) Copies of ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectra of compounds 3	S 21
14) Copies of ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectra of compound 5	S52
15) Copies of ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectra of compound 7	S54

General information: ¹H NMR and ¹³C NMR spectra were recorded on a Bruker AM300, AM400, Agilent MR400 spectrometer. ¹⁹F NMR was recorded on a Bruker AM300 and Agilent MR400 spectrometer (CFCl₃ as an outside standard and low field is positive). Chemical shifts (δ) are reported in ppm, and coupling constants (*J*) are in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. NMR yield was determined by ¹⁹F NMR using PhCF₃ as an internal standard before working up the reaction.

Materials: All reagents were used as received from commercial sources, unless specified otherwise, or prepared as described in the literature. All reagents were weighed and handled in air, and then purged on air and backfilled with argon at room temperature. 1,4-Dioxane was distilled from sodium immediately and degassed before used. Compounds **1a-b**,¹ and **1d-c**² were prepared according to references, in which compounds **1b-d** are known compounds.

Structures of Compounds 1a-d

4-(Bromodifluoromethyl)-1,1'-biphenyl (1a). The preparation of compound **1a** was according to reference. The product (72 % yield) was purified with silica gel chromatography (use Petroleum ether as eluent) as a white solid. m.p. 57-59 °C.¹H NMR (400 MHz, CDCl₃) δ 7.68 (t, *J* = 9.6 Hz, 4H), 7.62-7.60 (m, 2H), 7.48 (t, *J* = 7.4 Hz, 2H), 7.41 (t, *J* = 7.4 Hz, 1H). ¹³C NMR (101.0 MHz, CDCl₃) δ 144.2 (t, *J* = 1.4 Hz), 139.7, 136.9 (t, *J* = 23.8 Hz), 129.0, 128.2, 127.3, 127.2, 124.8 (t, *J* = 5.2 Hz), 118.4 (t, *J* = 305.2 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -43.2 (s, 2F). IR (thin film) v_{max} 3082, 1922, 1609, 1570, 1488, 1406 cm⁻¹. MS (EI): m/z (%) 281 (M⁺), 203 (100). HRMS: Calculated for C₁₃H₉BrF₂: 281.9856; Found: 281.9860.

Screens for Palladium-Catalyzed Cross-Coupling of 1a with 2a (Table S1).

A 25 mL of Schlenck tube equipped with a magnetic stir bar was charged with aryldifluoromethyl bromide **1a** (56.6 mg, 0.2 mmol, 1.0 equiv), phenylboronic acid **2a** (36.6 mg, 0.3 mmol, 1.5 equiv), palladium catalyst (1-5 mol %), phosphine ligand (5-10 mol %) under air, followed by addition of base (0.5-2.0 equiv). The vessel was evacuated and backfilled with Ar (3 times), solvent (2 mL) was then added. The Schlenck tube was screw capped and heated to 60-80 °C. After stirring for 8 h, the reaction mixture was cooled to room temperature and diluted with ethyl acetate (2 mL). The yield was determined by ¹⁹F NMR before working up. If necessary, the reaction mixture was diluted with EtOAc and filtered with a pad of cellite. The filtrate was concentrated, and the residue was purified with silica gel chromatography (hexane 100%) to give product **3a** as a white solid.

	Ph	Br (HO) ₂ B +	Pd(OAc) ₂ (x mol %) PAd ₂ (n-Bu) HI (y mol %) Base, Solvent Ph			
	1a	2a	60-80 °C		3a	
Entry	Catalyst (x mol%)	Ligand (y mol%)	Base (equiv.)	Solvent	Temp/°C	Results
1	Pd(OAc) ₂ (2.5)	PAd ₂ (<i>n</i> -Bu) HI (10)	K ₂ CO ₃ (2.0)	Dioxane	80	80%
2	Pd(OAc) ₂ (1)	PAd ₂ (<i>n</i> -Bu) HI (10)	K ₂ CO ₃ (2.0)	Dioxane	80	62%
3	Pd(OAc) ₂ (5)	PAd ₂ (<i>n</i> -Bu) HI (10)	K ₂ CO ₃ (2.0)	Dioxane	70	48%
4	Pd(OAc) ₂ (5)	PAd ₂ (<i>n</i> -Bu) HI (10)	K ₂ CO ₃ (2.0)	Dioxane	60	43%
5	Pd(OAc) ₂ (5)	PAd ₂ (<i>n</i> -Bu) HI (10)	K ₂ CO ₃ (2.0)	DMSO	80	Trace
6	Pd(OAc) ₂ (5)	PAd ₂ (<i>n</i> -Bu) HI (10)	K ₂ CO ₃ (2.0)	Toluene	80	87%
7	$Pd(OAc)_2(5)$	PAd ₂ (<i>n</i> -Bu) HI (10)	K ₂ CO ₃ (2.0)	DCE	80	76%
8	Pd(OAc) ₂ (5)	PAd ₂ (<i>n</i> -Bu) HI (10)	K ₂ CO ₃ (2.0)	DMF	80	Trace
9	$Pd(OAc)_2(5)$	PAd ₂ (<i>n</i> -Bu) HI (10)	K ₂ CO ₃ (2.0)	MeCN	80	29%
10	Pd(OAc) ₂ (5)	PAd ₂ (<i>n</i> -Bu) HI (10)	K ₂ CO ₃ (2.0)	THF	80	73%
11	Pd(OAc) ₂ (5)	PAd ₂ (<i>n</i> -Bu) HI (10)	Cs ₂ CO ₃ (2.0)	Dioxane	80	70%
12	Pd(OAc) ₂ (5)	PAd ₂ (<i>n</i> -Bu) HI (10)	Na ₂ CO ₃ (2.0)	Dioxane	80	8%
13	$Pd(OAc)_2(5)$	PAd ₂ (<i>n</i> -Bu) HI (10)	K3PO4(2.0)	Dioxane	80	83%
14	Pd(OAc) ₂ (5)	PAd ₂ (<i>n</i> -Bu) HI (10)	NaOAc(2.0)	Dioxane	80	Trace
15	Pd(OAc) ₂ (5)	PAd ₂ (<i>n</i> -Bu) HI (10)	KOAc(2.0)	Dioxane	80	9%
16	Pd(OAc) ₂ (5)	PAd ₂ (<i>n</i> -Bu) HI (10)	K ₂ CO ₃ (1.0)	Dioxane	80	75%
17	Pd(OAc) ₂ (5)	PAd ₂ (<i>n</i> -Bu) HI (10)	K ₂ CO ₃ (0.5)	Dioxane	80	50%
18	Pd(OAc) ₂ (5)	PAd ₂ (<i>n</i> -Bu) HI (10)	None	Dioxane	80	NR
19	Pd(OAc) ₂ (5)	PAd ₂ (<i>n</i> -Bu) HI (7.5)	K ₂ CO ₃ (2.0)	Dioxane	80	89%
20	$Pd(OAc)_2(5)$	$PAd_2(n-Bu) HI (5)$	$K_2CO_3(2.0)$	Dioxane	80	97% (91%)

