Supporting Information

Oxidative $C(sp^3)$ -H Functionalization of Acetonitrile and Alkanes with Allylic Alcohols Under Metal-Free Conditions

Xue-Qiang Chu, Hua Meng, You Zi, Xiao-Ping Xu,* Shun-Jun Ji*

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, People's Republic of China.

Fax: (+86)-512-65880307; phone: (+86)-512-65880307; E-mail: <u>xuxp@suda.edu.cn;</u> <u>shunjun@suda.edu.cn</u>

Table of Contents

General information	page S2
General procedure for oxidative addition of acetonitrile to α,α -diaryl allylic	alcohols
	page S2
General procedure for oxidative addition of alkanes to α,α -diaryl allylic	alcohols
	page S2
General procedure for the synthesis of 6	page S2
General procedure for the synthesis of 7	page S2
Analytical and spectral data for compounds	page S3
The ¹ H and ¹³ C NMR spectra of compounds	page S11

EXPERIMENTAL SECTION

General Information: Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. All reactions were carried out in air and using undistilled solvent, without need of precautions to exclude air and moisture unless otherwise noted. Melting points were recorded on an Electrothermal digital melting point apparatus. IR spectra were recorded on a FT-IR spectrophotometer using KBr optics. ¹H, ¹³C NMR spectra were recorded in CDCl₃ on 400 MHz spectometers. Tetramethylsilane (TMS) served as internal standard for ¹H NMR and ¹³C NMR. High resolution mass spectra were obtained using a commercial apparatus (ESI or EI Source).

General procedure for oxidative addition of acetonitrile to α,α -diaryl allylic alcohols:

 α , α -diaryl allylic alcohol 1 (0.3 mmol), nitrile 2 (3 mL) and *tert*-butylperoxybenzoate (0.6 mmol) was stirred at 120 °C for 12 h. Upon completion of the reaction (indicated by TLC), solvent was removed in vacuum and the residue was purified by flash silica gel column chromatography purification afforded pure product 4 with petroleum ether/ethyl acetate as the eluent.

General procedure for oxidative addition of alkanes to α , α -diaryl allylic alcohols:

 α , α -diaryl allylic alcohol 1 (0.3 mmol), alkane 3 (4 mL) and *tert*-butylperoxybenzoate (0.6 mmol) was stirred at 120 °C for 7 h. Upon completion of the reaction (indicated by TLC), solvent was removed in vacuum and the residue was purified by flash silica gel column chromatography purification to afford pure product 5 with petroleum ether/ethyl acetate as the eluent.

General procedure for the synthesis of 6: 5-oxo-4,5-diphenylpentanenitrile 4aa (0.5 mmol), concentrated sulfuric acid (0.55 mmol) in 3 mL glacial acetic acid was stirred at refluxing over night. Upon completion of the reaction (indicated by TLC), a saturated aqueous NaHCO₃ solution was added and the mixture was extracted with ethyl acetate (5 mL×3). The combined organic extracts were dried with sodium sulfate and concentrated. The pure product 6 was obtained after purification (silica gel, methyl alcohol/chloroform, 1:10).

General procedure for the synthesis of 7: 0.5 mmol of 5-oxo-4,5-diphenylpentanenitrile 4aa was dissolved in 10.0 mL dry THF. Then 2.5 mmol of LiAlH₄ was added at room temperature. After 10 minutes, the reaction mixture was heated to refulx for 1h. Upon completion of the reaction (indicated by TLC), a saturated aqueous NH₄Cl solution was added and the mixture was extracted with ethyl acetate (5 mL×3). The combined organic extracts were dried with sodium sulfate and concentrated. The pure product 7 was obtained after purification (silica gel, petroleum ether/ethyl acetate).

Analytical and spectral data for compounds:

5-oxo-4,5-diphenylpentanenitrile (4aa): Yield = 87% (65 mg). Yellow soild (M.p. 83.1–83.8 °C). IR (KBr) v = 2938, 2246, 1667, 1595, 1448, 1263, 1199, 988, 754, 694, 661 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ = 7.98–7.93 (m, 2H), 7.52–7.46 (m, 1H), 7.41–7.36 (m, 2H), 7.35–7.29 (m, 4H), 7.27–7.23 (m, 1H), 4.73 (t, J = 7.2 Hz, 1H), 2.49–2.35 (m, 2H), 2.30–2.15 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 198.4, 137.7, 136.2, 133.5, 129.6, 129.0, 128.8, 128.3, 128.0, 119.5, 52.1, 29.2, 15.4 ppm. HRMS m/z: calcd for C₁₇H₁₆NO [M+H]⁺ 250.1232, found: 250.1229.

4,5-bis(**4-fluorophenyl**)-**5-oxopentanenitrile** (**4ba**): Yield = 81% (72 mg). Yellow oil. IR (KBr) ν = 2955, 2924, 2246, 1684, 1595, 1507, 1257, 1222, 1152, 830, 766 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ = 8.00–7.93 (m, 2H), 7.30–7.25 (m, 2H), 7.12–6.97 (m, 4H), 4.69 (t, J = 7.2 Hz, 1H), 2.49–2.38 (m, 2H), 2.31–2.20 (m, 1H), 2.20–2.09 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 196.7, 166.0 (d, J_{C-F} = 254.5 Hz), 162.5 (d, J_{C-F} = 246.1 Hz), 133.3 (d, J_{C-F} = 3.3 Hz), 132.3 (d, J_{C-F} = 3.1 Hz), 131.7 (d, J_{C-F} = 9.4 Hz), 129.9 (d, J_{C-F} = 8.1 Hz), 119.3, 116.7 (d, J_{C-F} = 21.5 Hz), 116.1 (d, J_{C-F} = 21.8 Hz), 51.2, 29.2, 15.3 ppm. HRMS m/z: calcd for C₁₇H₁₄F₂NO [M+H]⁺ 286.1043, found: 286.1051.

4,5-bis(**4-chlorophenyl**)-**5-oxopentanenitrile** (**4ca**): Yield = 82% (79 mg). Yellow oil. IR (KBr) v = 2969, 2926, 2246, 1679, 1587, 1489, 1399, 1091, 1031, 806, 743 cm⁻¹. ¹H NMR (400MHz, CDCl₃): $\delta = 7.89-7.83$ (m, 2H), 7.41–7.35 (m, 2H), 7.34–7.29 (m, 2H), 7.25–7.19 (m, 2H), 4.67 (t, J = 7.2 Hz, 1H), 2.49–2.37 (m, 2H), 2.31–2.20 (m, 1H), 2.19–2.08 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 196.8$, 140.3, 135.9, 134.3, 134.2, 130.4, 130.0, 129.6, 129.3, 119.2, 51.4, 29.0, 15.4 ppm. HRMS m/z: calcd for $C_{17}H_{14}Cl_2NO$ [M+H]⁺ 318.0452, found: 318.0450.

4,5-bis(**4-bromophenyl**)-**5-oxopentanenitrile** (**4da**): Yield = 77% (93 mg). Yellow oil. IR (KBr) v = 2938, 2245, 1678, 1583, 1486, 1395, 1257, 1173, 1070, 1009, 802, 733 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ = 7.81–7.75 (m, 2H), 7.57–7.52 (m, 2H), 7.49–7.44 (m, 2H), 7.18–7.14 (m, 2H), 4.65 (t, J = 7.2 Hz, 1H), 2.49–2.37 (m, 2H), 2.30–2.20 (m, 1H), 2.18–2.08 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 197.0, 136.4, 134.6, 132.9, 132.3, 130.5, 129.9, 129.1, 122.4, 119.2, 51.5, 28.9, 15.4 ppm. HRMS m/z: calcd for C₁₇H₁₄Br₂NO [M+H]⁺ 405.9442, found: 405.9436.

5-oxo-4,5-dip-tolylpentanenitrile (4ea): Yield = 69% (58 mg). Yellow oil. IR (KBr) v = 2942, 2867, 2244, 1673, 1605, 1510, 1261, 1174, 962, 808, 756 cm⁻¹. ¹H NMR (400MHz, CDCl₃): $\delta = 7.88-7.83$ (m, 2H), 7.20–7.15 (m, 4H), 7.14–7.09 (m, 2H), 4.67 (t, J = 7.1 Hz, 1H), 2.47–2.36 (m, 2H), 2.34 (s, 3H), 2.28 (s, 3H), 2.27–2.10 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 198.1$, 144.3, 137.7, 134.9, 133.7, 130.3, 129.5, 129.1, 128.2, 119.6, 51.6, 29.2, 21.8, 21.2, 15.4 ppm. HRMS m/z: calcd for C₁₉H₂₀NO [M+H]+ 278.1545, found: 278.1540.

4,5-bis(**4-methoxyphenyl**)-**5-oxopentanenitrile** (**4fa**): Yield = 58% (61 mg). Yellow oil. IR (KBr) v = 2957, 2838, 2244, 1668, 1597, 1509, 1246, 1165, 1027, 832, 817 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ = 7.98–7.91 (m, 2H), 7.25–7.19 (m, 2H), 6.89–6.82 (m, 4H), 4.63 (t, J = 7.2 Hz, 1H), 3.82 (s, 3H), 3.76 (s, 3H), 2.46–2.35 (m, 2H), 2.30–2.19 (m, 1H), 2.19–2.08 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 197.1, 163.8, 159.2, 131.4, 130.1, 129.3, 129.2, 119.7, 115.0, 114.0, 55.7, 55.5, 50.9, 29.2, 15.4 ppm. HRMS m/z: calcd for C₁₉H₂₀NO₃ [M+H]⁺ 310.1443, found: 310.1431.

5-oxo-4,5-bis(3-(trifluoromethyl)phenyl)pentanenitrile (**4ga**): Yield = 71% (83 mg). Yellow oil. IR (KBr) ν = 2970, 2901, 2248, 1687, 1327, 1252, 1164, 1119, 804, 692 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ = 8.21 (s, 1H),

8.11 (d, J = 7.9 Hz, 1H), 7.79 (d, J = 7.8 Hz, 1H), 7.60–7.47 (m, 5H), 4.82 (t, J = 7.3 Hz, 1H), 2.59–2.42 (m, 2H), 2.35–2.17 (m, 2H) ppm. 13 C NMR (100 MHz, CDCl₃): δ = 196.5, 138.1, 136.2, 132.4, 132.1, 132.0 (d, $J_{\text{C-F}}$ = 0.9 Hz), 131.9, 131.7 (d, $J_{\text{C-F}}$ = 0.9 Hz), 131.6, 130.4, 130.3 (dd, $J_{\text{C-F}}$ = 7.2, 3.4 Hz), 129.8, 125.9 (dd, $J_{\text{C-F}}$ = 7.5, 3.8 Hz), 125.4 (dd, $J_{\text{C-F}}$ = 7.4, 3.7 Hz), 124.9 (dd, $J_{\text{C-F}}$ = 7.2, 3.7 Hz), 119.0, 51.94, 29.12, 15.42 ppm. HRMS m/z: calcd for C₁₉H₁₄F₆NO [M+H]⁺ 386.0980, found: .386.0979

5-(4-(benzyloxy)phenyl)-5-oxo-4-phenylpentanenitrile (4ha'): Yield = 72% (3.7:1, 78 mg). Yellow oil. IR (KBr) v = 3029, 2931, 2244, 1671, 1597, 1508, 1248, 1165, 1002, 738, 697 cm⁻¹. The ¹H NMR spectrum of the isolated product showed a 3.7:1 mixture of 4ha and its isomer 4ha'. ¹H NMR (400MHz, CDCl₃): <math>δ = 7.97-7.91 (m, 2H), 7.40–7.35 (m, 4H), 7.35–7.20 (m, 6H), 6.97–6.89 (m, 2H), 5.08–4.98 (m, 2H), 4.67 (t, J = 7.2 Hz, 1H), 2.48–2.33 (m, 2H), 2.28–2.12 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) major product 4ha: δ = 196.8, 162.9, 138.17, 136.2, 133.4, 131.4, 129.6, 128.9, 128.4, 128.2, 127.9, 127.6, 119.6, 114.8, 70.3, 51.7, 29.3, 15.4 ppm. HRMS m/z: calcd for C₂₄H₂₂NO₂ [M+H]⁺ 356.1651, found: 356.1650.

