Supporting information Facile approach for C(sp³)-H bond thioetherification of isochroman

Jie Feng^a Guoping Lu^a and Chun Cai^{a*}

a Chemical Engineering College, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, P. R. China * Corresponding Author E-mail: <u>c.cai@mail.njust.edu.cn</u>

Table of Contents

1. General information	2
2. General procedures	2
3. Characterization Data	2
4. Copies of ¹ H NMR, ¹³ C NMR and ¹⁹ F NM	R Spectra 9

1 General infromation

All commercial materials were used without further purification. All known compounds are identified by appropriate technique such as ¹H NMR, ¹³C NMR and compared with previously reported data. All unknown compounds are characterized by ¹H NMR, ¹³C NMR, MS and elemental analyses. Analytical thin-layer chromatography are performed on glass plates precoated with silica gel impregnated with a fluorescent indicator (254 nm), and the plates are visualized by exposure to ultraviolet light. GC-MS analyses were performed on an Agilent 7890A-5975C instrument (Column: DB-5 MS). Mass spectra are taken on a Finnigan TSQ Quantum - MS instrument in the electrospray ionization (ESI) mode. ¹H NMR and ¹³C NMR spectra are recorded on an AVANCE 500 Bruker spectrometer operating at 500 MHz and 125 MHz in CDCl₃, respectively, and chemical shifts are reported in ppm. Elemental analyses are performed on a Yanagimoto MT3CHN recorder. GC analyses are performed on an Agilent 7890A instrument (Column: Agilent 19091J-413: 30 m × 320 μ m × 0.25 μ m, carrier gas: H₂, FID detection.

2 General procedures

2.1 General procedures for the oxidative C-N formation

A sealed tube was charged with isochroman(or benzylic ether)(1 mmol), DTBP(1.5 mmol), amine (or amide)(1.3 mmol). The reaction mixture was stirred at 120 $^{\circ}$ C for 16 h. Upon competition, The reaction mixture was then cooled to obtain brown liquid, The organic solutions could be purified directly by column chromatography on silica gel to give the pure product (hexane/ethyl acetate=20/1).

2.1 General procedures for the oxidative C=N formation

A sealed tube was charged with isochroman(or benzylic ether)(1 mmol), DTBP(3 mmol), amine (or amide)(1.3 mmol). The reaction mixture was stirred at 120 $^{\circ}$ C for 24 h. Upon competition, The reaction mixture was then cooled to obtain dark brown liquid, The organic solutions could be purified directly by column chromatography on silica gel to give the pure product (hexane/ethyl acetate=20/1).

3 Characterization Data

¹H NMR, ¹³C NMR, ¹⁹F NMR, Elemental analyses and MS datas of all the isolated products **3a-3d**, **3f-3i**, **3l**, **3n**, **3o**, **3t**, **3x**, **4a-4c**, **4e** were given as below. The ¹H NMR of **3u** and **3v** mixture was also given.

Chemical Formula: C₁₅H₁₅NO Exact Mass: 225.12 Elemental Analysis: C, 79.97; H, 6.71; N, 6.22; O, 7.10

N-phenylisochroman-1-amine **3a** ¹H NMR (500 MHz, CDCl₃) δ 7.30 (t, *J* = 7.1 Hz, 1H), 7.28 – 7.22 (m, 4H), 7.17 (d, *J* = 7.4 Hz, 1H), 6.88 (d, *J* = 8.2 Hz, 2H), 6.83 (t, *J* = 7.3 Hz, 1H), 6.07 (d, *J* = 7.7 Hz, 1H), 4.57 (d, *J* = 7.4 Hz, 1H), 4.16 (ddd, *J* = 12.0, 9.7, 4.0 Hz, 1H), 3.96 – 3.87 (m, 1H), 3.02 – 2.93 (m, 1H), 2.77 (dt, *J* = 16.5, 3.9 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 145.82, 135.55, 135.08, 129.43, 129.00, 128.04, 126.88, 126.54, 119.02, 114.02, 80.37, 77.38, 77.13, 76.87, 58.45, 28.39. Anal. Calcd for C₁₅H₁₅NO: C, 79.97; H, 6.71. Found: C, 79.68; H, 6.54. MS (ESI) m/z: 225.