Table S1.Optimization of Palladium-Catalyzed Cross-Coupling of 1a with 2a^a

^{*a*}Reaction conditions (unless otherwise specified): **1a** (0.2 mmol, 1.0 equiv), **2a** (0.3 mmol, 1.5 equiv), solvent (2 mL). ^{*b*}Determined by ¹⁹F NMR using PhCF₃ as an internal standard and number in parenthesis is the isolated yield.

Radical Inhibition Experiments

^aDetermined by ¹⁹F NMR using PhCF₃ as an internal standard.

A 25 mL of Schlenck tube equipped with a magnetic stir bar was charged with aryldifluoromethyl bromide **1a** (56.6 mg, 0.2 mmol, 1.0 equiv), $Pd(OAc)_2$ (2.3 mg, 0.01 mmol, 0.05 equiv), $PAd_2(n-Bu)$ •HI (4.9 mg, 0.01 mmol, 0.05 equiv) under air, followed by addition of K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv) and additive. The vessel was evacuated and backfilled with Ar (3 times), solvent (2 mL) was then added. The Schlenck tube was screw capped and heated to 80 °C. After stirring for 8 h, the reaction mixture was cooled to room temperature and diluted with ethyl acetate (2 mL). The yield was determined by ¹⁹F NMR before working up.

Radical Clock Experiment

A 25 mL of Schlenck tube equipped with a magnetic stir bar was charged with aryldifluoromethyl bromide 1a (56.6 mg, 0.2 mmol, 1.0 equiv), Pd(OAc)₂ (2.3 mg, 0.01 mmol, 0.05 equiv), PAd₂(*n*-Bu)•HI (4.9 mg, 0.01 mmol, 0.05 equiv) under air, followed by addition of K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv). The vessel was evacuated and backfilled with Ar (3 times), compound 8 (43.3 mg, 0.3 mmol, 1.5 equiv) and 1,4-dioxane (2 mL) were then added. The Schlenck tube was screw capped and heated to 80 °C. After stirring for 8 h, the reaction mixture was cooled to room temperature and diluted with ethyl acetate (2 mL). The yield was determined by ¹⁹F NMR before working up. If necessary, the reaction mixture was filtrated through a pad of Celite® and washed with ethyl acetate $(3 \times 5 \text{ mL})$. The filtrate was concentrated. The residue was subjected to column chromatography on silica gel (hexane/EtOAc = 100:1) to afford the product 9 as a semi-solid. ¹H NMR (400 MHz, CDCl3) δ 7.58-7.56 (m, 4H), 7.49-7.44 (m, 4H), 7.37 (t, *J* = 7.4 Hz, 1H), 7.22 (d, *J* = 6.8 Hz, 1H), 7.16-7.10 (m, 3H), 5.89 (t, J = 4.4 Hz, 1H), 3.31 (t, J = 15.4 Hz, 2H), 2.71 (t, J = 8.0 Hz, 2H), 2.24-2.19 (m, 2H). ¹³C NMR (101.0 MHz, CDCl₃) δ 142.4 (t, J = 1.7 Hz), 140.3, 136.2, 136.1 (t, J = 26.9 Hz), 134.5, 131.6, 128.82, 128.78 (t, J = 3.9 Hz), 127.7, 127.4, 127.2, 126.81, 126.75, 126.5, 125.6 (t, J = 6.2 Hz), 123.2 (t, J = 1.8 Hz), 122.4 (t, J = 246.0 Hz), 42.1 (t, J = 28.8Hz), 28.2, 23.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -93.3 (t, J = 15.6 Hz, 2F). IR (thin film) v_{max} 3058, 3031, 2933, 2831, 1616, 1488, 1325, 1066 cm⁻¹. MS (EI): m/z (%) 346 (M⁺), 203 (100). HRMS: Calculated for C₂₄H₂₀F₂: 346.1533; Found: 346.1532.

General Procedure for Palladium-Catalyzed Cross-Coupling of ArCF₂Br 1 with Arylboronic Acids 2.

