Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2014

Electronic Supplementary Information

A Room-Temperature Synthesis of 2-2'-Bisoxazoles through Palladium-Catalyzed Oxidative Coupling of α-Isocyanoacetamides

Jian Wang, Shuang Luo, Jing Li, and Qiang Zhu^{*}

Table of Contents

I. General Information	2
II. Synthetic Procedures	2
III. Product Characterization	3
IV Copies of ¹ H and ¹³ C NMR Spectra	10

I. General Information

¹H NMR (400 MHz) and ¹³C NMR (125 MHz) were registered on Bruker 400 M and 500 M spectrometers. Chemical shifts were reported in units (ppm) by assigning TMS resonance in the ¹H spectrum as 0.00 ppm, CDCl₃ resonance in the ¹³C spectrumas 77.0 ppm. All coupling constants (*J* values) were reported in Hertz (Hz) unit. IR, GC, MS, and melting points were performed by the Analytical Center in GIBH. HRMS was performed by the Analytical Center in Jinan University.

II. Synthetic Procedures

General Procedure A: To an open tube was added Pd(OAc)₂ (0.02 mmol, 4.48 mg), PPh₃ (0.04 mmol, 10.5 mg), Cs₂CO₃ (0.22 mmol, 71.7 mg) and 1.0 mL of MeCN. After the mixture was stirred at room temperature for 0.5 h. 2-isocyano-2-phenyl-1-(piperidin-1-yl)ethanone (1a, 0.2 mmol) was dissolved in 1.0 mL of MeCN and the solution was added dropwise with a syringe pump within 0.5 h. The crude reaction mixture was extracted with DCM (20 mL \times 3) and washed with brine (20 mL). The organic phase was concentrated in vacuo and the purified product 2a was isolated as a white solid by flash chromatography using DCM and MeOH (100:1 to 50:1) as the eluent.

General Procedure B: To an open tube was added $Pd(OAc)_2$ (0.02 mmol, 4.48 mg), PPh₃ (0.04 mmol, 10.5 mg), Cs₂CO₃ (0.22 mmol, 71.7 mg) and 1.0 mL of MeCN. After the mixture was stirred at room temperature for 0.5 h, a solution of 2-isocyano-2-phenyl-1-(piperidin-1-yl)ethanone (1a, 0.2 mmol) and 2-isocyano-2-phenyl-1-(piperidin-1-yl)ethanone (1b, 0.6 mmol) in 4.0 mL of MeCN was added dropwise with a syringe pump over 1.0 h. The crude reaction mixture was extracted with DCM (20 mL × 3) and washed with brine (20 mL). The organic phase was concentrated in vacuo and the purified product 3a was isolated as a white solid by flash chromatography using DCM and MeOH (100:1 to 50:1) as the eluent.

III. Product Characterization

4,4'-diphenyl-5,5'-di(piperidin-1-yl)-2,2'-bioxazole (2a)

Prepared from 2-isocyano-2-phenyl-1-(piperidin-1-yl)ethanone (**1a**, 0.2 mmol) according to the general procedure A. Isolated as a white solid. Yield: 74%. ¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, *J* = 7.6 Hz, 4H), 7.41 (t, *J* = 7.2 Hz, 4H), 7.25-7.29 (m, 2H), 3.19 (t, *J* = 4.8 Hz, 8H), 1.73-1.74 (m, 8H), 1.63-1.65 (m, 4H); ¹³C NMR (125 MHz, CDCl₃): δ 153.1, 145.0, 131.8, 128.3, 126.9, 126.2, 123.6, 50.9, 25.8, 23.8; FTIR: v_{max} /cm⁻¹ 2927, 2847, 1626, 1500, 1384, 1224, 1106, 981, 770, 705; HRMS: calcd for C₂₈H₃₁N₄O₂ (M⁺+H) 455.2447; found: 455.2442; mp: 158-160 °C.