5-(3,4-dimethylphenyl)-5-oxo-4-phenylpentanenitrile (**4ia'):** Yield = 73% (1.9:1, 62 mg). Yellow oil. IR (KBr) v = 2920, 2850, 2244, 1673, 1603, 1448, 1259, 1132, 983, 731, 700 cm⁻¹. The ¹H NMR spectrum of the isolated product showed a 1.9:1 mixture of **4ia** and its isomer **4ia'**. ¹H NMR (400MHz, CDCl₃): δ = 7.99–7.93 (m, 0.7H), 7.75–7.73 (m, 0.6H), 7.71–7.66 (m, 0.6H), 7.51–7.45 (m, 0.4H), 7.41–7.35 (m, 0.7H), 7.34–7.28 (m, 2.6H), 7.25–7.20 (m, 0.7H), 7.15–7.01 (m, 1.7H), 4.71 (t, J = 7.3 Hz, 0.65H), 4.68–4.62 (t, J = 7.3 Hz, 0.35H), 2.48–2.34 (m, 2H), 2.30–2.13 (m, 8H) ppm. ¹³C NMR (100 MHz, CDCl₃) **4ia** and its isomer **4ia'**: δ = 198.5, 198.2, 143.2, 138.1, 137.9, 137.2, 136.4, 136.2, 135.0, 134.0, 133.4, 130.7, 130.1, 130.0, 129.5, 129.2, 129.0, 128.8, 128.3, 127.9, 126.8, 125.8, 119.6, 119.6, 51.9, 51.7, 29.2, 29.2, 20.2, 20.0, 20.0, 19.6, 15.4, 15.4 ppm. HRMS m/z: calcd for C₁₉H₂₀NO [M+H]⁺ 278.1545, found: 278.1550.

4-(4-bromophenyl)-5-oxo-5-phenylpentanenitrile (4ja) and **5-(4-bromophenyl)-5-oxo-4-phenylpentanenitrile (4ja'):** Yield = 65% (2.7:1, 65 mg). Yellow oil. IR (KBr) v = 2923, 2851, 2245, 1678, 1582, 1486, 1477, 1258, 1072, 1009, 807, 701 cm⁻¹. The ¹H NMR spectrum of the isolated product showed a 2.7:1 mixture of **4ja** and its isomer **4ja'**. ¹H NMR (400MHz, CDCl₃): $\delta = 7.95-7.90$ (m, 1.4H), 7.82–7.78 (m, 0.5H), 7.55–7.49 (m, 1.2H), 7.48–7.44 (m, 1.5H), 7.43–7.38 (m, 1.5H), 7.36–7.30 (m, 0.6H), 7.28–7.25 (m, 0.9H), 7.21–7.17 (m, 1.4H), 4.72 (t, J = 7.2 Hz, 0.73H), 4.65 (t, J = 7.1 Hz, 0.27H), 2.52–2.36 (m, 2H), 2.32–2.11 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) **4ja** and its isomer **4ja'**: $\delta = 198.0$, 197.4, 137.4, 136.7, 136.2, 135.9, 134.8, 133.8, 132.8, 132.2, 130.5, 130.0, 129.8, 129.0, 128.3, 128.2, 122.15, 119.3, 52.2, 51.4, 29.0, 15.4, 15.3 ppm. HRMS m/z: calcd for C₁₇H₁₅BrNO [M+H]+ 328.0337, found: 328.0341.

5-oxo-5-phenyl-4-(3-(trifluoromethyl)phenyl)pentanenitrile (**4ka**'): Yield = 79% (3.5:1, 76 mg). Yellow oil. IR (KBr) v = 2963, 2920, 2247, 1681, 1448, 1327, 1164, 1121, 1073, 802, 701, 686 cm⁻¹. The ¹H NMR spectrum of the isolated product showed a 3.5:1 mixture of **4ka** and its isomer **4ka**'. ¹H NMR (400MHz, CDCl₃): δ = 8.21–7.93 (m, 1.9H), 7.76–7.71 (m, 0.3H), 7.60–7.51 (m, 3.3H), 7.49–7.40 (m, 2.4H), 7.37–7.32 (m, 0.5H), 7.31–7.26 (m, 0.6H), 4.85 (t, J = 7.4 Hz, 0.78H), 4.70 (t, J = 7.4 Hz, 0.22H), 2.58–2.38 (m, 2H), 2.34–2.13 (m, 2H). ppm. ¹³C NMR (100 MHz, CDCl₃) major product **4ka**: δ = 197.8, 138.8, 135.8, 133.9, 132.1, 131.81, 130.1, 129.9, 129.1, 129.0, 128.3, 125.0 (m), 119.1, 51.6, 29.3, 15.5 ppm. HRMS m/z: calcd for C₁₈H₁₅F₃NO [M+H]⁺ 318.1106, found: 318.1114.

5-oxo-5-phenyl-4-(pyridin-3-yl)pentanenitrile (4la): Yield = 59% (45 mg). Yellow oil. IR (KBr) $v = 2958, 2923, 2853, 2245, 1678, 1595, 1447, 1424, 1264, 1236, 1176, 1026, 801, 705, 686 cm⁻¹. ¹H NMR (400MHz, CDCl₃): <math>\delta = 8.66$ (d, J = 1.9 Hz, 1H), 8.56-8.50 (m, 1H), 7.99-7.92 (m, 2H), 7.67-7.60 (m, 1H), 7.57-7.52 (m, 1H), 7.47-7.40 (m, 2H), 7.29-7.26 (m, 1H), 4.82 (t, J = 7.4 Hz, 1H), 2.59-2.40 (m, 2H), 2.37-2.28 (m, 1H), 2.22-2.12 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 197.7, 149.9, 149.4, 135.7, 135.5, 134.0, 133.7, 129.1, 129.0, 124.4, 119.0, 49.2, 29.2, 15.5 ppm. HRMS m/z: calcd for <math>C_{16}H_{15}N_{2}O$ [M+H]⁺ 251.1184, found: 251.1180.

5-(2-fluorophenyl)-5-oxo-4-phenylpentanenitrile (4ma) and **4-(2-fluorophenyl)-5-oxo-5-phenylpentanenitrile (4ma'):** Yield = 82% (2.6:1, 65 mg). Yellow oil. IR (KBr) v = 2969, 2926, 2245, 1681, 1608, 1481, 1449, 1275, 1227, 759, 700 cm⁻¹. The ¹H NMR spectrum of the isolated product showed a 2.6:1 mixture of **4ma** and its isomer **4ma'**. ¹H NMR (400MHz, CDCl₃): $\delta = 7.97-7.92$ (m, 0.5H), 7.78–7.72 (m, 0.7H), 7.54–7.37 (m, 1.9H), 7.32–7.27 (m, 1.5H), 7.26–7.21 (m, 2.1H), 7.17–7.00 (m, 2.3H), 5.06 (t, J = 7.2 Hz, 0.28H), 4.64 (t, J = 7.2 Hz, 0.72H), 2.56–2.46 (m, 1H), 2.42–2.35 (m, 1H), 2.31–2.08 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) major product **4ma**: $\delta = 197.5$ (d, $J_{C-F} = 4.4$ Hz), 161.2 (d, $J_{C-F} = 253.3$ Hz), 136.6, 134.9 (d, $J_{C-F} = 9.0$ Hz), 133.7, 131.2 (d, $J_{C-F} = 2.5$ Hz), 129.3, 128.7 (d, $J_{C-F} = 0.5$ Hz), 128.1, 124.7 (d, $J_{C-F} = 3.5$ Hz), 119.4, 116.9 (d, $J_{C-F} = 23.7$ Hz), 56.1 (d, $J_{C-F} = 6.6$ Hz), 28.9, 15.4 ppm. HRMS m/z: calcd for C₁₇H₁₅FNO [M+H]⁺ 268.1138, found: 268.1144.

5-(2-chlorophenyl)-4-(4-chlorophenyl)-5-oxopentanenitrile (4na): Yield = 49% (47 mg). Yellow oil. IR (KBr) v = 2967, 2919, 2246, 1697, 1490, 1432, 1091, 1014, 809, 741 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ = 7.39–7.32 (m, 2H), 7.31–7.26 (m, 2H), 7.23–7.17 (m, 1H), 7.17–7.11 (m, 3H), 4.61 (t, J = 7.4 Hz, 1H), 2.61–2.41 (m, 2H), 2.34–2.24 (m, 1H), 2.22–2.10 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 201.4, 138.7, 134.4, 132.0, 130.8, 130.7, 130.1, 129.7, 129.2, 127.0, 119.2, 55.5, 28.0, 15.4 ppm. HRMS m/z: calcd for C₁₇H₁₄Cl₂NO [M+H]⁺ 318.0452, found: 318.0453.

2-(2-benzoyl-2-phenyltetrahydro-2*H***-pyran-3-yl)acetonitrile (4pa):** Yield = 33% (35 mg). White soild (M.p. 93.2–94.8 °C). IR (KBr) v = 2924, 2853, 2245, 1674, 1274, 1222, 843, 759, 707, 631 cm⁻¹. ¹H NMR (400MHz, CDCl₃): $\delta = 7.90$ –7.81 (m, 2H), 7.47–7.42 (m, 1H), 7.40–7.31 (m, 5H), 7.30–7.25 (m, 2H), 3.94–3.84 (m, 1H), 3.45–3.33 (m, 1H), 3.23–3.13 (m, 1H), 2.42–2.35 (m, 1H), 2.22–2.13 (m, 1H), 2.11–2.01 (m, 1H), 1.98–1.83 (m, 2H), 1.79–1.69 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 201.9$, 140.0, 135.1, 133.3, 130.6, 129.0, 128.7, 128.2, 126.0, 119.8, 86.7, 65.4, 46.1, 25.8, 25.6, 20.0 ppm. HRMS m/z: calcd for C₂₀H₂₀NO₂ [M+H]⁺ 306.1494, found: 306.1495.

2-(2-(4-chlorobenzoyl)-2-(4-chlorophenyl)tetrahydro-2*H*-**pyran-3-yl)acetonitrile (4qa):** Yield = 35% (47 mg). Yellow oil. IR (KBr) ν = 2955, 2934, 2246, 1680, 1585, 1488, 1400, 1243, 1090, 1012, 850, 751 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ = 7.85–7.79 (m, 2H), 7.38–7.33 (m, 2H), 7.29–7.24 (m, 4H), 3.97–3.88 (m, 1H), 3.41–3.32 (m, 1H), 3.19–3.09 (m, 1H), 2.37–2.30 (m, 1H), 2.22–2.14 (m, 1H), 2.03–1.97 (m, 1H), 1.93–1.85 (m, 2H), 1.78–1.71 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 200.2, 140.1, 138.3, 134.9, 132.9, 132.0, 129.4, 128.7, 127.4, 119.4, 86.2, 77.6, 77.2, 76.9, 65.6, 45.9, 25.7, 25.5, 19.9 ppm. HRMS m/z: calcd for C₂₀H₁₈Cl₂NO₂ [M+H]⁺ 374.0715, found: 374.0712.