HN

Chemical Formula: C₁₅H₁₄CINO Exact Mass: 259.08 Elemental Analysis: C, 69.37; H, 5.43; Cl, 13.65; N, 5.39; O, 6.16

N-(2-chlorophenyl)isochroman-1-amine **3b** ¹H NMR (500 MHz, CDCl₃) δ 7.37 – 7.27 (m, 4H), 7.26 – 7.20 (m, 3H), 6.84 – 6.75 (m, 1H), 6.11 (d, *J* = 7.3 Hz, 1H), 5.22 (d, *J* = 7.0 Hz, 1H), 4.24 – 4.14 (m, 1H), 3.95 (ddd, *J* = 11.6, 5.5, 3.6 Hz, 1H), 3.11 – 2.99 (m, 1H), 2.81 (dt, *J* = 16.5, 3.6 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 141.04, 133.99, 133.93, 128.21, 127.99, 127.16, 126.91, 125.84, 125.67, 118.68, 118.08, 112.66, 78.95, 76.34, 76.08, 75.83, 57.34, 27.26. Anal. Calcd for C₁₅H₁₄ClNO: C, 69.37; H, 6.43. Found: C, 69.66; H, 6.14. MS (ESI) m/z: 259.

N-(*4*-chlorophenyl)isochroman-1-amine **3c** ¹H NMR (500 MHz, CDCl₃) δ 7.30 – 7.22 (m, 3H), 7.17 (t, *J* = 7.9 Hz, 3H), 6.80 (d, *J* = 8.8 Hz, 2H), 6.00 (d, *J* = 7.6 Hz, 1H), 4.57 (d, *J* = 7.4 Hz, 1H), 4.18 – 4.06 (m, 1H), 3.94 – 3.86 (m, 1H), 3.01 – 2.91 (m, 1H), 2.77 (dt, *J* = 16.6, 3.9 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 143.30, 134.06, 133.94, 128.15, 127.95, 127.09, 125.67, 125.50, 122.63, 114.18, 79.33, 76.27, 76.02, 75.76, 57.46, 27.23. Anal. Calcd for C₁₅H₁₄ClNO: C, 69.37; H, 5.43. Found: C, 69.64; H, 5.55. MS (ESI) m/z: 259.

Chemical Formula: C₁₆H₁₇NO₂ Exact Mass: 255.13 Elemental Analysis: C, 75.27; H, 6.71; N, 5.49; O, 12.53

N-(4-methoxyphenyl)isochroman-1-amine **3d** ¹H NMR (500 MHz, CDCl₃) δ 7.34 (d, J = 7.4 Hz, 1H), 7.27 – 7.21 (m, 2H), 7.17 (d, J = 7.3 Hz, 1H), 6.85 (s, 4H), 6.01 (s, 1H), 4.24 – 4.11 (m, 1H), 3.92 (dt, J = 11.5, 4.8 Hz, 1H), 3.79 (s, 3H), 3.01 – 2.92 (m, 1H), 2.79 (dt, J = 16.5, 4.1 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 158.62, 133.77, 133.00, 132.81, 127.76, 126.62, 126.11, 125.00, 113.53, 85.95, 76.28, 76.02, 75.77, 57.07, 54.36, 26.83. Anal. Calcd for C₁₆H₁₇NO₂: C, 75.27; H, 6.71. Found: C,75.04; H, 6.53. MS (ESI) m/z: 255.

N-(3,5-bis(trifluoromethyl)phenyl)isochroman-1-amine **3f** ¹H NMR (500 MHz, CDCl₃) δ 7.31 (dd, *J* = 9.3, 5.1 Hz, 2H), 7.28 – 7.23 (m, 4H), 7.19 (d, *J* = 7.4 Hz, 1H), 6.06 (d, *J* = 7.3 Hz, 1H), 4.97 (d, *J* = 7.0 Hz, 1H), 4.16 – 4.03 (m, 1H), 4.01 – 3.89 (m, 1H), 3.08 – 2.94 (m, 1H), 2.77 (dt, *J* = 16.6, 3.5 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 146.66, 134.99, 134.15, 132.98, 132.72, 132.46, 132.20, 129.20, 128.54, 126.80, 126.62, 124.68, 122.51, 113.64, 112.10, 79.82, 58.62, 28.15. Anal. Calcd for C₁₇H₁₃F₆NO: C, 56.52; H, 3.63. Found: C,56.34; H, 3.50. MS (ESI) m/z: 361.