A 25 mL of Schlenck tube equipped with a magnetic stir bar was charged with aryldifluoromethyl bromide **1** (0.4 mmol, 1.0 equiv), phenylboronic acid **2** (0.6 mmol, 1.5 equiv), palladium catalyst (5 mol %), $PAd_2(n-Bu)$ •HI (5 mol%) under air, followed by addition of K₂CO₃ (110.6 mg, 0.8 mmol, 2.0 equiv). The vessel was evacuated and backfilled with Ar (3 times), dioxane (4 mL) was then added. The Schlenck tube was screw capped and heated to 80 °C. After stirring for 8 h, the reaction mixture was cooled to room temperature. The reaction mixture was diluted with EtOAc and filtered with a pad of cellite. The filtrate was concentrated, and the residue was purified with silica gel chromatography to give product **3**.

4-(Difluoro(phenyl)methyl)-1,1'-biphenyl (3a). The product (103 mg, 91% yield) was purified with silica gel chromatography (use Petroleum ether as eluent) as a white solid. m.p. 76-79°C. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.0 Hz, 2H), 7.60-7.55 (m, 6H), 7.48-7.44 (m, 5H), 7.38 (t, *J* = 7.2 Hz, 1H). ¹³C NMR (101.0 MHz, CDCl₃) δ 142.8 (t, *J* = 1.8 Hz), 140.2, 137.6 (t, *J* = 28.5 Hz), 136.5 (t, *J* = 28.7 Hz), 129.9 (t, *J* = 1.8 Hz), 128.9, 128.4, 127.8, 127.2, 127.1, 126.3 (t, *J* = 5.6 Hz), 125.8 (t, *J* = 5.6 Hz), 120.7 (t, *J* = 242.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -88.6 (s, 2F). IR (thin film) v_{max} 3063, 2923, 1610, 1450, 1273, 1236, 1046 cm⁻¹. MS (EI): m/z (%) 280 (M⁺, 100), 203, 127. HRMS: Calculated for C₁₉H₁₄F₂: 280.1064; Found: 280.1062.

4-(Difluoro(*p*-tolyl)methyl)-1,1'-biphenyl (3b). The product (90 mg, 77% yield) was purified with silica gel chromatography (use Petroleum ether as eluent) as a white solid. m.p. 126-128 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 8.4 Hz, 2H), 7.60-7.56 (m, 4H), 7.47-7.42 (m, 4H), 7.38 (t, J = 8.0 Hz, 1H), 7.24 (d, J = 8.0 Hz, 2H), 2.39 (s, 3H). ¹³C NMR (101.0 MHz, CDCl₃) δ 142.7 (t, J = 1.9 Hz), 140.2, 140.0 (t, J = 1.7 Hz), 136.7 (t, J = 28.9 Hz), 134.8 (t, J = 28.5 Hz), 129.1, 128.9, 127.7, 127.2, 127.1, 126.3 (t, J = 5.5 Hz), 125.8 (t, J = 5.5 Hz), 120.9 (t, J = 242.3 Hz), 21.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -88.0 (s, 2F). IR (thin film) v_{max} 3042, 2923, 1612, 1275, 1238, 1051, 838 cm⁻¹. MS (EI): m/z (%) 294 (M⁺, 100), 203. HRMS: Calculated for C₂₀H₁₆F₂: 294.1220; Found: 294.1216.

4-(Difluoro(m-tolyl)methyl)-1,1'-biphenyl (3c).The product (105 mg, 89% yield) was purified with silica gel chromatography (use Petroleum ether as eluent) as a white solid. m.p. 45-47°C. ¹H NMR

(400 MHz, CDCl₃) δ 7.64-7.57 (m, 6H), 7.46 (t, J = 7.4 Hz, 2H), 7.40-7.31 (m, 4H), 7.26-7.25 (m, 1H), 2.40 (s, 3H). ¹³C NMR (101.0 MHz, CDCl₃) δ 142.7 (t, J = 1.8 Hz), 140.2, 138.2, 137.6 (t, J = 28.3 Hz), 136.7 (t, J = 28.9 Hz), 130.6 (t, J = 1.6 Hz), 128.9, 128.3, 127.8, 127.2, 127.1, 126.4, 126.3 (t, J = 5.4 Hz), 122.9 (t, J = 5.7 Hz), 120.8 (t, J = 242.9 Hz), 21.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -88.5 (s, 2F). IR (thin film) ν_{max} 3027, 2921, 1612, 1487, 1277, 1077, 969, 703 cm⁻¹. MS (EI): m/z (%) 294 (M⁺, 100), 203. HRMS: Calculated for C₂₀H₁₆F₂: 294.1220; Found: 294.1219.

4-(Difluoro(o-tolyl)methyl)-1,1'-biphenyl (3d). The product (97 mg, 83% yield) was purified with silica gel chromatography (use Petroleum ether as eluent) as a white solid. m.p. 70-53 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.64-7.59 (m, 5H), 7.52 (d, *J* = 8.4 Hz, 2H), 7.46 (m, 2H), 7.38 (m, 2H), 7.28 (dt, *J* = 21.2 Hz, *J* = 7.2 Hz, 2H), 2.26 (s, 3H). ¹³C NMR (101.0 MHz, CDCl₃) δ 142.8 (t, *J* = 2.0 Hz), 140.2, 136.6 (t, *J* = 2.8 Hz), 136.2 (t, *J* = 28.2 Hz), 135.0 (t, *J* = 25.8 Hz), 131.9, 130.1 (t, *J* = 1.5 Hz), 128.9, 127.8, 127.2, 127.1, 126.6 (t, *J* = 5.2 Hz), 126.4 (t, *J* = 8.3 Hz), 125.6, 121.4 (t, *J* = 242.4 Hz), 20.3 (t, *J* = 2.5 Hz).¹⁹F NMR (376 MHz, CDCl₃) δ -86.5 (s, 2F). IR (thin film) v_{max} 3058, 3027, 1933, 1605, 1565, 1402, 1224, 996, 840 cm⁻¹. MS (EI): m/z (%) 294 (M⁺), 140 (100). HRMS: Calculated for C₂₀H₁₆F₂: 294.1220; Found: 294.1224.