2-(2-(4-methylbenzoyl)-2-p-tolyltetrahydro-2*H***-pyran-3-yl)acetonitrile (4ra):** Yield = 29% (30 mg). Yellow oil. IR (KBr) v = 2926, 2856, 2244, 1674, 1604, 1254, 1182, 1077, 1018, 805, 733, 618 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ = 7.78 (d, J = 8.3 Hz, 2H), 7.22–7.12 (m, 4H), 7.07 (d, J = 8.1 Hz, 2H), 3.92–3.84 (m, 1H), 3.42–3.33 (m, 1H), 3.21–3.11 (m, 1H), 2.45–2.40 (m, 1H), 2.34 (s, 3H), 2.32 (s, 3H), 2.18–2.12 (m, 1H), 2.06–1.98 (m, 1H), 1.96–1.84 (m, 2H), 1.74–1.67 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 201.6, 144.1, 138.4, 137.2, 132.6,

130.7, 129.6, 128.9, 125.9, 120.0, 86.6, 77.6, 77.2, 76.9, 65.4, 46.2, 25.8, 25.6, 21.9, 21.3, 20.0 ppm. HRMS m/z: calcd for $C_{22}H_{24}NO_{2}$ [M+H]⁺ 334.1807, found: 334.1808.

1-(3-oxo-2,3-diphenylpropyl)cyclopropanecarbonitrile (4ab): Yield = 25% (20 mg). Yellow oil. IR (KBr) ν = 2923, 2852, 2234, 1678, 1596, 1447, 1252, 1210, 757, 698 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ = 8.02–7.98 (m, 2H), 7.53–7.47 (m, 1H), 7.43–7.38 (m, 2H), 7.36–7.29 (m, 4H), 7.26–7.21 (m, 1H), 4.98 (dd, J = 7.9, 6.6 Hz, 1H), 2.54–2.45 (m, 1H), 1.91–1.82 (m, 1H), 1.17–1.091H), 0.99–0.92 (m 1H), 0.91–0.84 (m, 1H), 0.39–0.32 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 198.8, 138.4, 136.3, 133.5, 129.4, 129.0, 128.8, 128.4, 127.9, 123.5, 77.6, 77.2, 76.9, 52.2, 38.7, 14.7, 13.8, 8.5 ppm. HRMS m/z: calcd for C₁₉H₁₈NO [M+H]⁺ 276.1388, found: 276.1389.

2-(3-oxo-2,3-diphenylpropyl)malononitrile (4af): Yield = 72% (70 mg). Yellow oil. IR (KBr) v = 2918, 2854, 2255, 1677, 1596, 1447, 1262, 1175, 951, 758, 695 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ = 7.96–7.91 (m, 2H), 7.54–7.49 (m, 1H), 7.42–7.34 (m, 4H), 7.32–7.29 (m, 3H), 4.81 (t, J = 7.6 Hz, 1H), 3.67 (dd, J = 8.6, 7.5 Hz, 1H), 2.87–2.77 (m, 1H), 2.62–2.53 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 197.0, 136.0, 135.4, 134.0, 130.2, 129.2, 129.0, 128.9, 128.2, 112.6, 112.4, 50.7, 34.5, 20.9 ppm. HRMS m/z: calcd for C₁₈H₁₅N₂O [M+H]⁺ 275.1184, found: 275.1181.

methyl 2-cyano-5-oxo-4,5-diphenylpentanoate (4ag): Yield = 71% (dr = 1:1, 67 mg). Yellow oil. IR (KBr) ν = 2956, 2901, 2250, 1746, 1678, 1447, 1258, 1176, 757, 697 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ = 7.95 (d, J = 7.8 Hz, 2H), 7.52–7.46 (m, 1H), 7.41–7.37 (m, 2H), 7.36–7.28 (m, 5H), 4.91–4.79 (m, 1H), 3.76 (s, 1.5H), 3.73 (s, 1.5H), 3.69–3.63 (m, 0.5H), 3.30–3.24 (m, 0.5H), 2.92–2.83 (m, 0.5H), 2.69–2.55 (m, 1H), 2.41–2.32 (m, 0.5H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 198.0, 197.7, 166.5, 166.3, 137.5, 136.7, 135.9, 135.9, 133.6, 133.5, 129.8, 129.6, 129.1, 129.0, 128.9, 128.8, 128.4, 128.4, 128.4, 128.1, 116.4, 116.4, 53.7, 53.7, 51.0, 50.9, 35.6, 35.5, 33.4 ppm. HRMS m/z: calcd for C₁₉H₁₈NO₃ [M+H]⁺ 308.1287, found: 308.1295.

2-benzoyl-5-oxo-4,5-diphenylpentanenitrile (4ah): Yield = 53% (dr = 1:1, 56 mg). Yellow oil. IR (KBr) v = 2925, 2854, 2248, 1678, 1596, 1447, 1265, 1001, 757, 693 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ = 8.14–8.09 (m, 1H), 8.03–7.99 (m, 1H), 7.96–7.92 (m, 1H), 7.69–7.65 (m, 1H), 7.60–7.56 (m, 1H), 7.54–7.49 (m, 1H), 7.45–7.36 (m, 5H), 7.31–7.26 (m, 2H), 7.26–7.18 (m, 2H), 5.04–4.84 (m, 1H), 4.65–4.56 (m, 0.5H), 4.13–4.06 (m, 0.5H), 2.99–2.89 (m, 0.5H), 2.72–2.56 (m, 1H), 2.30–2.22 (m, 0.5H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 198.8, 197.9, 190.8, 190.7, 138.0, 137.1, 136.0, 135.9 134.9, 134.7, 133.9, 133.8, 133.8, 133.6, 129.9, 129.7, 129.4, 129.3, 129.2, 129.1, 129.0, 128.9, 128.9, 128.6, 128.2, 128.1, 117.4, 117.3, 51.6, 51.3, 39.3, 38.2, 34.4, 33.9 ppm. HRMS m/z: calcd for C₂₄H₂₀NO₂ [M+H]⁺ 354.1494, found: 354.1494.

3-cyclohexyl-1,2-diphenylpropan-1-one (**5aa**): Yield = 96% (87 mg). White soild (M.p. 64.2–65.6 °C). IR (KBr) $v = 2922, 2848, 1673, 1596, 1493, 1445, 1228, 999, 941, 758, 733, 695, 652 cm⁻¹. ¹H NMR (400MHz, CDCl₃): <math>\delta = 7.99-7.94$ (m, 2H), 7.51-7.45 (m, 1H), 7.42-7.36 (m, 2H), 7.32-7.25 (m, 4H), 7.22-7.16 (m, 1H), 4.72 (t, J = 7.3 Hz, 1H), 2.17-2.07 (m, 1H), 1.85-1.79 (m, 1H), 1.74-1.60 (m, 5H), 1.26-1.10 (m, 4H), 0.99-0.88 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 200.3, 140.2, 137.2, 133.0, 129.1, 128.8, 128.7, 128.5, 127.1, 50.7, 41.9, 35.5, 33.8 33.5, 26.7, 26.4, 26.4 ppm. HRMS m/z: calcd for <math>C_{21}H_{25}O$ [M+H]⁺ 293.1905, found: 293.1906.

3-cyclohexyl-1,2-bis(4-fluorophenyl)propan-1-one (5ba): Yield = 64% (63 mg). Colorless oil. IR (KBr) ν = 2922, 2850, 1681, 1505, 1408, 1225, 1154, 831, 770 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ = 8.01–7.95 (m, 2H), 7.28–7.23 (m, 2H), 7.11–7.04 (m, 2H), 7.01–6.94 (m, 2H), 4.65 (t, J = 7.4 Hz, 1H), 2.13–2.02 (m, 1H), 1.84–1.77 (m, 1H), 1.72–1.62 (m, 5H), 1.20–1.08 (m, 4H), 0.98–0.87 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 198.6, 165.8 (d, J_{C-F} = 253.6 Hz), 162.0 (d, J_{C-F} = 244.2 Hz), 135.6 (d, J_{C-F} = 3.2 Hz), 133.3 (d, J_{C-F} = 3.1 Hz), 131.4 (d,

 $J_{\text{C-F}} = 9.2 \text{ Hz}$), 129.9 (d, $J_{\text{C-F}} = 7.9 \text{ Hz}$), 116.1 (d, $J_{\text{C-F}} = 8.7 \text{ Hz}$), 115.8 (d, $J_{\text{C-F}} = 9.2 \text{ Hz}$), 49.8, 41.9, 35.4, 33.8, 33.4, 26.7, 26.3, 26.3 ppm. HRMS m/z: calcd for $C_{21}H_{23}F_{2}O$ [M+H]⁺ 329.1717, found: 329.1716.

1,2-bis(**4-chlorophenyl**)-**3-cyclohexylpropan-1-one** (**5ca**): Yield = 84% (93 mg). Colorless oil. IR (KBr) ν = 2920, 2849, 1681, 1588, 1488, 1210, 1091, 1013, 812, 744 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ = 7.91–7.85 (m, 2H), 7.40–7.35 (m, 2H), 7.28–7.19 (m, 4H), 4.62 (t, J = 7.3 Hz, 1H), 2.11–2.01 (m, 1H), 1.83–1.75 (m, 1H), 1.72–1.60 (m, 5H), 1.21–1.08 (m, 4H), 0.99–0.86 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 198.7, 139.7, 138.3, 135.1, 133.1, 130.2, 129.7, 129.3, 129.1, 77.6, 77.2, 76.9, 50.0, 41.7, 35.4, 33.8, 33.3, 26.6, 26.3, 26.3 ppm. HRMS m/z: calcd for C₂₁H₂₃Cl₂O [M+H]⁺ 361.1126, found: 361.1116.

1,2-bis(**4-bromophenyl**)-**3-cyclohexylpropan-1-one** (**5da**): Yield = 88% (118 mg). Colorless oil. IR (KBr) $v = 2919, 2849, 1680, 1584, 1485, 1395, 1172, 1070, 1009, 937, 784, 734 cm⁻¹. ¹H NMR (400MHz, CDCl₃): <math>\delta = 7.82-7.77$ (m, 2H), 7.57-7.51 (m, 2H), 7.44-7.38 (m, 2H), 7.18-7.13 (m, 2H), 4.60 (t, J = 7.3 Hz, 1H), 2.09-1.99 (m, 1H), 1.83-1.75 (m, 1H), 1.71-1.59 (m, 5H), 1.20-1.06 (m, 4H), 0.99-0.84 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 198.8, 138.8, 135.5, 132.3, 132.1, 130.3, 130.1, 128.4, 121.3, 50.1, 41.6, 35.4, 33.8, 33.3, 26.6, 26.3, 26.3 ppm. HRMS m/z: calcd for C₂₁H₂₃Br⁷⁹Br⁸¹O [M+H]+ 451.0095, found: 451.0093.$

3-cyclohexyl-1,2-dip-tolylpropan-1-one (**5ea**): Yield = 83% (85 mg). Colorless oil. IR (KBr) ν = 2919, 2849, 1676, 1606, 1447, 1258, 1175, 936, 791, 760 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ = 7.88 (d, J = 8.1 Hz, 2H), 7.18 (d, J = 7.9 Hz, 4H), 7.08 (d, J = 7.9 Hz, 2H), 4.66 (t, J = 7.3 Hz, 1H), 2.34 (s, 3H), 2.27 (s, 3H), 2.13–2.03 (m, 1H), 1.85–1.78 (m, 1H), 1.70–1.61 (m, 5H), 1.20–1.08 (m, 4H), 0.98–0.86 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 200.0, 143.7, 137.4, 136.6, 134.6, 129.7, 129.4, 129.0, 128.2, 50.1, 41.8, 35.5, 33.8, 33.5, 26.7, 26.4, 26.3, 21.8, 21.2 ppm. HRMS m/z: calcd for C₂₃H₂₉O [M+H]⁺ 321.2218, found: 321.2220.