Chemical Formula: C₁₉H₁₇NO Exact Mass: 275.13 Elemental Analysis: C, 82.88; H, 6.22; N, 5.09; O, 5.81

N-(naphthalen-2-yl)isochroman-1-amine **3g** ¹H NMR (500 MHz, CDCl₃) δ 7.83 (d, *J* = 8.0 Hz, 1H), 7.75 (d, *J* = 8.4 Hz, 1H), 7.51 – 7.36 (m, 5H), 7.30 (dd, *J* = 13.3, 6.8 Hz, 2H), 7.22 (d, *J* = 7.3 Hz, 2H), 6.24 (d, *J* = 7.3 Hz, 1H), 5.20 (d, *J* = 7.2 Hz, 1H), 4.22 (ddd, *J* = 11.7, 9.7, 4.0 Hz, 1H), 3.97 (ddd, *J* = 9.5, 4.5, 3.0 Hz, 1H), 3.07 – 2.98 (m, 1H), 2.86 – 2.78 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 140.02, 134.68, 134.12, 133.36, 127.97, 127.79, 127.33, 127.06, 125.97, 125.63, 125.20, 124.67, 123.93, 122.52, 118.86, 118.06, 106.38, 79.63, 76.26, 76.01, 75.76, 57.61, 27.36. Anal. Calcd for C₁₉H₁₇NO: C, 82.88; H, 6.22. Found: C,82.54; H, 6.57. MS (ESI) m/z: 275.

O Chemical Formula: C₁₄H₁₄N₂O Exact Mass: 226.11 Elemental Analysis: C, 74.31; H, 6.24; N, 12.38; O, 7.07

N-(isochroman-1-yl)pyridin-2-amine **3h** ¹H NMR (500 MHz, CDCl₃) δ 8.04 – 7.90 (m, 1H), 7.50 (dd, J = 10.7, 4.9 Hz, 1H), 7.29 (d, J = 7.6 Hz, 1H), 7.26 (t, J = 7.3 Hz, 1H), 7.23 – 7.19 (m, 1H), 7.15 (d, J = 7.5 Hz, 1H), 6.74 (d, J = 8.4 Hz, 1H), 6.70 – 6.61 (m, 1H), 6.27 (d, J = 8.1 Hz, 1H), 5.85 (d, J = 8.0 Hz, 1H), 4.13 – 4.08 (m, 1H), 3.97 – 3.86 (m, 1H), 3.02 – 2.90 (m, 1H), 2.75 (dd, J = 16.5, 2.3 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 156.35, 147.18, 136.85, 133.92, 127.86, 126.95, 125.87, 125.49, 113.61, 106.53, 77.66, 57.85, 27.27. Anal. Calcd for C₁₄H₁₄N₂O: C, 74.31; H, 6.24. Found: C,74.62; H, 6.07. MS (ESI) m/z: 226.

HN

Chemical Formula: C₁₆H₁₇NO Exact Mass: 239.13 Elemental Analysis: C, 80.30; H, 7.16; N, 5.85; O, 6.69

N-(o-tolyl)isochroman-1-amine **3i** ¹H NMR (500 MHz, CDCl₃) δ 7.34 (d, *J* = 7.5 Hz, 1H), 7.28 (dt, *J* = 6.9, 4.5 Hz, 2H), 7.20 (d, *J* = 7.4 Hz, 2H), 7.15 (d, *J* = 8.0 Hz, 1H), 7.11 (d, *J* = 7.4 Hz, 1H), 6.79 (t, *J* = 7.3 Hz, 1H), 6.11 (d, *J* = 7.5 Hz, 1H), 4.42 (d, *J* = 7.3 Hz, 1H), 4.23 – 4.13 (m, 1H), 3.99 – 3.89 (m, 1H), 3.07 – 2.95 (m, 1H), 2.83 (s, 1H), 2.15 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 142.88, 134.76, 134.14, 129.29, 127.93, 126.95, 126.26, 125.81, 125.55, 121.29, 117.66, 111.11, 79.28, 76.30, 76.04, 75.79, 57.44, 27.38, 16.65. Anal. Calcd for C₁₆H₁₇NO: C, 80.30; H, 7.16. Found: C,80.67; H, 6.97. MS (ESI) m/z: 239.

Chemical Formula: C₁₆H₁₇NO₃S Exact Mass: 303.09 Elemental Analysis: C, 63.35; H, 5.65; N, 4.62; O, 15.82; S, 10.57

N-(*isochroman-1-yl*)-4-*methylbenzenesulfonamide* **3n** ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, *J* = 8.2 Hz, 2H), 7.31 (d, *J* = 8.2 Hz, 2H), 7.21 (dt, *J* = 11.5, 3.8 Hz, 3H), 7.08 (d, *J* = 7.1 Hz, 1H), 6.10 (d, *J* = 8.5 Hz, 1H), 5.43 (d, *J* = 8.0 Hz, 1H), 3.73 – 3.58 (m, 2H), 2.89 – 2.79 (m, 1H), 2.61 (dt, *J* = 16.6, 3.6 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 143.45, 138.90, 134.61, 132.94, 129.57, 128.93, 128.53, 127.32, 126.90, 126.83, 80.01, 58.87, 27.67, 21.67. Anal. Calcd for C₁₆H₁₇NO₃S: C, 63.35; H, 5.65. Found: C,63.71; H, 6.43. MS (ESI) m/z: 303.