4-((2,5-Dimethylphenyl)difluoromethyl)-1,1'-biphenyl (3e). The product (101 mg, 82% yield) was purified with silica gel chromatography (use Petroleum ether as eluent) as a white solid. m.p. 58-59°C. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (t, *J* = 8.0 Hz, 4H), 7.52 (d, *J* = 8.4 Hz, 2H), 7.46 (t, *J* = 7.4 Hz, 3H), 7.38 (t, *J* = 7.4 Hz, 1H), 7.15 (dd, *J* = 26.4 Hz, *J* = 8.0 Hz, 2H), 2.39 (s, 3H), 2.19 (s, 3H). ¹³C NMR (101.0 MHz, CDCl₃) δ 142.7 (t, *J* = 2.0 Hz), 140.2, 136.3 (t, *J* = 28.3 Hz), 135.1,

134.7 (t, J = 25.5 Hz), 133.3 (t, J = 2.9 Hz), 131.8, 130.7 (t, J = 1.5 Hz), 128.8, 127.8, 127.2, 127.0, 126.96 (t, J = 8.2 Hz), 126.6 (t, J = 5.2 Hz), 121.4 (t, J = 242.3 Hz), 21.1, 19.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -86.4 (s, 2F). IR (thin film) v_{max} 3027, 2926, 1599, 1486, 1008, 1030 cm⁻¹. MS (EI): m/z (%) 308 (M⁺), 154 (100). HRMS: Calculated for C₂₁H₁₈F₂: 308.1377; Found: 308.1374.

4-((**4**-(*tert*-**Butyl**)**phenyl**)**difluoromethyl**)-**1**,**1**'-**biphenyl** (**3f**). The product (90 mg, 67% yield) was purified with silica gel chromatography (use Petroleum ether as eluent) as a white solid. m.p. 126-128 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 8.4 Hz, 2H), 7.59 (d, J = 7.6 Hz, 4H), 7.49-7.44 (m, 6H), 7.38 (t, J = 7.4 Hz, 1H), 1.33 (s, 9H). ¹³C NMR (101.0 MHz, CDCl₃) δ 153.0 (t, J = 1.6 Hz), 142.7 (t, J = 1.8 Hz), 140.2, 136.7 (t, J = 28.9 Hz), 134.8 (t, J = 28.6 Hz), 128.9, 127.7, 127.2, 127.1, 126.3 (t, J = 5.5 Hz), 125.6 (t, J = 5.5 Hz), 125.3, 120.9 (t, J = 242.8 Hz), 34.7, 31.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -88.0 (s, 2F). IR (thin film) v_{max} 2964, 2869, 1612, 1488, 1407, 1244, 1050 cm⁻¹. MS (EI): m/z (%) 336 (M⁺), 321 (100). HRMS: Calculated for C₂₃H₂₂F₂: 336.1690; Found: 336.1697.

4-((3,5-Dimethoxyphenyl)difluoromethyl)-1,1'-biphenyl (3g). The product (111 mg, 82% yield) was purified with silica gel chromatography (Petroleum ether/AcOEt = 30/1) as a light-brown solid. m.p. 65-68 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 8.4 Hz, 2H), 7.59-7.56 (m, 4H), 7.45 (t, J = 7.4 Hz, 2H), 7.38 (t, J = 7.2 Hz, 1H), 6.68 (d, J = 2.0 Hz, 2H), 6.51 (s, 1H), 3.80 (s, 6H). ¹³C NMR (101.0 MHz, CDCl₃) δ 160.8, 142.8 (t, J = 1.8 Hz), 140.1, 139.6 (t, J = 28.7 Hz), 136.3 (t, J = 28.8 Hz), 128.8, 127.8, 127.14, 127.06, 126.2 (t, J = 5.5 Hz), 120.5 (t, J = 243.7 Hz), 104.0 (t, J = 5.8 Hz), 101.6, 55.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -88.7 (s, 2F). IR (thin film) v_{max} 3023, 2924, 1612, 1596,

1459, 1336, 1205, 1055cm⁻¹. MS (EI): m/z (%) 340 (M⁺, 100), 203. HRMS: Calculated for $C_{21}H_{18}F_2O_2$: 340.1275; Found: 340.1271.

5-(**[1,1'-Biphenyl]-4-yldifluoromethyl)benzo**[*d*][**1,3**]**dioxole** (**3h**). The product (55 mg, 42% yield) was purified with silica gel chromatography (Petroleum ether/AcOEt = 30/1) as a white solid. m.p. 75-78 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (t, *J* = 8.2 Hz, 3H), 7.58-7.57 (m, 3H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.38 (t, *J* = 7.2 Hz, 1H), 7.02 (d, *J* = 8.8 Hz, 2H), 6.83 (d, *J* = 7.6 Hz, 1H), 6.01 (s, 2H). ¹³C NMR (101.0 MHz, CDCl₃) δ 148.8 (t, *J* = 1.7 Hz), 147.7, 142.8 (t, *J* = 1.7 Hz), 140.2, 136.5 (t, *J* = 28.8 Hz), 131.6 (t, *J* = 29.1 Hz), 128.9, 127.8, 127.2, 127.1, 126.3 (t, *J* = 5.4 Hz), 120.6 (t, *J* = 242.8 Hz), 120.1 (t, *J* = 6.2 Hz), 108.0, 106.6 (t, *J* = 5.5 Hz), 101.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -86.6 (s, 2F). IR (thin film) ν_{max} 2918, 2850, 1611, 1489, 1244, 1032 cm⁻¹. MS (EI): m/z (%) 324 (M⁺, 100), 325, 171. HRMS: Calculated for C₂₀H₁₄F₂O₂: 324.0962; Found: 324.0965.