3-cyclohexyl-1,2-bis(4-methoxyphenyl)propan-1-one (5fa): Yield = 75% (103 mg). Colorless oil. IR (KBr) ν = 2920, 2847, 1670, 1598, 1508, 1248, 1165, 1030, 828, 712 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ = 7.98–7.91 (m, 2H), 7.25–7.19 (m, 2H), 6.89–6.82 (m, 4H), 4.63 (t, J = 7.2 Hz, 1H), 3.82 (s, 3H), 3.76 (s, 3H), 2.46–2.35 (m, 2H), 2.30–2.19 (m, 1H), 2.19–2.08 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 197.1, 163.8, 159.2, 131.4, 130.1, 129.3, 129.2, 119.7, 115.0, 114.0, 55.7, 55.5, 50.9, 29.2, 15.4 ppm. HRMS m/z: calcd for C₂₃H₂₉O₃ [M+H]⁺ 353.2117, found: 353.2107.

3-cyclohexyl-1,2-bis(**3-(trifluoromethyl)phenyl)propan-1-one** (**5ga**): Yield = 87% (111 mg). Colorless oil. IR (KBr) v = 2924, 2853, 1688, 1449, 1326, 1164, 1122, 1072, 803, 702 cm⁻¹. ¹H NMR (400MHz, CDCl₃): $\delta = 8.23$ (s, 1H), 8.13 (d, J = 7.9 Hz, 1H), 7.77 (d, J = 7.8 Hz, 1H), 7.57 (t, J = 7.8 Hz, 2H), 7.53–7.47 (m, 2H), 7.47–7.41 (m, 1H), 4.78 (t, J = 7.3 Hz, 1H), 2.19–2.10 (m, 1H), 1.86–1.78 (m, 1H), 1.77–1.62 (m, 5H), 1.23–1.10 (m, 4H), 1.01–0.91 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 198.3$, 140.5, 137.2, 131.8 (d, $J_{C-F} = 0.5$ Hz), 131.8 (d, $J_{C-F} = 1.0$ Hz), 131.7, 131.4 (d, $J_{C-F} = 2.7$ Hz), 131.1 (d, $J_{C-F} = 1.2$ Hz), 129.8 (d, $J_{C-F} = 3.6$ Hz), 129.7 (d, $J_{C-F} = 8.1$ Hz), 125.6 (m), 125.2 (m), 124.4 (m), 122.6 (d, $J_{C-F} = 34.2$ Hz), 50.7, 41.9, 35.5, 33.7, 33.4, 26.6, 26.3, 26.2 ppm. HRMS m/z: calcd for $C_{23}H_{23}F_6O$ [M+H]+ 429.1653, found: 429.1652.

1-(4-(benzyloxy)phenyl)-3-cyclohexyl-2-phenylpropan-1-one (**5ha**) and **2-(4-(benzyloxy)phenyl)-3-cyclohexyl-1-phenylpropan-1-one** (**5ha'):** Yield = 59% (7.6:1, 71 mg). White soild (mixture). IR (KBr) ν = 2920, 2850, 1665, 1600, 1452, 1251, 1172, 1020, 834, 743, 697 cm⁻¹. The ¹H NMR spectrum of the isolated product showed a 7.6:1 mixture of **5ha** and its isomer **5ha'**. ¹H NMR (400MHz, CDCl₃): δ = 8.00–7.94 (m, 2H), 7.40–7.31 (m, 5H), 7.29 (d, J = 1.9 Hz, 2H), 7.26 (d, J = 8.4 Hz, 2H), 7.21–7.15 (m, 1H), 6.97–6.88 (m, 2H), 5.05 (s, 1.7H), 4.99 (s, 0.3H), 4.67 (t, J = 7.3 Hz, 1H), 2.15–2.05 (m, 1H), 1.86–1.62 (m, 1H),

1.21–1.10 (m, 4H), 0.98–0.87 (m, 2H) ppm. 13 C NMR (100 MHz, CDCl₃) major product **5ha**: $\delta = 198.8$, 162.6, 140.6, 136.4, 131.1, 130.3, 129.0, 128.9, 128.4, 128.4, 127.7, 127.0, 114.7, 70.3, 50.3, 42.0, 35.5, 33.8, 33.5, 26.7, 26.4, 26.3 ppm. HRMS m/z: calcd for $C_{28}H_{31}O_{2}$ [M+H]⁺ 399.2324, found: 399.2322.

3-cyclohexyl-1-(3,4-dimethylphenyl)-2-phenylpropan-1-one (**5ia**) and **3-cyclohexyl-2-(3,4-dimethylphenyl)-1-phenylpropan-1-one** (**5ia'):** Yield = 80% (2.3:1, 76 mg). Colorless oil. IR (KBr) v = 2919, 2849, 1676, 1604, 1405, 1242, 1122, 735, 699 cm⁻¹. The ¹H NMR spectrum of the isolated product showed a 2.3:1 mixture of **5ia** and its isomer **5ia'**. ¹H NMR (400MHz, CDCl₃): $\delta = 8.00$ –7.95 (m, 0.6H), 7.77–7.75 (s, 0.6H), 7.74–7.69 (m, 0.7H), 7.49–7.44 (m, 0.3H), 7.41–7.35 (m, 0.6H), 7.32–7.24 (m, 3H), 7.20–7.11 (m, 1.4H), 7.05–7.02 (m, 0.8H), 4.70 (t, J = 7.2 Hz, 0.7H), 4.65 (t, J = 7.2 Hz, 0.3H), 2.26 (s, 2H), 2.25 (s, 2H), 2.20 (s, 1H), 2.18 (s, 1H), 2.16–2.06 (m, 1H), 1.85–1.77 (m, 1H), 1.72–1.59 (m, 5H), 1.25–1.09 (m, 4H), 0.97–0.86 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) **5ia** and its isomer **5ia'**: $\delta = 200.4$, 200.1, 142.6, 140.5, 137.6, 137.2, 137.1, 135.3, 135.0, 132.9, 130.3, 130.0, 129.9, 129.4, 129.0, 128.9, 128.7, 128.4, 126.9, 126.6, 125.9, 50.4, 50.3, 42.0, 41.9, 35.6, 35.5, 33.8, 33.7, 33.5, 33.5, 26.7, 26.4, 26.3, 20.1, 20.0, 19.6 ppm. HRMS m/z: calcd for C₂₃H₂₉O [M+H]⁺ 321.2218, found: 321.2213.

2-(4-bromophenyl)-3-cyclohexyl-1-phenylpropan-1-one (5ja) and **1-(4-bromophenyl)-3-cyclohexyl-2-phenylpropan-1-one** (5ja'): Yield = 87% (3.2:1, 120 mg). White soild (mixture). IR (KBr) v = 2919, 2849, 1676, 1582, 1446, 1070, 1010, 973, 823, 718, 685 cm⁻¹. The ¹H NMR spectrum of the isolated product showed a 3.2:1 mixture of **5ja** and its isomer **5ja'**. ¹H NMR (400MHz, CDCl₃): $\delta = 7.98-7.91$ (m, 1.5H), 7.85–7.80 (m, 0.5H), 7.53–7.48 (m, 1.3H), 7.44–7.38 (m, 3H), 7.30–7.25 (m, 1H), 7.22–7.16 (m, 1.7H), 4.69 (t, J = 7.4 Hz, 0.76H), 4.63 (t, J = 7.3 Hz, 0.24H), 2.14–2.02 (m, 1H), 1.81 (d, J = 12.8 Hz, 1H), 1.72–1.60 (m, 5H), 1.22–1.08 (m, 4H), 0.98–0.88 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) major product **5ja**: $\delta = 199.9$, 139.1, 136.8, 133.2, 132.1, 130.2, 128.8, 128.8, 121.1, 50.0, 41.7, 35.4, 33.8, 33.3, 26.6, 26.3, 26.3 ppm. HRMS m/z: calcd for C₂₁H₂₄BrO [M+H]⁺ 371.1011, found: 371.1003.

3-cyclohexyl-1-phenyl-2-(3-(trifluoromethyl)phenyl)propan-1-one (**5ka**) and **3-cyclohexyl-2-phenyl-1-(3-(trifluoromethyl)phenyl)propan-1-one** (**5ka'**): Yield = 90% (4:1, 104 mg). Colorless oil. IR (KBr) v = 2922, 2852, 1682, 1447, 1326, 1163, 1096, 700, 686 cm⁻¹. The ¹H NMR spectrum of the isolated product showed a 4:1 mixture of **5ka** and its isomer **5ka'**. ¹H NMR (400MHz, CDCl₃): δ = 8.25–7.94 (m, 2H), 7.74–7.50 (m, 3H), 7.48–7.38 (m, 3H), 7.31–7.18 (m, 1H), 4.81 (t, J = 7.3 Hz, 0.8H), 4.68 (t, J = 7.3 Hz, 0.2H), 2.20–2.07 (m, 1H), 1.86–1.62 (m, 6H), 1.21–1.08 (m, 4H), 1.00–0.88 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) major product **3ka**: δ = 199.7, 141.1, 136.8, 133.4, 131.8 (d, J_{C-F} = 0.8 Hz), 129.5, 129.3, 128.9, 128.8, 128.4, 125.2 (m), 124.1 (m), 50.3, 42.1, 35.6, 33.7, 33.4, 26.6, 26.3, 26.3 ppm. HRMS m/z: calcd for C₂₂H₂₄F₃O [M+H]⁺ 361.1779, found: 361.1765.

3-cyclohexyl-1-phenyl-2-(pyridin-3-yl)propan-1-one (5la): Yield = 52% (46 mg). White soild (M.p. 92.4–93.7 °C). IR (KBr) ν = 2919, 2850, 1670, 1446, 1232, 1057, 1027, 742, 707, 692 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ = 8.59 (d, J = 1.9 Hz, 1H), 8.46 (dd, J = 4.7, 1.2 Hz, 1H), 7.97 (d, J = 7.3 Hz, 2H), 7.70–7.64 (m, 1H), 7.57–7.50 (m, 1H), 7.47–7.40 (m, 2H), 7.26–7.20 (m, 1H), 4.78 (t, J = 7.4 Hz, 1H), 2.16–2.05 (m, 1H), 1.83 (d, J = 12.6 Hz, 1H), 1.76–1.60 (m, 5H), 1.22–1.08 (m, 4H), 1.00–0.90 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 199.6, 150.1, 148.5, 136.6, 135.7, 135.7, 133.5, 128.9, 128.7, 124.0, 47.7, 41.76, 35.4, 33.8, 33.2, 26.6, 26.3, 26.2 ppm. HRMS m/z: calcd for C₂₀H₂₄NO [M+H]⁺ 294.1858, found: 294.2863.