5,5'-dimorpholino-4,4'-diphenyl-2,2'-bioxazole (2b)

Prepared from 2-isocyano-1-morpholino-2-phenylethanone (**1b**, 0.2 mmol) according to the general procedure A. Isolated as a white solid. Yield: 70%. ¹H NMR (400 MHz, CDCl₃): δ 7.98 (d, *J* = 8.0 Hz, 4H), 7.43 (t, *J* = 7.6 Hz, 4H), 7.26-7.30 (m, 2H), 3.88 (t, *J* = 4.0 Hz, 8H), 3.26 (t, J = 3.6 Hz, 8H); ¹³C NMR (125 MHz, CDCl₃): δ 151.7, 145.4, 131.2, 128.4, 127.4, 126.4, 124.7, 66.7, 49.9; FTIR: v_{max} /cm⁻¹ 2891, 2845, 1625, 1601, 1486, 1447, 1385, 1115, 986, 707; HRMS: calcd for C₂₆H₂₇N₄O₄ (M⁺+H) 459.2032; found: 459.2024; mp: 277-279 °C.

*N*5,*N*5',*N*5'-tetramethyl-4,4'-diphenyl-[2,2'-bioxazole]-5,5'-diamine (2c)

Prepared from 2-isocyano-*N*,*N*-dimethyl-2-phenylacetamide (**1c**, 0.2 mmol) according to the general procedure A. Isolated as a white solid. Yield: 78%. ¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, *J* = 7.6 Hz, 4H), 7.41 (t, *J* = 7.6 Hz, 4H), 7.26-7.29 (m, 2H), 2.92 (s, 12H); ¹³C NMR (125 MHz, CDCl₃): δ 153.3, 144.5, 131.7, 128.3, 126.9, 126.6, 122.6, 41.8; FTIR: v_{max} /cm⁻¹ 2957, 2885, 1628, 1504, 1447, 1406, 1375, 1090, 974, 716; HRMS: calcd for C₂₂H₂₃N₄O₂ (M⁺+H) 375.1821; found: 375.1816; mp: 197-199 °C.

*N*5,*N*5'-diethyl-*N*5,*N*5'-dimethyl-4,4'-diphenyl-[2,2'-bioxazole]-5,5'-diamine (2d)

Prepared from *N*-ethyl-2-isocyano-*N*-methyl-2-phenylacetamide (**1d**, 0.2 mmol) according to the general procedure A. Isolated as a white solid. Yield: 81%.¹H NMR (400 MHz, CDCl₃): δ 7.96 (d, *J* = 7.6 Hz, 4H), 7.41 (t, *J* = 7.6 Hz, 4H), 7.25-7.27 (m, 2H), 3.21 (q, *J* = 7.2 Hz, 4H), 2.90 (s, 6H), 1.15 (t, J = 7.2 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 152.5, 145.2, 131.7, 128.2, 127.0, 126.5, 124.6, 48.9, 39.2, 12.8; FTIR: ν_{max} /cm⁻¹ 2968, 1614,1601, 1486, 1228, 1095, 989, 963, 789, 712; HRMS: calcd for C₂₄H₂₇N₄O₂ (M⁺+H) 403.2134; found: 403.2126; mp: 129-131 °C.

*N*5,*N*5',*N*5'-tetraethyl-4,4'-diphenyl-[2,2'-bioxazole]-5,5'-diamine (2e)

Prepared from *N*,*N*-diethyl-2-isocyano-2-phenylacetamide (**1e**, 0.2 mmol) according to the general procedure A. Isolated as a white solid. Yield: 77%. ¹H NMR (400 MHz, CDCl₃): δ 8.07 (d, *J* = 7.6 Hz, 4H), 7.40 (t, *J* = 7.6 Hz, 4H), 7.26-7.30 (m, 2H), 3.22 (q, *J* = 7.2 Hz, 4H),1.12(t, J = 7.2 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 151.2, 146.2, 131.7, 128.2, 127.7, 127.2, 126.4, 47.0, 13.3; FTIR: v_{max} /cm⁻¹ 2975, 2844, 1626, 1560, 1502, 1484, 1340, 1196, 1068, 772; HRMS: calcd for C₂₆H₃₁N₄O₂