4-(Difluoro(4-fluorophenyl)methyl)-1,1'-biphenyl (3i). The product (102 mg, 86% yield) was purified with silica gel chromatography (use Petroleum ether as eluent) as a white solid. m.p. 83-86 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.4 Hz, 2H), 7.60-7.52 (m, 6H), 7.46 (t, *J* = 7.4 Hz, 2H), 7.39 (t, *J* = 7.4 Hz, 1H), 7.12 (t, *J* = 8.6 Hz, 2H). ¹³C NMR (101.0 MHz, CDCl₃) δ 163.5 (dt, *J* = 250.9 Hz, *J* = 1.9 Hz), 142.9 (t, *J* = 1.8 Hz), 140.1, 136.2 (t, *J* = 28.6 Hz), 133.7 (dt, *J* = 29.1 Hz, *J* = 3.2 Hz), 128.9, 128.05 (dt, *J* = 8.7 Hz, *J* = 5.5 Hz), 127.8, 127.2, 126.3 (t, *J* = 5.5 Hz), 120.4 (t, *J* = 242.8 Hz), 115.6, 115.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -87.3 (s, 2F), -110.94 to -110.98 (m, 1F). IR (thin film) v_{max} 3079, 1605, 1511, 1275, 1236, 1053 cm⁻¹. MS (EI): m/z (%) 298 (M⁺, 100), 203. HRMS: Calculated for C₁₉H₁₃F₃: 298.0969; Found: 298.0965.

4-(Difluoro(2-fluorophenyl)methyl)-1,1'-biphenyl (3j). The product (86 mg, 73% yield) was purified with silica gel chromatography (use Petroleum ether as eluent) as a white solid. m.p. 77-79 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.69-7.58 (m, 7H), 7.45 (t, J = 7.6 Hz, 3H), 7.37 (t, J = 7.4 Hz, 1H), 7.24 (t, J = 7.4 Hz, 1H), 7.10 (t, J = 9.6 Hz, 1H). ¹³C NMR (101.0 MHz, CDCl₃) δ 159.7 (dt, J = 254.2 Hz, J = 3.8 Hz), 142.9 (t, J = 1.8 Hz), 140.1, 135.9 (t, J = 28.0 Hz), 132.1 (d, J = 8.4 Hz), 128.8, 127.8, 127.2, 127.1, 126.0 (dt, J = 5.5 Hz, J = 1.1 Hz), 125.1(dt, J = 29.1 Hz, J = 11.6 Hz), 123.9 (d, J = 3.8 Hz), 119.2 (t, J = 243.9 Hz), 116.7, 116.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -89.4 (d, J = 11.3 Hz, 2F), -112.6 to -112.7 (m, 1F). IR (thin film) ν_{max} 3053, 1618, 1490, 1237, 1220, 1055 cm⁻¹. MS (EI): m/z (%) 298 (M⁺, 100), 203. HRMS: Calculated for C₁₉H₁₃F₃: 298.0969; Found: 298.0971.

4-(Difluoro(4-(trifluoromethyl)phenyl)methyl)-1,1'-biphenyl (3k). The product (101 mg, 73% yield) was purified with silica gel chromatography (use Petroleum ether as eluent) as a white solid. m.p. 122-125 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.73-7.64 (m, 6H), 7.60-7.55 (m, 4H), 7.47 (t, *J* = 7.2 Hz, 2H), 7.39 (t, *J* = 7.2 Hz, 1H). ¹³C NMR (101.0 MHz, CDCl₃) δ 143.2 (t, *J* = 1.7 Hz), 141.3 (t, *J* = 29.2 Hz), 140.0, 135.7 (t, *J* = 28.3 Hz), 132.0 (q, *J* = 32.6 Hz), 128.9, 127.9, 127.3, 127.2, 126.3 (t, *J* = 5.6 Hz), 126.2 (t, *J* = 5.6 Hz), 125.6 (q, *J* = 3.8 Hz), 123.7 (q, *J* = 273.7 Hz), 120.1 (t, *J* = 243.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.9 (s, 3F), -89.6 (s, 2F). IR (thin film) v_{max} 3082, 1622, 1415, 1325, 1174, 1143, 1068 cm⁻¹. MS (EI): m/z (%) 348 (M⁺), 203 (100). HRMS: Calculated for C₂₀H₁₃F₅: 348.0937; Found: 348.0941.

4-([**1**,**1**'-**Biphenyl**]-**4**-yldifluoromethyl)benzaldehyde (**3**l). The product (57 mg, 46% yield) was purified with silica gel chromatography (Petroleum ether/AcOEt = 30/1) as a white solid. m.p. 100-103 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.07 (s, 1H), 7.96 (d, *J* = 8.4 Hz, 2H), 7.75 (d, *J* = 8.0 Hz, 2H), 7.65 (d, *J* = 8.0 Hz, 2H), 7.58 (t, *J* = 7.4 Hz, 4H), 7.46 (t, *J* = 7.4 Hz, 2H), 7.39 (t, *J* = 7.2 Hz, 1H). ¹³C NMR (101.0 MHz, CDCl₃) δ 191.5, 143.3 (t, *J* = 28.7 Hz), 143.2 (t, *J* = 1.8 Hz), 139.9, 137.2 (t, *J* = 1.4 Hz), 135.6 (t, *J* = 28.3 Hz), 129.8, 128.9, 127.9, 127.3, 127.2, 126.5 (t, *J* = 5.6 Hz), 126.1 (t, *J* = 5.6 Hz), 120.1 (t, *J* = 244.2 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -90.0 (s, 2F). IR (thin film) v_{max} 3066, 3028, 2854, 1695, 1392, 1275, 1237, 1061 cm⁻¹. MS (EI): m/z (%) 308 (M⁺), 280 (100). HRMS: Calculated for C₂₀H₁₄F₂O: 308.1013; Found: 308.1008.