 ${\bf 3-cyclohexyl-1-(2-fluorophenyl)-2-phenyl propan-1-one}$

(5ma)

and

3-cyclohexyl-2-(2-fluorophenyl)-1-phenylpropan-1-one (**5ma'**): Yield = 86% (2.5:1, 80 mg). Colorless oil. IR (KBr) v = 2921, 2850, 1682, 1608, 1448, 1273, 1212, 939, 757, 696 cm⁻¹. The ¹H NMR spectrum of the isolated product showed a 2.5:1 mixture of **5ma** and its isomer **5ma'**. ¹H NMR (400MHz, CDCl₃): $\delta = 8.01-7.97$ (m, 0.6H), 7.71–7.65 (m, 0.7H), 7.51–7.46 (m, 0.4H), 7.43–7.36 (m, 1.3H), 7.27–7.23 (m, 2.9H), 7.21–7.15 (m, 1.1H), 7.13–7.09 (m, 0.8H), 7.06–7.00 (m, 1.2H), 5.13 (t, J = 7.3 Hz, 0.3H), 4.64 (t, J = 7.3 Hz, 0.7H), 2.15–2.06 (m, 1H), 1.86–1.80 (m, 1H), 1.74–1.60 (m, 5H), 1.20–1.08 (m, 4H), 0.98–0.87 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) major product **5ma**: $\delta = 199.74$, 199.70, 161.1 (d, $J_{C-F} = 252.1$ Hz), 160.2 (d, $J_{C-F} = 242.9$ Hz), 139.2, 136.7, 134.1 (d, $J_{C-F} = 8.9$ Hz), 133.2, 131.2 (d, $J_{C-F} = 2.8$ Hz), 129.3 (d, $J_{C-F} = 3.7$ Hz), 128.8, 128.7 (d, $J_{C-F} = 0.5$ Hz), 127.1, 126.6 (d, $J_{C-F} = 12.8$ Hz), 124.8 (d, $J_{C-F} = 3.6$ Hz), 124.5 (d, $J_{C-F} = 3.4$ Hz), 116.7 (d, $J_{C-F} = 23.7$ Hz), 115.7 (d, $J_{C-F} = 22.8$ Hz), 55.0, 54.9, 41.4, 40.9, 35.6, 35.4, 33.8, 33.7, 33.4, 33.2, 26.7, 26.7, 26.4, 26.3 ppm. HRMS m/z: calcd for C₂₁H₂₄FO [M+H]+ 311.1811, found: 311.1806.

1-(2-chlorophenyl)-2-(4-chlorophenyl)-3-cyclohexylpropan-1-one (5na): Yield = 90% (108 mg). Colorless oil. IR (KBr) ν = 2921, 2850, 1698, 1589, 1489, 1432, 1263, 1090, 1014, 810, 742 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ = 7.37–7.33 (m, 1H), 7.32–7.27 (m, 1H), 7.27–7.22 (m, 2H), 7.20–7.12 (m, 3H), 7.11–7.06 (m, 1H), 4.52 (dd, J = 8.7, 6.3 Hz, 1H), 2.07–1.98 (m, 1H), 1.81–1.74 (m, 2H), 1.70–1.59 (m, 4H), 1.18–1.08 (m, 4H), 0.99–0.88 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 203.7, 139.9, 136.9, 133.3, 131.5, 130.6, 130.5, 130.2, 129.1, 129.1, 126.9, 54.6, 40.2, 35.0, 34.1, 32.9, 26.7, 26.3, 26.2 ppm. HRMS m/z: calcd for C₂₁H₂₃Cl₂O [M+H]⁺ 361.1126, found: 361.1110.

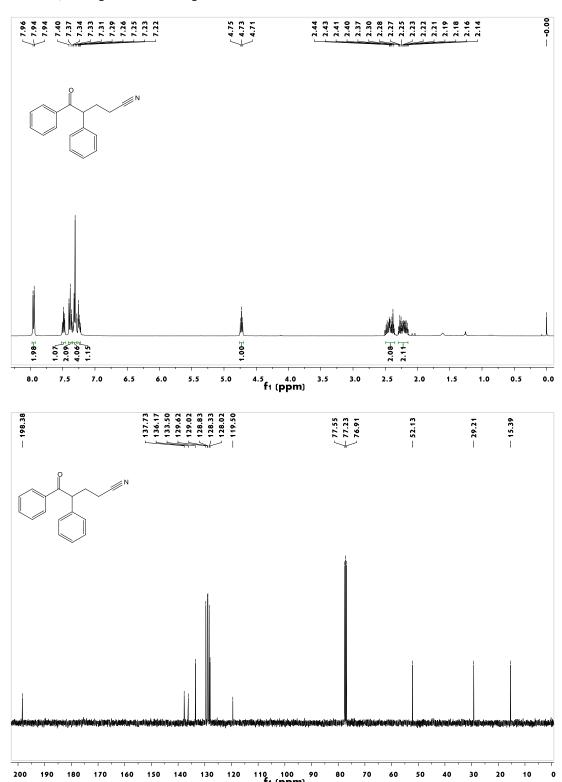
3-cyclopentyl-1,2-diphenylpropan-1-one (5ab): Yield = 52% (43 mg). Yeild soild (M.p. 72.8–74.1 °C). IR (KBr) $v=2950,\ 2903,\ 1667,\ 1491,\ 1446,\ 1271,\ 1200,\ 1029,\ 743,\ 694,\ 666\ cm^{-1}.\ ^1H\ NMR\ (400MHz,\ CDCl_3): δ=8.01–7.94\ (m,\ 2H),\ 7.50–7.45\ (m,\ 1H),\ 7.41–7.36\ (m,\ 2H),\ 7.34–7.25\ (m,\ 4H),\ 7.22–7.16\ (m,\ 1H),\ 4.63\ (t,\ J=7.3\ Hz,\ 1H),\ 2.23–2.15\ (m,\ 1H),\ 1.93–1.79\ (m,\ 2H),\ 1.71–1.64\ (m,\ 2H),\ 1.61–1.53\ (m,\ 2H),\ 1.50–1.41\ (m,\ 2H),\ 1.19–1.09\ (m,\ 2H)\ ppm. <math>^{13}$ C NMR (100 MHz, CDCl₃): δ=200.4, 140.0, 137.2, 133.0, 129.0, 128.8, 128.7, 128.5, 127.1, 52.8, 40.6, 38.0, 33.1, 32.8, 25.3, 25.3 ppm. HRMS m/z: calcd for C_{20} H₂₃O [M+H]⁺ 279.1749, found: 279.1748.

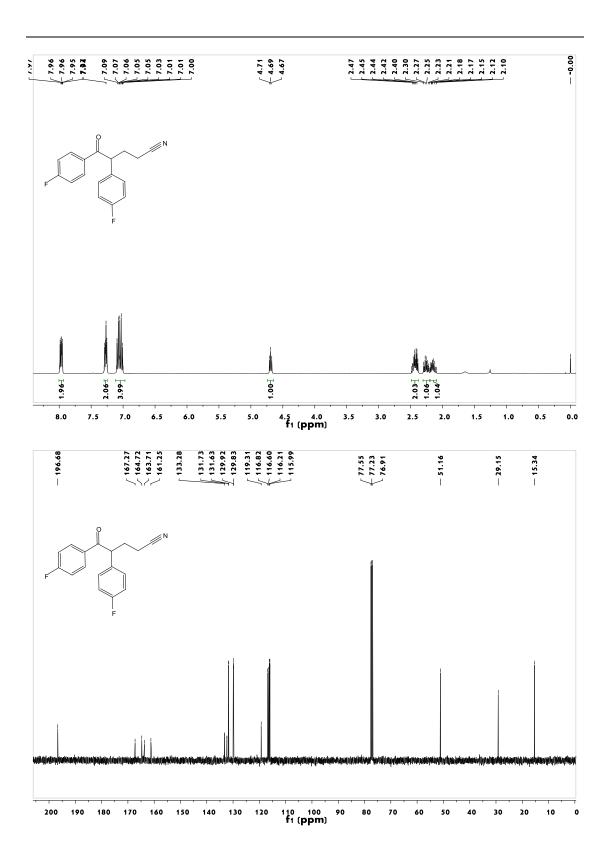
3-cycloheptyl-1,2-diphenylpropan-1-one (**5ac**): Yield = 80% (74 mg). Colorless oil. IR (KBr) ν = 2919, 2851, 1680, 1492, 1271, 1112, 755, 696 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ = 8.00–7.94 (m, 2H), 7.50–7.44 (m, 1H), 7.42–7.35 (m, 2H), 7.33–7.25 (m, 4H), 7.21–7.16 (m, 1H), 4.68 (t, J = 7.3 Hz, 1H), 2.18–2.09 (m, 1H), 2.02–1.89 (m, 1H), 1.82–1.73 (m, 2H), 1.59–1.39 (m, 9H), 1.27–1.20 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 200.4, 140.1, 137.2, 133.0, 129.0, 128.8, 128.7, 128.5, 127.1, 51.3, 42.3, 36.8, 35.0, 34.5, 28.8, 28.7, 26.4, 26.3 ppm. HRMS m/z: calcd for C₂₂H₂₇O [M+H]⁺ 307.2062, found: 307.2061.

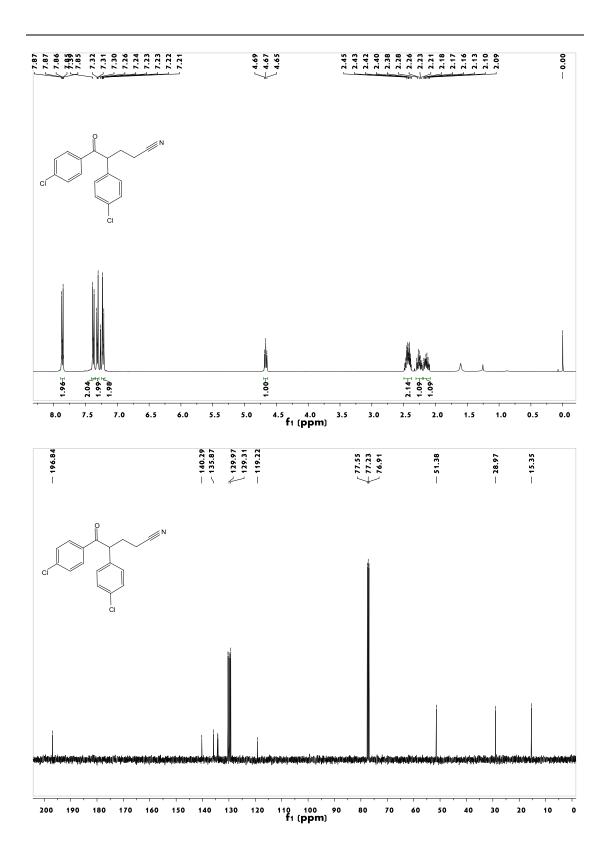
3-cyclooctyl-1,2-diphenylpropan-1-one (**5ad**): Yield = 79% (78 mg). Colorless oil. IR (KBr) ν = 2914, 2853, 1681, 1446, 1210, 1073, 756, 696 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ = 7.92–7.87 (m, 2H), 7.43–7.38 (m, 1H), 7.34–7.29 (m, 2H), 7.25–7.18 (m, 4H), 7.14–7.08 (m, 1H), 4.61 (t, J = 7.3 Hz, 1H), 2.10–2.01 (m, 1H), 1.85–1.75 (m, 1H), 1.57–1.30 (m, 15H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 200.4, 140.1, 137.2, 133.0, 129.0, 128.8, 128.7, 128.5, 127.1, 51.3, 42.1, 34.9, 32.5, 32.1, 27.6, 27.5, 26.3, 25.4, 25.4 ppm. HRMS m/z: calcd for C₂₃H₂₉O [M+H]⁺ 321.2218, found: 321.2223.