N5,N5'-diallyl-N5,N5'-dimethyl-4,4'-diphenyl-[2,2'-bioxazole]-5,5'-diamine (2f)

Prepared from *N*-allyl-2-isocyano-N-methyl-2-phenylacetamide (**1f**, 0.2 mmol) according to general procedure A. Isolated as a white solid. Yield: 82%. ¹H NMR (400 MHz, CDCl₃): δ 7.94 (d, *J* = 7.6 Hz, 4H), 7.41 (t, *J* = 7.6 Hz, 4H), 7.26-7.30 (m, 2H), 5.84-5.94 (m, 2H), 5.18-5.27 (m, 4H), 3.75 (d, *J* = 6.4 Hz, 4H), 2.89 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 152.6, 145.0, 133.7, 131.7, 128.3, 127.1, 126.6, 124.1, 118.6, 57.3, 38.9; FTIR: v_{max} /cm⁻¹ 2916, 2842, 1629, 1601, 1481, 1378, 1220, 1064, 995, 728; HRMS: calcd for C₂₆H₂₇N₄O₂ (M⁺+H) 427.2134; found: 427.2128; mp: 98-100 °C.

5,5'-di(piperidin-1-yl)-4,4'-di-*p*-tolyl-2,2'-bioxazole (2g)

Prepared from 2-isocyano-1-(piperidin-1-yl)-2-(*p*-tolyl)ethanone (**1g**, 0.2 mmol) according to the general procedure A. Isolated as a white solid. Yield: 56%. ¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, *J* = 8.0 Hz, 4H), 7.23 (d, *J* = 8.0 Hz, 4H), 3.18 (t, *J* = 4.8 Hz, 8H), 2.38 (s, 6H), 1.71-1.76 (m, 8H), 1.61-1.65 (m, 4H); ¹³C NMR (125 MHz, CDCl₃): δ 152.7, 145.1, 136.6, 128.9, 129.0, 126.2, 123.9, 50.9, 29.7, 25.8, 23.8, 21.2; FTIR: v_{max} /cm⁻¹ 2936, 2849, 1624, 1514, 1385, 1180, 1112, 987, 822, 611; HRMS: calcd for C₃₀H₃₅N₄O₂ (M⁺+H) 483.2760; found: 483.2757; mp: 228-230 °C.

4,4'-bis(4-chlorophenyl)-5,5'-di(piperidin-1-yl)-2,2'-bioxazole (2h)

Prepared from 2-(4-chlorophenyl)-2-isocyano-1-(piperidin-1-yl)ethanone (**1h**, 0.2 mmol) according to the general procedure A. Isolated as a white solid. Yield: 72%. ¹H NMR (400 MHz, CDCl₃): δ 7.92 (d, J = 8.0 Hz, 4H), 7.38 (t, J = 8.0 Hz, 4H), 3.17 (t, J = 4.8Hz, 8H), 1.73-1.74 (m, 8H), 1.64-1.65 (m, 4H); ¹³C NMR (125 MHz, CDCl₃): δ 153.3, 145.0, 132.6, 130.3, 128.5, 127.4, 122.7, 50.9, 25.7, 23.7; FTIR: v_{max} /cm⁻¹ 2937, 2822, 1620, 1593, 1470, 1382, 1109, 985, 883, 730; HRMS: calcd for C₂₈H₂₉Cl₂N₄O₂ (M⁺+H) 523.1668; found: 523.1663; mp: 233-235 °C.