Ethyl 4-([1,1'-biphenyl]-4-yldifluoromethyl)benzoate (3m). The product (123 mg, 87% yield) was purified with silica gel chromatography (Petroleum ether/AcOEt = 30/1) as a white solid. m.p. 107-108 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 8.4 Hz, 2H), 7.63 (d, J = 8.0 Hz, 4H), 7.59-7.54 (m, 4H), 7.46 (t, J = 7.6 Hz, 2H), 7.38 (t, J = 7.4 Hz, 1H), 4.40 (q, J = 7.2 Hz, 2H), 1.40 (t, J = 7.2 Hz, 3H). ¹³C NMR (101.0 MHz, CDCl₃) δ 165.7, 143.0 (t, J = 1.7 Hz), 141.7 (t, J = 28.8 Hz), 140.0, 135.9 (t, J = 28.4 Hz), 131.9 (t, J = 1.6 Hz), 129.7, 128.8, 127.8, 127.2, 127.1, 126.1 (t, J = 5.6 Hz), 125.8 (t, J = 5.6 Hz), 120.3 (t, J = 243.8 Hz), 61.2, 14.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -89.7 (s, 2F). IR (thin film) ν_{max} 2992, 1713, 1412, 1274, 1112, 1063, cm⁻¹. MS (EI): m/z (%) 352 (M⁺), 242 (100). HRMS: Calculated for C₂₂H₁₈F₂O₂: 352.1275; Found: 352.1270.

1-(4-([1,1'-Biphenyl]-4-yldifluoromethyl)phenyl)ethanone (3n). The product (83 mg, 64% yield) was purified with silica gel chromatography (Petroleum ether/AcOEt = 30/1) as a white solid. m.p. 95-97 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 8.4 Hz, 2H), 7.65 (t, *J* = 9.0 Hz, 4H), 7.57 (t, *J* = 8.4 Hz, 4H), 7.46 (t, *J* = 7.8 Hz, 2H), 7.38 (t, *J* = 7.6 Hz, 1H), 2.63 (s, 3H). ¹³C NMR (101.0 MHz, CDCl₃) δ 197.2, 143.0 (t, *J* = 1.7 Hz), 141.9 (t, *J* = 28.8 Hz),139.9, 138.1, 135.8 (t, *J* = 28.4 Hz), 128.8, 128.4, 127.8, 127.2, 127.1, 126.1 (t, *J* = 5.6 Hz), 126.0 (t, *J* = 5.6 Hz), 120.2 (t, *J* = 243.8 Hz), 26.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -89.9 (s, 2F). IR (thin film) v_{max} 3042, 2921, 1685, 1409, 1274, 1238, 1064, 1007 cm⁻¹. MS (EI): m/z (%) 322 (M⁺), 307 (100). HRMS: Calculated for C₂₁H₁₆F₂O: 322.1169; Found: 322.1165.

1-(3-([1,1'-Biphenyl]-4-yldifluoromethyl)phenyl)ethanone (30). The product (93 mg, 72% yield) was purified with silica gel chromatography (Petroleum ether/AcOEt = 30/1) as a white solid. m.p. 57-60 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.16 (s, 1H), 8.04 (d, *J* = 7.6 Hz, 1H), 7.74 (d, *J* = 7.6 Hz, 1H), 7.64 (d, *J* = 8.4 Hz, 2H), 7.60-7.56 (m, 5H), 7.46 (t, *J* = 7.2 Hz, 2H), 7.38 (t, *J* = 7.2 Hz, 1H), 2.63 (s, 3H). ¹³C NMR (101.0 MHz, CDCl₃) δ 197.2, 142.98 (t, *J* = 1.7 Hz), 139.9, 138.3 (t, *J* = 29.1 Hz), 137.3, 135.9 (t, *J* = 28.5 Hz), 130.2 (t, *J* = 5.4 Hz), 129.7, 128.9, 128.8, 127.8, 127.2, 127.1, 126.1 (t, *J* = 5.6 Hz), 125.5 (t, *J* = 5.6 Hz), 120.3 (t, *J* = 243.7 Hz), 26.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -88.9 (s, 2F). IR (thin film) v_{max} 3357, 3070, 1686, 1257, 1212, 1057 cm⁻¹. MS (EI): m/z (%) 322 (M⁺), 307 (100). HRMS: Calculated for C₂₁H₁₆F₂O: 322.1169; Found: 322.1165.

(4-([1,1'-Biphenyl]-4-yldifluoromethyl)phenyl)trimethylsilane (3p). The product (120 mg, 85% yield) was purified with silica gel chromatography (use Petroleum ether as eluent) as a white solid. m.p. 117-119 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 8.4 Hz, 2H), 7.59-7.58 (m, 6H), 7.52 (d, J = 8.0 Hz, 2H), 7.46 (t, J = 7.6 Hz, 2H), 7.38 (t, J = 7.2 Hz, 1H), 0.28 (s, 9H). ¹³C NMR (101.0 MHz, CDCl₃) δ 142.9 (t, J = 1.5 Hz), 142.8 (t, J = 1.7 Hz), 140.2, 137.9 (t, J = 28.6 Hz), 136.6 (t, J = 28.7 Hz), 133.4, 128.9, 127.8, 127.2, 127.1, 126.3 (t, J = 5.6 Hz), 124.9 (t, J = 5.6 Hz), 120.8 (t, J = 242.9 Hz), -1.25.¹⁹F NMR (376 MHz, CDCl₃) δ -89.1 (s, 2F). IR (thin film) v_{max} 3032, 2962, 1488, 1404, 1243, 1051 cm⁻¹. MS (EI): m/z (%) 352 (M⁺), 337 (100). HRMS: Calculated for C₂₂H₂₂F₂Si: 352.1459; Found: 352.1454.