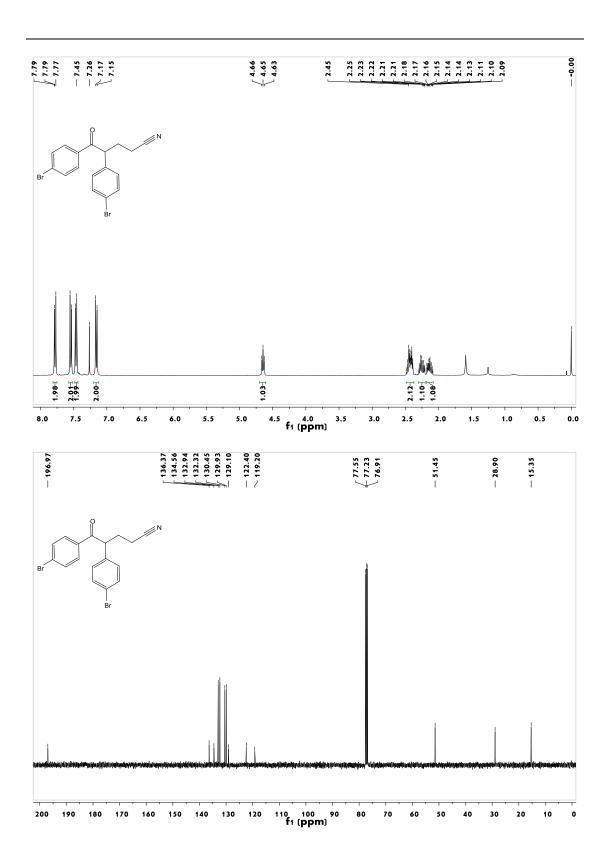
Product (5ae-1) and product (5ae'-2): Yield = 88% (**5ae-1/5ae'-**2 = 5/1, 96 mg). White soild (mixture). IR (KBr) v = 2893, 2845, 1670, 1493, 1447, 1270, 1100, 959, 756, 694 cm⁻¹. ¹H NMR (400MHz, CDCl₃) major product **5ae-1**: $\delta = 7.95-7.91$ (m, 2H), 7.44–7.39 (m, 1H), 7.35–7.31 (m, 2H), 7.23–7.17 (m, 4H), 7.11–7.05 (m, 1H),

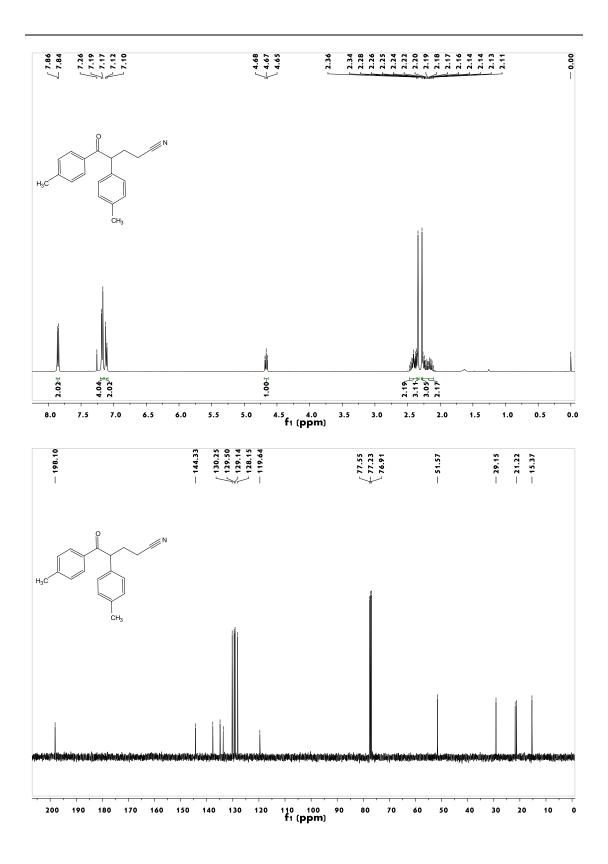
4.72-4.67 (m, 1H), 2.49-2.41 (m, 1H), 1.83-1.46 (m, 14H), 1.34-1.27 (m, 2H) ppm. 13 C NMR (100 MHz, CDCl₃) major product **5ae**-1: δ = 200.0, 141.5, 137.1, 133.0, 129.1, 128.9, 128.8, 128.3, 126.9, 48.6, 47.7, 43.0, 37.1, 33.3, 28.8 ppm. HRMS m/z: calcd for C₂₅H₂₉O [M+H]⁺ 345.2218, found: 345.2224.

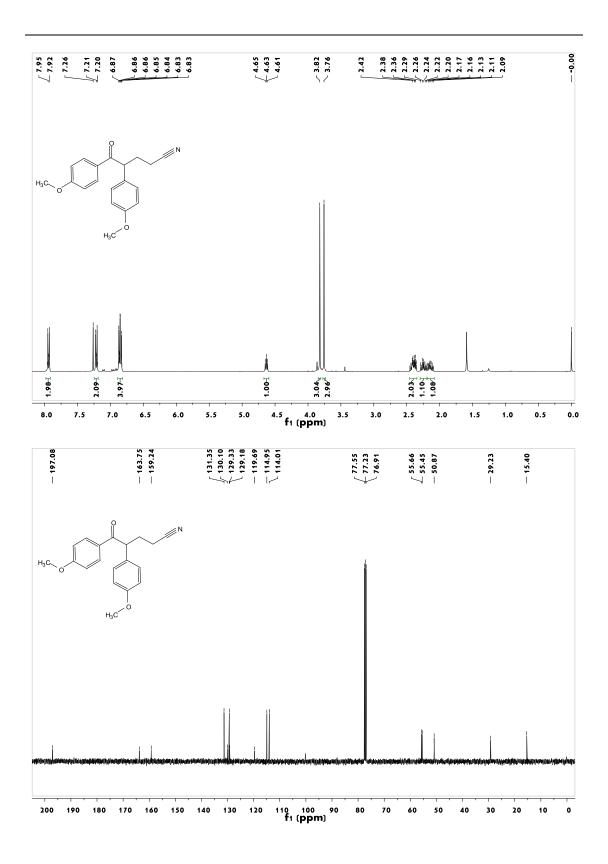

product (**5af**): Yield = 28% (2/3 = 8/3, 26 mg). Colorless oil. IR (KBr) v = 2956, 2926, 2870, 1680, 1447, 1205, 1175, 756, 696 cm⁻¹. The ¹H NMR spectrum of the isolated product showed a mixture. ¹H NMR (400MHz, CDCl₃): $\delta = 7.94-7.85$ (m, 2H), 7.43–7.37 (m, 1H), 7.35–7.28 (m, 2H), 7.26–7.18 (m, 4H), 7.14–7.09 (m, 1H), 4.69–4.43 (m, 1H), 2.26–2.17 (m, 0.4H), 2.11–2.02 (m, 0.4H), 1.85 (t, J = 7.0 Hz, 0.6H), 1.74–1.64 (m, 0.4H), 1.53–1.44 (m, 0.6H), 1.36–1.00 (m, 5.6H), 0.87–0.83 (m, 1H), 0.82–0.76 (m, 3H), 0.74–0.68 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 200.5$, 200.4, 200.2, 140.4, 140.2, 139.8, 137.3, 137.2, 137.2, 137.1, 133.0, 129.1, 129.0, 129.0, 128.8, 128.8, 128.8, 128.7, 128.6, 128.5, 128.5, 128.4, 128.4, 127.1, 127.1, 51.3, 51.2, 51.2, 41.9, 41.1, 39.8, 39.5, 38.0, 37.7, 30.6, 30.3, 25.5, 25.4, 20.1, 20.0, 19.8, 14.6, 14.5, 10.7, 10.7 ppm. HRMS m/z: calcd for C₂₀H₂₅O [M+H]⁺ 281.1905, found: 281.1902.

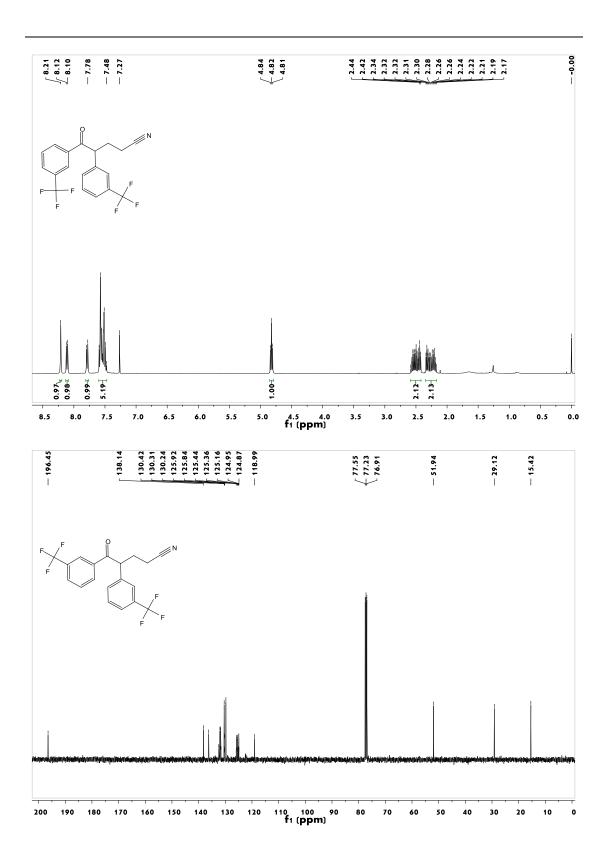

product (5ag): Yield = 76% (2/3 = 6/4, 70 mg). Colorless oil. IR (KBr) v = 2955, 2925, 1681, 1493, 1447, 1206, 1002, 756, 696 cm⁻¹. The ¹H NMR spectrum of the isolated product showed a mixture. ¹H NMR (400MHz, CDCl₃): $\delta = 7.93-7.86$ (m, 2H), 7.42–7.36 (m, 1H), 7.34–7.28 (m, 2H), 7.26–7.16 (m, 4H), 7.14–7.08 (m, 1H), 4.68–4.43 (m, 1H), 2.27–2.17 (m, 0.4H), 2.13–1.99 (m, 0.4H), 1.85 (t, J = 7.0 Hz, 0.6H), 1.74–1.62 (m, 0.5H), 1.52–1.44 (m, 0.5H), 1.33–1.03 (m, 7.6H), 0.87–0.68 (m, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 200.4$, 200.4, 200.3, 200.2, 140.4, 140.2, 140.1, 139.8, 137.3, 137.3, 137.2, 137.1, 133.0, 133.0, 129.1, 129.0, 129.0, 129.0, 128.8, 128.8, 128.7, 128.5, 128.4, 128.4, 127.1, 127.1, 51.3, 51.3, 51.2, 51.2, 42.0, 41.1, 38.2, 38.0, 37.2, 36.9, 36.4, 36.3, 35.6, 35.6, 30.9, 30.5, 29.2, 29.1, 26.0, 23.2, 23.1, 20.1, 19.9, 19.7, 19.6, 14.7, 14.6, 14.4, 14.3, 10.6, 10.6 ppm. HRMS m/z: calcd for C₂₁H₂₇O [M+H]⁺ 295.2062, found: 295.2062.