5-morpholino-4,4'-diphenyl-5'-(piperidin-1-yl)-2,2'-bioxazole (3a)

Prepared from 2-isocyano-2-phenyl-1-(piperidin-1-yl)ethanone (**1a**, 0.2 mmol) and 2-isocyano-1-morpholino-2-phenylethanone (**1b**, 0.6 mmol) according to the general procedure B. Isolated as a white solid. Yield: 51%.¹H NMR (400 MHz, CDCl₃): δ 7.98 (t, J = 7.2 Hz, 4H), 7.42 (t, J = 7.2 Hz, 4H), 7.26-7.31 (m, 2H), 3.88-3.89 (m, 4H), 3.25-3.26 (m, 4H), 3.20 (t, J = 4.8Hz, 4H), 1.74-1.75 (m, 4H), 1.64-1.65 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 153.3, 151.6, 145.6, 144.7, 131.7, 131.3, 128.4, 128.3, 127.3, 127.0, 126.4, 126.2, 124.7, 123.5, 66.8, 50.9, 50.0, 25.7, 23.8; FTIR: v_{max} /cm⁻¹ 2955, 2846, 1625, 1600, 1500, 1448, 1384, 1115, 984, 706; HRMS: calcd for C₂₇H₂₉N₄O₃ (M⁺+H) 457.2240; found: 457.2233; mp: 199-201 °C.

N,*N*-dimethyl-5'-morpholino-4,4'-diphenyl-[2,2'-bioxazol]-5-amine (3b)

Prepared from 2-isocyano-*N*,*N*-dimethyl-2-phenylacetamide (**1c**, 0.2 mmol) and 2-isocyano-1-morpholino-2-phenylethanone (**1b**, 0.6 mmol) according to the general procedure B. Isolated as a white solid. Yield: 63%. ¹H NMR (400 MHz, CDCl₃): δ 7.99 (d, *J* = 7.6 Hz, 2H), 7.88 (d, *J* = 7.6 Hz, 2H), 7.40-7.43 (m, 4H), 7.26-7.30 (m, 2H), 3.88 (br s, 4H), 3.25 (br s, 4H), 2.93 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 153.4, 151.6, 145.6, 144.2, 131.7, 131.3, 128.4, 128.3, 127.4, 127.0, 126.7, 126.4, 124.7, 122.5, 66.8, 50.0, 41.7; FTIR: v_{max} /cm⁻¹ 2990, 2846, 1626, 1600, 1502, 1380, 1262, 1115, 1096, 710; HRMS: calcd for C₂₄H₂₅N₄O₃ (M⁺+H) 417.1927; found: 417.1922; mp: 207-208 °C.

4-(4-chlorophenyl)-5'-morpholino-4'-phenyl-5-(piperidin-1-yl)-2,2'-bioxazole (3c)

Prepared from 2-(4-chlorophenyl)-2-isocyano-1-(piperidin-1-yl)ethanone (**1g**, 0.2 mmol) and 2-isocyano-1-morpholino-2-phenylethanone (**1b**, 0.6 mmol) according to the general procedure B. Isolated as a white solid. Yield: 57%. ¹H NMR (400 MHz, CDCl₃): δ 7.98 (d, J = 7.6 Hz, 2H), 7.92 (d, J = 7.2 Hz, 2H), 7.38-7.43 (m, 4H), 7.26-7.30 (m, 1H), 3.88-3.89 (m, 4H), 3.25-3.26 (m, 4H), 3.18 (t, J = 4.8Hz, 4H), 1.74 (m, 4H), 1.64-1.65 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 153.4, 151.6, 145.4, 144.8, 132.6, 131.2, 130.2, 128.5, 128.4, 127.4, 127.4, 126.4, 124.7, 122.7, 66.8, 50.9, 49.9, 25.7, 23.7; FTIR: v_{max} /cm⁻¹ 2922, 2843, 1622, 1599, 1498, 1384, 1262, 1157, 987, 707; HRMS: calcd for C₂₇H₂₈ClN₄O₃ (M⁺+H) 491.1850; found: 491.1842; mp: 177-179 °C.