2-([1,1'-Biphenyl]-4-yldifluoromethyl)naphthalene (3q). The product (68 mg, 51% yield) was purified with silica gel chromatography (use Petroleum ether as eluent) as a white solid. m.p. 85-89 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (s, 1H), 7.92-7.87 (m, 3H), 7.66-7.59 (m, 7H), 7.57-7.53 (m, 2H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.38 (t, *J* = 7.2 Hz, 1H). ¹³C NMR (101.0 MHz, CDCl₃) δ 142.8 (t, *J* = 1.7 Hz), 140.1, 136.5 (t, *J* = 28.6 Hz), 134.8 (t, *J* = 28.1 Hz), 133.7, 132.5, 128.9, 128.7, 128.5, 127.8, 127.7, 127.22, 127.17, 127.13, 126.7, 126.4 (t, *J* = 5.5 Hz), 125.5 (t, *J* = 6.5 Hz), 123.0 (t, *J* = 4.6 Hz), 121.0 (t, *J* = 242.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -88.4 (s, 2F). IR (thin film) v_{max} 3057, 1601, 1488, 1402, 1250, 1191, 1062 cm⁻¹. MS (EI): m/z (%) 330 (M⁺, 100), 331. HRMS: Calculated for C₂₃H₁₆F₂: 330.1220; Found: 330.1218.

1,2-Bis(phenyl)difluoromethane (3r). 1.0 equiv of H₂O was used. The product (35 mg, 42% yield) was purified with silica gel chromatography (use pentane as eluent) as a light-yellow oil. This is a known compound.³ ¹H NMR (400 MHz, CDCl₃) δ 7.59-7.57 (m, 4H), 7.47-7.43 (m, 6H). ¹³C NMR (101.0 MHz, CDCl₃) δ 137.7 (t, *J* = 28.5 Hz), 129.8, 128.4, 125.8 (t, *J* = 5.7 Hz), 120.7 (t, *J* = 242.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -88.7 (s, 2F).

Ethyl 4-(difluoro(phenyl)methyl)benzoate (3s). 1.0 equiv of H₂O was used. The product (62 mg, 56% yield) was purified with silica gel chromatography (Petroleum ether/AcOEt = 30/1) as a dark brown oil. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 8.4 Hz, 2H), 7.59 (d, J = 8.4 Hz, 2H), 7.50-7.48 (m, 2H), 7.43-7.41 (m, 3H), 4.39 (q, J = 7.2 Hz, 2H), 1.40 (t, J = 7.2 Hz, 3H). ¹³C NMR (101.0 MHz, CDCl₃) δ 165.8, 141.8 (t, J = 28.7 Hz), 137.0 (t, J = 28.2 Hz), 131.8 (t, J = 1.6 Hz), 130.1 (t, J = 1.8 Hz), 129.6, 128.5, 125.8 (t, J = 5.6 Hz), 125.6 (t, J = 5.6 Hz), 120.2 (t, J = 243.8 Hz), 61.2, 14.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -90.0 (s, 2F). IR (thin film) v_{max} 3425, 2983, 1717, 1453, 1409, 1274 cm⁻¹. MS (EI): m/z (%) 276 (M⁺), 231 (100). HRMS: Calculated for C₁₆H₁₄F₂O₂: 276.0962; Found: 276.0965.

2-(Difluoro(phenyl)methyl)-1,3-difluorobenzene (**3**t). The product (64 mg, 66% yield) was purified with silica gel chromatography (use pentane as eluent) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.62-7.60 (m, 2H), 7.44-7.42 (m, 3H), 7.39-7.33 (m, 1H), 6.94 (t, *J* = 8.8 Hz, 2H). ¹³C NMR (101.0 MHz, CDCl₃) δ 159.8 (dm, *J* = 256.8 Hz), 137.2 (t, *J* = 27.5 Hz), 131.8 (t, *J* = 10.9 Hz),

130.2 (t, J = 1.8 Hz), 128.5, 125.0 (t, J = 5.6 Hz), 118.7 (t, J = 247.0 Hz),112.7(m), 112.5 (m).¹⁹F NMR (376 MHz, CDCl₃) δ -87.1 (t, J=28.2, 2F). -110.3 (tdd, J = 28.2 Hz, J = 9.1 Hz, J = 5.9 Hz, 2F). IR (thin film) v_{max} 3068, 3034, 1623, 1605, 1453, 1225, 1127, 1038 cm⁻¹. MS (EI): m/z (%) 240 (M⁺), 127 (100). HRMS: Calculated for C₁₃H₈F₄: 240.0562; Found: 240.0564.

1-(4-Chlorophenyl)-1-phenyldifluoromethane (3u). The product (51 mg, 53% yield) was purified with silica gel chromatography (use pentane as eluent) as a colorless oil. This is a known compound.³ ¹H NMR (400 MHz, CDCl₃) δ 7.52-7.50 (m, 2H), 7.47-7.43 (m, 5H), 7.40 (d, *J* = 8.4 Hz, 2H). ¹³C NMR (101.0 MHz, CDCl₃) δ 137.1 (t, *J* = 28.4 Hz), 136.2 (t, *J* = 29.0 Hz), 136.0 (t, *J* = 2.1 Hz), 130.1 (t, *J* = 1.8 Hz), 128.7, 128.5, 127.3 (t, *J* = 5.5 Hz), 125.7 (t, *J* = 5.6 Hz), 120.3 (t, *J* = 243.2 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -88.7 (s, 2F).