HN

1-((4-chlorophenyl)thio)isochromane Exact Mass: 276.04 Elemental Analysis: C, 65.09; H, 4.73; Cl, 12.81; O, 5.78; S, 11.58

1-((4-chlorophenyl)thio)isochromane **30**. ¹H NMR (500 MHz, CDCl₃) δ 7.56 (d, *J* = 8.3 Hz, 2H), 7.40 – 7.30 (m, 3H), 7.28 – 7.21 (m, 2H), 7.20 – 7.11 (m, 1H), 6.49 (s, 1H), 4.55 (td, *J* = 11.5, 3.3 Hz, 1H), 4.03 (dd, *J* = 11.3, 6.2 Hz, 1H), 3.20 – 3.09 (m, 1H), 2.72 (dd, *J* = 16.5, 2.4 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 133.56, 132.90, 132.48, 132.27, 131.64, 128.06, 127.89, 126.93, 126.13, 125.16, 85.06, 76.39, 76.14, 75.89, 57.36, 26.75. Anal. Calcd for C₁₅H₁₃ClOS: C, 65.09; H, 4.73. Found: C, 64.88; H, 4.64. MS (ESI) *m/z*: 276.

2-(isochroman-1-ylamino)benzamide **3t**

CI

¹H NMR (500 MHz, CDCl₃) δ 8.51 (d, *J* = 6.5 Hz, 1H), 7.41 (dd, *J* = 13.5, 4.7 Hz, 2H), 7.32 – 7.21 (m, 4H), 7.15 (d, *J* = 7.1 Hz, 1H), 6.82 – 6.71 (m, 1H), 6.08 (d, *J* = 6.8 Hz, 1H), 5.83 (s, 2H), 4.21 – 4.10 (m, 1H), 3.90 (ddd, *J* = 11.5, 5.6, 3.4 Hz, 1H), 2.99 (ddd, *J* = 15.9, 9.9, 5.6 Hz, 1H), 2.75 (dt, *J* = 16.5, 3.5 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 171.92, 148.42, 135.16, 134.79, 133.63, 128.91, 128.13, 127.97, 126.86, 126.67, 116.84, 114.53, 114.34, 79.60, 77.40, 77.15, 76.89, 58.53, 28.39. Anal. Calcd for C₁₆H₁₆N₂O₂: C, 71.62; H, 6.01. Found: C, 71.95; H, 5.76. MS (ESI) *m/z*: 268.

2-(*isochroman-1-ylamino*)*benzoic acid* **3x** ¹H NMR (500 MHz, DMSO) δ 12.89 (s, 1H), 8.58 (d, J = 7.1 Hz, 1H), 7.92 (d, J = 7.8 Hz, 1H), 7.44 (t, J = 7.6 Hz, 1H), 7.28 (d, J = 6.6 Hz, 1H), 7.23 (d, J = 8.5 Hz, 2H), 7.18 (d, J = 7.1 Hz, 1H), 6.75 (t, J = 7.5 Hz, 1H), 6.15 (d, J = 7.0 Hz, 1H).¹³C NMR (126 MHz, DMSO) δ 169.46, 148.62, 134.51, 134.11, 133.80, 130.98, 128.32, 127.35, 125.97, 125.83, 116.02, 113.12, 110.99, 77.84, 57.25, 27.10. Anal. Calcd for C₁₆H₁₅NO₃: C, 71.36; H, 5.61. Found: C, 71.77; H, 5.41. MS (ESI) *m/z*: 269.

Chemical Formula: C₁₅H₁₃NO Exact Mass: 223.10 Elemental Analysis: C, 80.69; H, 5.87; N, 6.27; O, 7.17

(*Z*)-*N*-phenylisochroman-1-imine **4a** ¹H NMR (500 MHz, CDCl₃) δ 8.30 (d, *J* = 7.8 Hz, 1H), 7.45 (td, *J* = 7.5, 1.1 Hz, 1H), 7.39 (t, *J* = 7.6 Hz, 1H), 7.35 (t, *J* = 7.8 Hz, 2H), 7.24 (d, *J* = 7.4 Hz, 1H), 7.13 (d, *J* = 7.4 Hz, 2H), 7.09 (t, *J* = 7.4 Hz, 1H), 4.36 (t, *J* = 5.8 Hz, 2H), 3.03 (t, *J* = 5.7 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 151.65, 146.28, 140.18, 136.01, 130.17, 127.64, 127.54, 126.37, 122.42, 121.63, 65.51, 27.54. Anal. Calcd for C₁₆H₁₆N₂O₂: C, 80.69; H, 5.87. Found: C, 80.49; H, 5.61. MS (ESI) *m/z*: 223.