5,5'-di(piperidin-1-yl)-4,4'-bis(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phe nyl)-2,2'-bioxazole (4)

Prepared from 4,4'-bis(4-chlorophenyl)-5,5'-di(piperidin-1-yl)-2,2'-bioxazole (2h, 0.1 mmol). Procedure: An oven-dried Schlenk tube was charged with 4,4'-bis(4-chlorophenyl)-5,5'-di(piperidin-1-yl)-2,2'-bioxazole (2h, 52.2 mg, 0.1 mmol), Pd₂(dba)₃ (9.2 mg, 0.01 mmol), XPhos (19.1 mg, 0.04 mmol), bis(pinacolato)diboron (203 mg, 0.8 mmol) and KOAc (58.8 mg, 0.6 mmol). The Schlenk tube was capped with a rubber septum and then evacuated and backfilled with argon (this sequence was carried out twice). 1,4-Dioxane (1.0 mL) was added via syringe. The septum was then replaced with a Teflon screwcap and the Schlenk tube was sealed. The reaction mixture was heated to 110 °C until **2h** had been completely consumed. The crude reaction mixture was extracted with DCM (20 mL \times 3) and washed with brine (20 mL). The organic phase was concentrated in vacuo and the purified product 4 was isolated as a white solid by flash chromatography. Yield: 89%. ¹H NMR (400 MHz, CDCl₃): δ 7.97 (d, J = 8.0 Hz, 4H), 7.86 (d, J = 8.0 Hz, 4H), 3.19 $(t, J = 4.8Hz, 8H), 1.71-1.73 (m, 8H), 1.63-1.64 (m, 4H), 1.36 (s, 24H); {}^{13}C NMR$ (125 MHz, CDCl₃): δ 153.6, 144.8, 134.7, 134.5, 127.0, 125.3, 123.0, 83.7, 50.7, 25.7, 24.9, 23.8; FTIR: v_{max} /cm⁻¹ 2939, 2824, 1610, 1451, 1362, 1288, 1141, 1091, 850, 657; HRMS: calcd for $C_{40}H_{53}B_2N_4O_6$ (M⁺+H) 707.4151; found: 707.4375; mp: >300 °C.

4,4'-di([1,1'-biphenyl]-4-yl)-5,5'-di(piperidin-1-yl)-2,2'-bioxazole (5)

Prepared from 4,4'-bis(4-chlorophenyl)-5,5'-di(piperidin-1-yl)-2,2'-bioxazole (2h, 0.1 mmol). Procedure: An oven-dried Schlenk tube was charged with 4,4'-bis(4-chlorophenyl)-5,5'-di(piperidin-1-yl)-2,2'-bioxazole (2h, 52.2 mg, 0.1 mmol), Pd(OAc)₂ (4.5 mg, 0.02 mmol), JohnPhos (11.9 mg, 0.04 mmol), phenylboronic acid (73 mg, 0.6 mmol) and KF (34.8 mg, 0.6 mmol). The Schlenk tube was capped with a rubber septum and then evacuated and backfilled with argon (this sequence was carried out two times). THF (1.0 mL) was added via syringe. The septum was then replaced with a Teflon screwcap and the Schlenk tube was sealed. The reaction mixture was heated to 65 °C until 2h had been completely consumed. The crude reaction mixture was extracted with DCM (20 mL \times 3) and washed with brine (20 mL). The organic phase was concentrated in vacuo and the purified product **5** was isolated as a white solid by flash chromatography. Yield: 93%. ¹H NMR (400 MHz, CDCl₃): δ 8.07 (d, J = 8.4 Hz, 4H), 7.65-7.68 (m, 8H), 7.46 (t, J = 8.4 Hz, 4H), 7.33-7.37 (m, 2H), 3.24 (t, J = 5.2Hz, 8H), 1.75-1.81 (m, 8H), 1.63-1.69 (m, 4H); ¹³C NMR (125 MHz, CDCl₃): δ 153.3, 145.1, 140.8, 139.5, 130.8, 128.7, 127.2, 127.0, 126.9, 126.6, 123.3, 51.0, 25.8, 23.8; FTIR: v_{max} /cm⁻¹ 2934, 2852, 1600, 1486, 1449, 1380, 1260, 1109, 856, 697; HRMS: calcd for $C_{40}H_{39}N_4O_2$ (M⁺+H) 607.3073; found: 607.3064; mp: 115-117 °C.

IV. Copies of ¹H and ¹³C NMR Spectra

ppm