(8*R*,9*S*,13*S*,14*S*)-3-([1,1'-Biphenyl]-4-yldifluoromethyl)-13-methyl-7,8,9,11,12,13,15,16-octahyd ro-6*H*-cyclopenta[*a*]phenanthren-17(14*H*)-one (5). The reaction was carried out in 0.3 mmol scale. The product (108 mg, 79% yield) was purified with silica gel chromatography (Petroleum ether/AcOEt = 30/1) as a light yellow solid. m.p. 59-62 °C.¹H NMR (400 MHz, CDCl₃) δ 7.65-7.59 (m, 6H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.40-7.30 (m, 4H), 2.97-2.94 (m, 2H), 2.56-2.49 (m, 1H), 2.46-2.42 (m, 1H), 2.21-2.14 (m, 1H), 2.12-1.98 (m, 4H), 1.68-1.44 (m, 6H), 0.92 (s, 3H). ¹³C NMR (101.0 MHz, CDCl₃) δ 220.6, 142.6, 141.6, 140.2, 136.8, 136.7 (t, *J* = 29.0 Hz), 135.1 (t, *J* = 28.6 Hz), 128.8, 127.7, 127.14, 127.05, 126.2(t, *J* = 5.5 Hz), 125.4,123.1(t, *J* = 5.6 Hz),120.8 (t, *J* = 242.5 Hz), 50.4, 47.9, 44.4, 37.9, 35.8, 31.5, 29.4, 26.3, 25.6, 21.5, 13.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -88.2 (s, 2F). IR (thin film) v_{max} 2930, 1738, 1612, 1417, 1240, 1085 cm⁻¹. MS (EI): m/z (%) 456 (M⁺), 203 (100). HRMS: Calculated for C₃₁H₃₀F₄O: 456.2265; Found: 456.2261.

2-(4-([1,1'-Biphenyl]-4-yldifluoromethyl)phenyl)chroman-4-one (7). The reaction was carried out in 0.3 mmol scale. The product (105 mg, 82% yield) was purified with silica gel chromatography (Petroleum ether/AcOEt = 30/1) as a light-yellow solid. m.p. 162-166 °C.¹H NMR (400 MHz, CDCl₃) δ 7.97-7.95 (m, 1H), 7.67-7.64 (m, 4H), 7.61-7.58 (m, 5H), 7.56-7.51 (m, 2H), 7.47 (t, *J* = 7.4 Hz, 2H), 7.39 (t, *J* = 7.2 Hz, 1H), 7.09 (t, *J* = 7.6 Hz, 2H), 5.53 (dd, *J* = 13.2 Hz, *J* = 2.8 Hz, 1H), 3.08 (dd, *J* = 16.8 Hz, *J* = 13.2 Hz, 1H), 2.92 (dd, *J* = 16.8 Hz, *J* = 3.2 Hz, 1H). ¹³C NMR (101.0 MHz, CDCl₃) δ 191.4, 161.3, 142.9 (t, *J* = 1.5 Hz), 140.5 (t, *J* = 1.6 Hz), 140.1, 138.1 (t, *J* = 28.9 Hz), 136.3, 136.2 (t, *J* = 28.6 Hz), 128.9, 127.8, 127.2, 127.1, 126.4 (t, *J* = 5.5 Hz), 126.2 (t, *J* = 5.5 Hz), 126.15, 121.8, 120.9, 120.5 (t, *J* = 243.3 Hz), 118.1, 79.0, 44.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -88.7 (s, 2F). IR (thin film) ν_{max} 1698, 1608, 1463, 1301, 1227, 1053 cm⁻¹. MS (EI): m/z (%) 426 (M⁺), 147 (100). HRMS: Calculated for C₂₈H₂₀F₂O₂: 426.1431; Found: 426.1436.

References:

- (1). J. He and C. U. Pittman, Synth.Commun., 1999, 29, 855.
- (2). C.-D.-G. Geraldine, WO 2009121939, 2009.
- (3). Y. Chang, A. Tewari, A.-I. Adi and C. Bae, *Tetrahedron*, 2008, 64, 9837.

4-(Bromodifluoromethyl)-1,1'-biphenyl (1a).

4-(Difluoro(phenyl)methyl)-1,1'-biphenyl (3a).

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 fl (ppm)

4-(Difluoro(m-tolyl)methyl)-1,1'-biphenyl (3c).

S26

4-((2,5-Dimethylphenyl)difluoromethyl)-1,1'-biphenyl (3e).

4-((3,5-Dimethoxyphenyl)difluoromethyl)-1,1'-biphenyl (3g).

S30

S32

4-(Difluoro(4-fluorophenyl)methyl)-1,1'-biphenyl (3i).

4-(Difluoro(4-(trifluoromethyl)phenyl)methyl)-1,1'-biphenyl (3k).

4-([1,1'-Biphenyl]-4-yldifluoromethyl)benzaldehyde (31).

Ethyl 4-([1,1'-biphenyl]-4-yldifluoromethyl)benzoate (3m).

1-(4-([1,1'-Biphenyl]-4-yldifluoromethyl)phenyl)ethanone (3n).

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

(4-([1,1'-Biphenyl]-4-yldifluoromethyl)phenyl)trimethylsilane (3p).

S44

2-([1,1'-Biphenyl]-4-yldifluoromethyl)naphthalene (3q).

Ethyl 4-(difluoro(phenyl)methyl)benzoate (3s).

2-(Difluoro(phenyl)methyl)-1,3-difluorobenzene (3t).

1-(4-Chlorophenyl)-1-phenyldifluoromethane (3u).

S51

S54

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)