(Z)-N-(4-nitrophenyl)isochroman-1-imine 4b

¹H NMR (500 MHz, CDCl₃) δ 8.25 (d, J = 7.8 Hz, 1H), 8.21 (d, J = 8.9 Hz, 2H), 7.50 (t, J = 7.5 Hz, 1H), 7.41 (t, J = 7.6 Hz, 1H), 7.25 (s, 1H), 7.16 (d, J = 8.9 Hz, 2H), 4.38 (t, J = 5.8 Hz, 2H), 3.06 (t, J = 5.8 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 153.37, 152.95, 142.60, 136.27, 130.93, 127.86, 126.57, 126.13, 123.50, 121.97, 65.95, 27.30. Anal. Calcd for C₁₆H₁₆N₂O₂: C, 67.16; H, 4.51. Found: C, 66.88; H, 4.66. MS (ESI) *m/z*: 268.

(Z)-N-(3,5-bis(trifluoromethyl)phenyl)isochroman-1-imine **4c**

¹H NMR (500 MHz, CDCl₃) δ 8.25 (d, J = 7.8 Hz, 1H), 7.55 (d, J = 3.8 Hz, 3H), 7.49 (t, J = 7.4 Hz, 1H), 7.40 (t, J = 7.6 Hz, 1H), 7.25 (s, 1H), 4.39 (t, J = 5.8 Hz, 2H), 3.06 (t, J = 5.8 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 154.65, 148.90, 137.25, 132.07, 131.92, 131.66, 128.87, 127.67, 127.22, 124.71, 123.36, 122.54, 116.87, 67.03, 28.38. ¹⁹F NMR (470 MHz, CDCl₃) δ -62.82. Anal. Calcd for C₁₇H₁₁F₆NO: C, 56.83; H, 3.09. Found: C, 57.04; H, 3.22. MS (ESI) m/z: 359.

Chemical Formula: $C_{21}H_{12}F_{13}NO$ Exact Mass: 541.07 Elemental Analysis: C, 46.60; H, 2.23; F, 45.63; N, 2.59; O, 2.96

¹H NMR (500 MHz, CDCl₃) δ 8.22 (d, J = 7.8 Hz, 1H), 7.48 (d, J = 8.3 Hz, 2H), 7.42 (t, J = 7.3 Hz, 1H), 7.34 (t, J = 7.6 Hz, 1H), 7.20 (d, J = 7.6 Hz, 1H), 7.14 (d, J = 8.3 Hz, 2H), 4.32 (s, 2H), 3.00 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 153.56, 151.15, 137.20, 131.73, 128.85, 127.57, 127.40, 123.40, 122.80, 116.38, 66.83, 28.48. ¹⁹F NMR (470 MHz, CDCl₃) δ -80.72, -80.74, -80.76, -109.91, -109.94, -109.97, -121.24, -121.79, -121.88, -122.69, -126.09. Anal. Calcd for C₁₆H₁₆N₂O₂: C, 46.60; H, 2.23. Found: C, 46.93; H, 2.00. MS (ESI) *m*/*z*: 541.

¹³C NMR spectrum (125 MHz, CDCl₃) of **3a**

 ^{13}C NMR spectrum (125 MHz, CDCl₃) of 3c

 ^{13}C NMR spectrum (125 MHz, CDCl₃) of **3d**

 ^{13}C NMR spectrum (500 MHz, CDCl₃) of 3f

¹H NMR spectrum (500 MHz, CDCl₃) of **3g**

¹³C NMR spectrum (125 MHz, CDCl₃) of **3h**

 ^{19}F NMR spectrum (470 MHz, CDCl₃) of **3**l

Mixture of **3u** and **3v**

 ^{13}C NMR spectrum (125 MHz, CDCl₃) of 4a

¹³C NMR spectrum (500 MHz, CDCl₃) of **4b**

 ^{19}F NMR spectrum (470 MHz, CDCl_3) of 4c

¹⁹F NMR spectrum (470 MHz, CDCl₃) of 4e