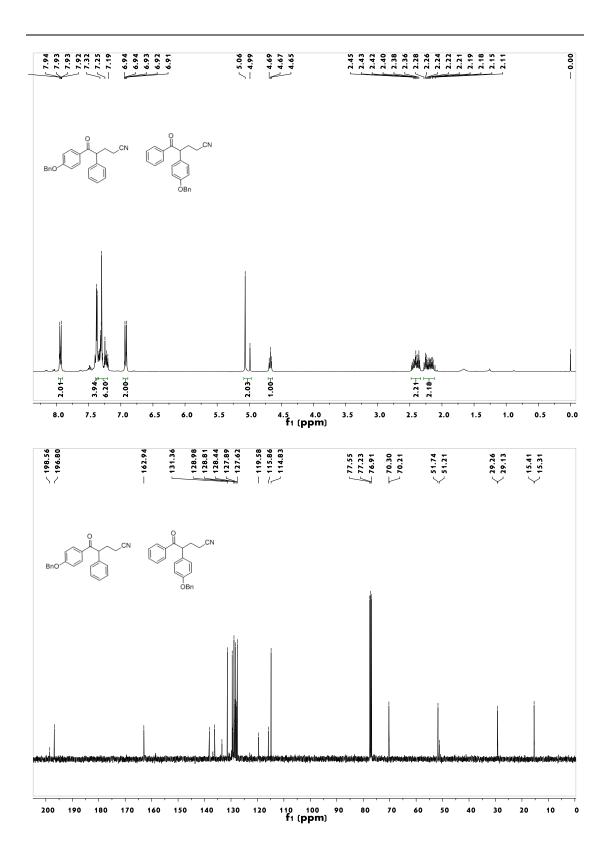

5,6-diphenyl-3,4-dihydropyridin-2(1*H***)-one (6):** Yield = 50% (63 mg). White soild (M.p. 224.7–226.3 °C). IR (KBr) $\nu = 3195$, 3080, 1665, 1638, 1384, 1291, 1215, 824, 759, 653 cm⁻¹. ¹H NMR (400MHz, CDCl₃): $\delta = 7.26$ –7.21 (m, 3H), 7.18–7.13 (m, 3H), 7.14–7.09 (m, 2H), 7.02–6.98 (m, 2H), 6.95 (s, 1H), 2.91–2.84 (m, 2H), 2.74–2.67 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 171.2$, 140.1, 135.8, 133.0, 129.2, 128.8, 128.7, 128.7, 128.2, 126.4, 115.4, 77.6, 77.2, 76.9, 31.0, 28.1 ppm. HRMS m/z: calcd for C₁₇H₁₆NO [M+H]⁺ 250.1232, found: 250.1238.

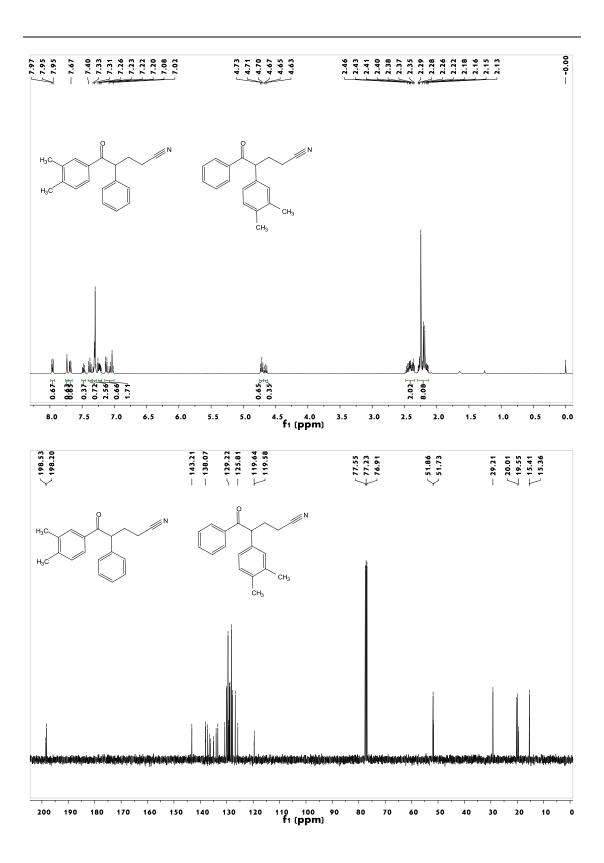

2,3-diphenylpiperidine (7): Yield = 79% (78 mg). Yellow oil. IR (KBr) ν = 3289, 3026, 2935, 2866, 1678, 1451, 1043, 758, 699 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ = 7.35–7.20 (m, 8H), 7.19–7.12 (m, 2H), 4.71 (d, J = 7.8 Hz, 1H), 2.88–2.77 (m, 1H), 2.54–2.38 (m, 2H), 2.16 (s, 1H), 1.59–1.39 (m, 2H), 1.20–1.11 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 142.8, 141.2, 129.0, 128.7, 128.4, 127.9, 127.1, 127.1, 78.5, 77.6, 77.2, 76.9, 54.1, 41.5, 30.4, 29.0 ppm. HRMS m/z: calcd for C₁₇H₂₀N [M+H]⁺ 238.1596, found: 238.1594.

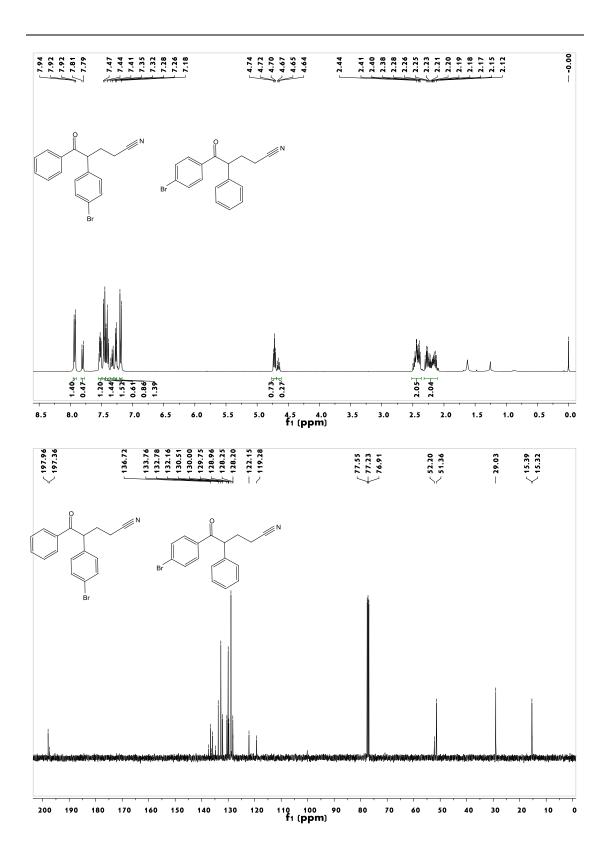

The ^{1}H , ^{13}C spectra of compounds:

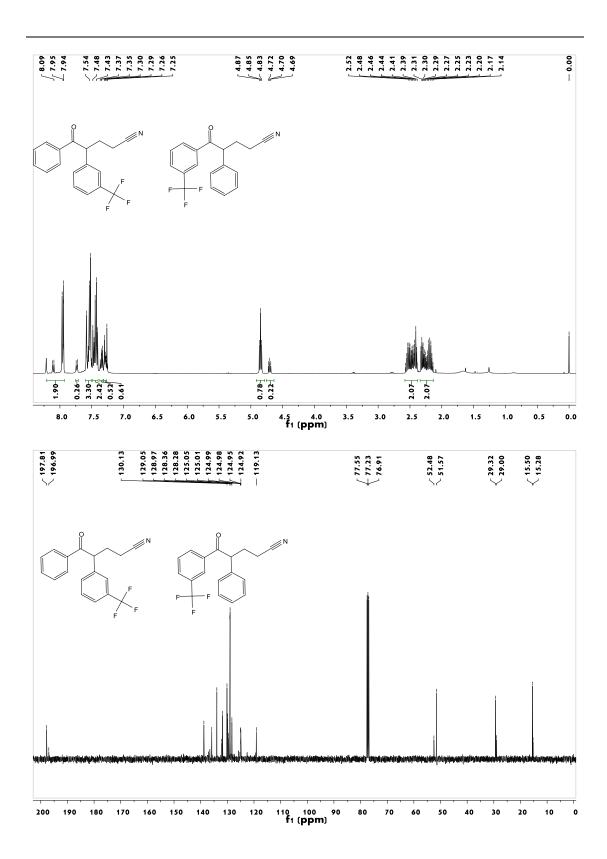


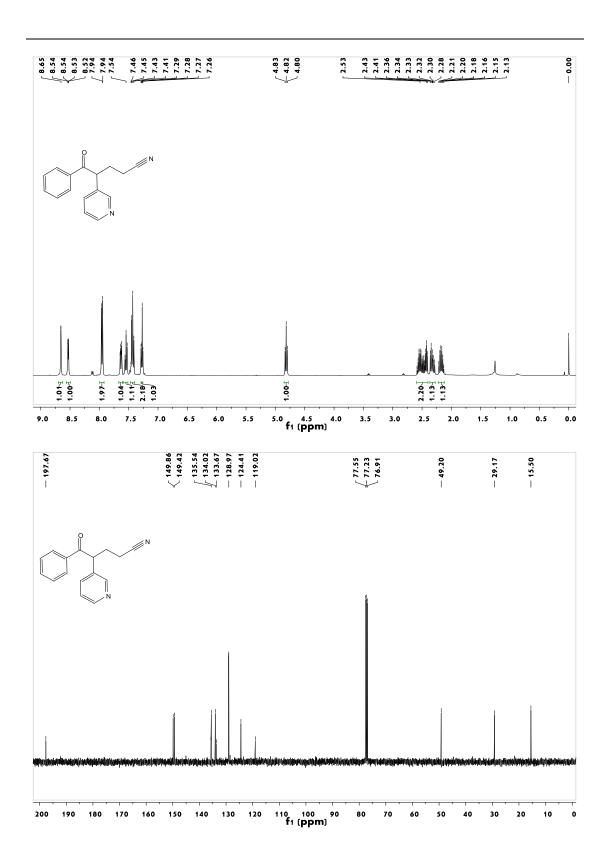


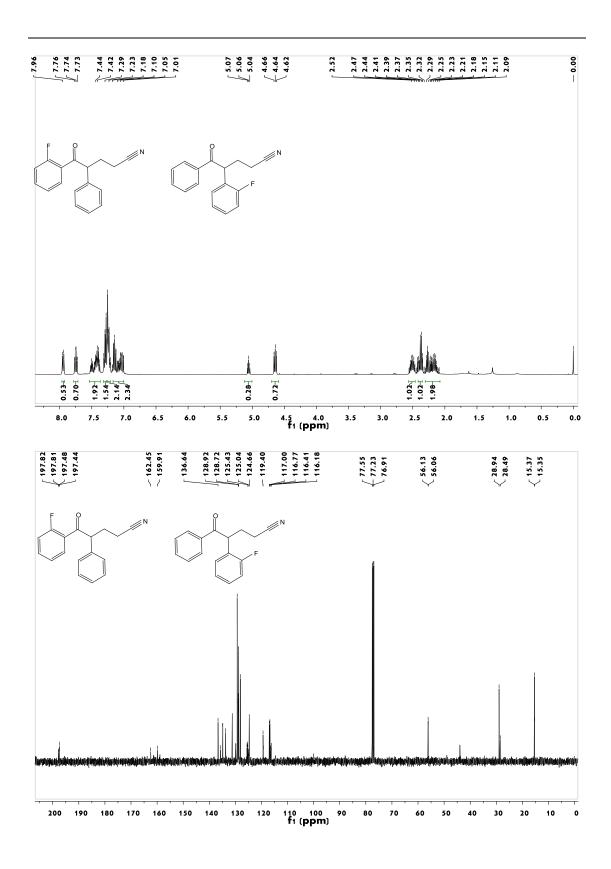


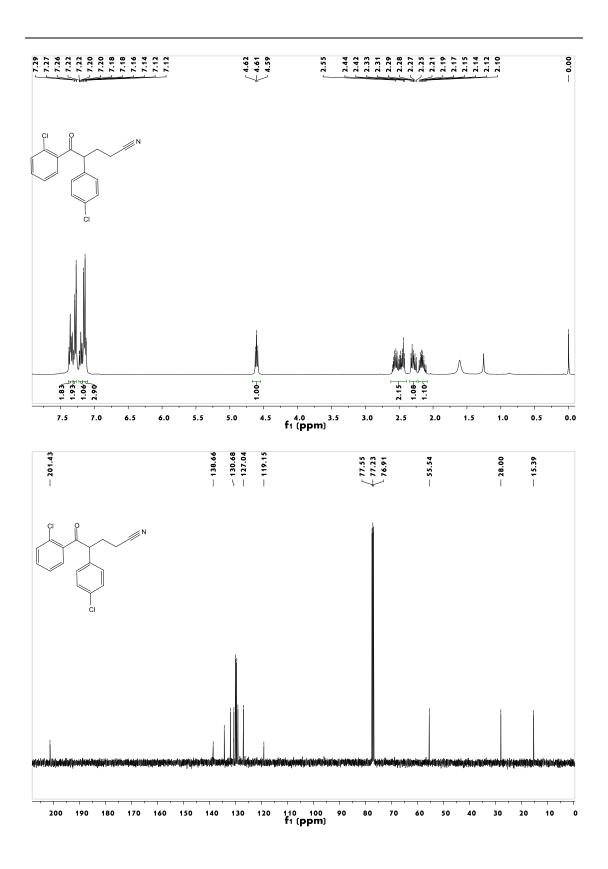


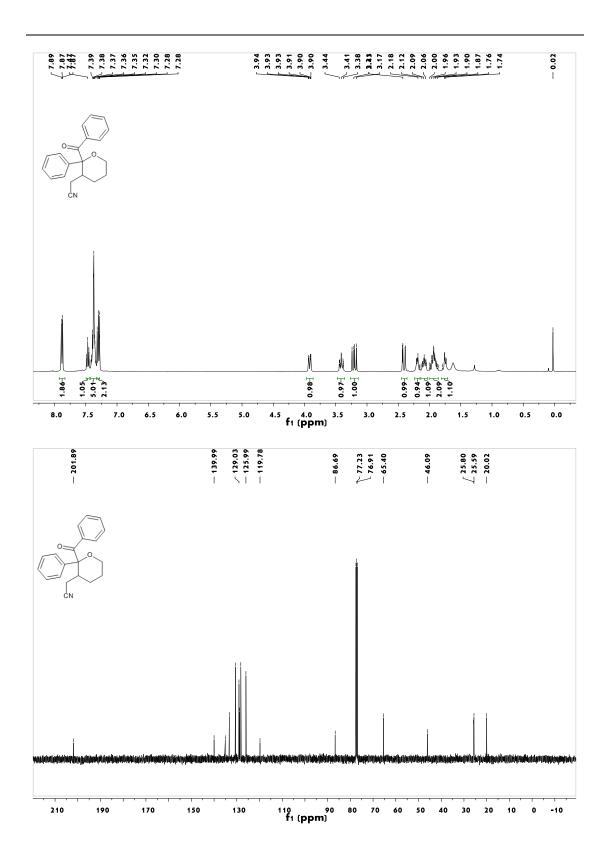


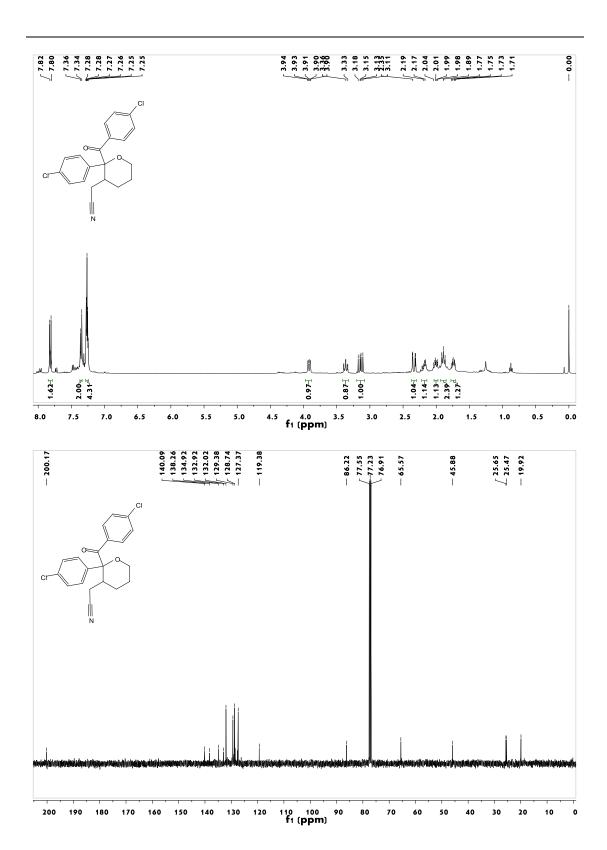


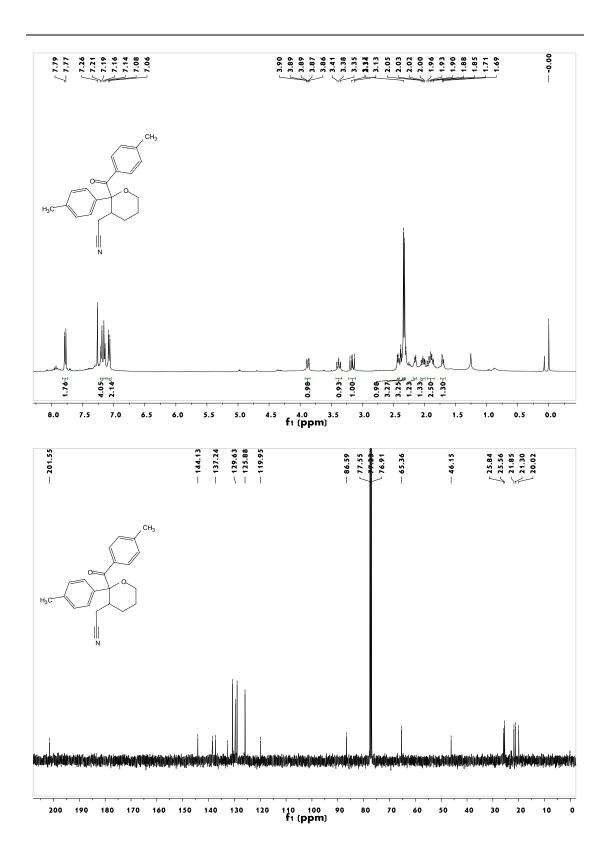


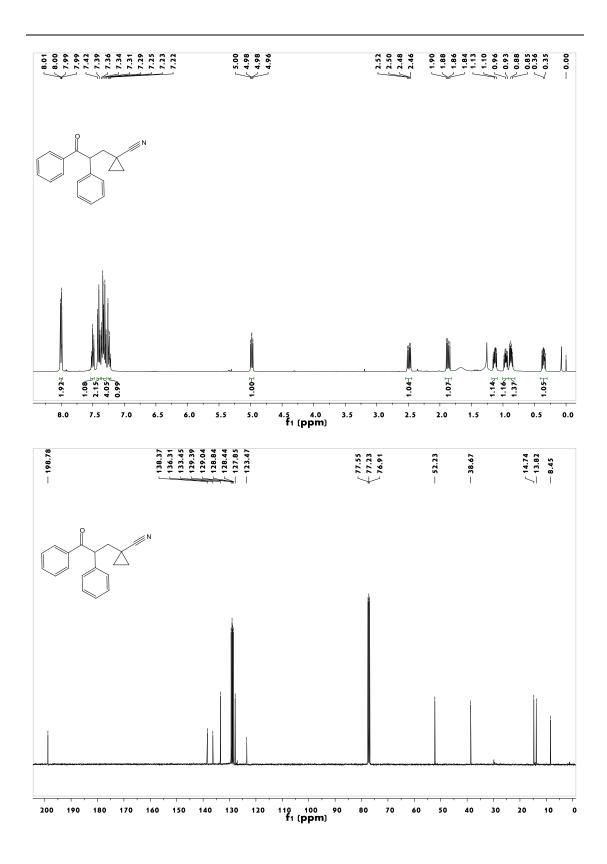


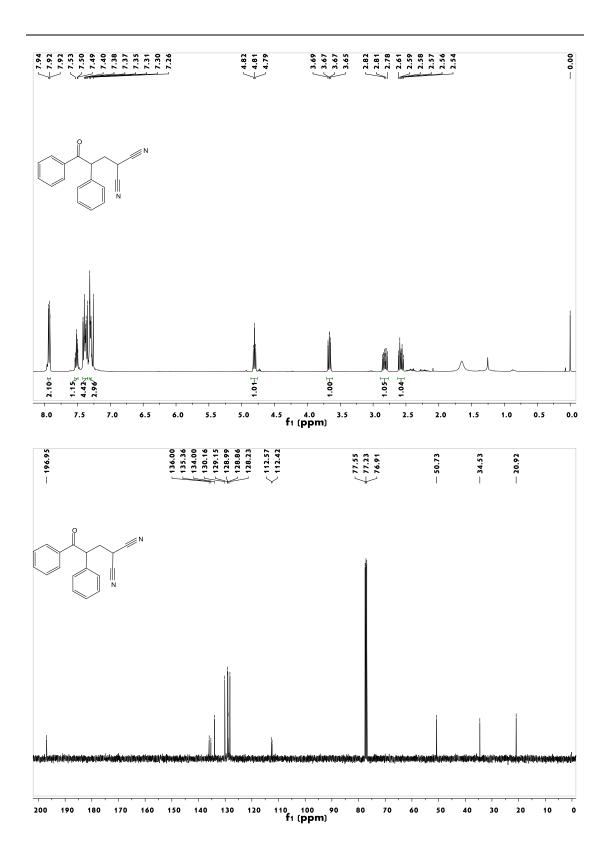


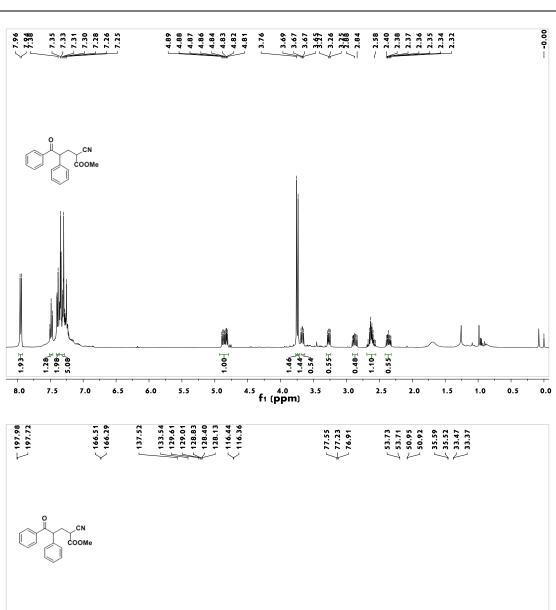


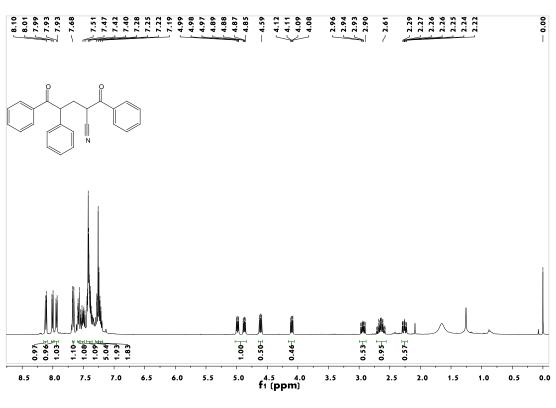


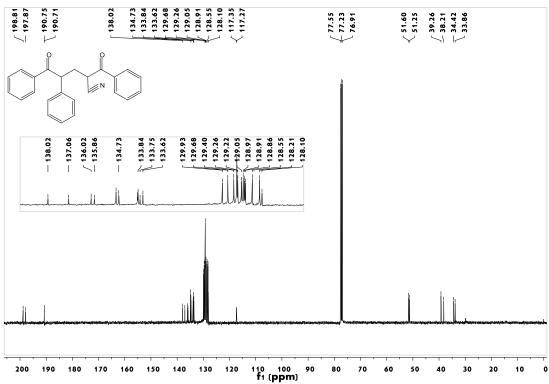


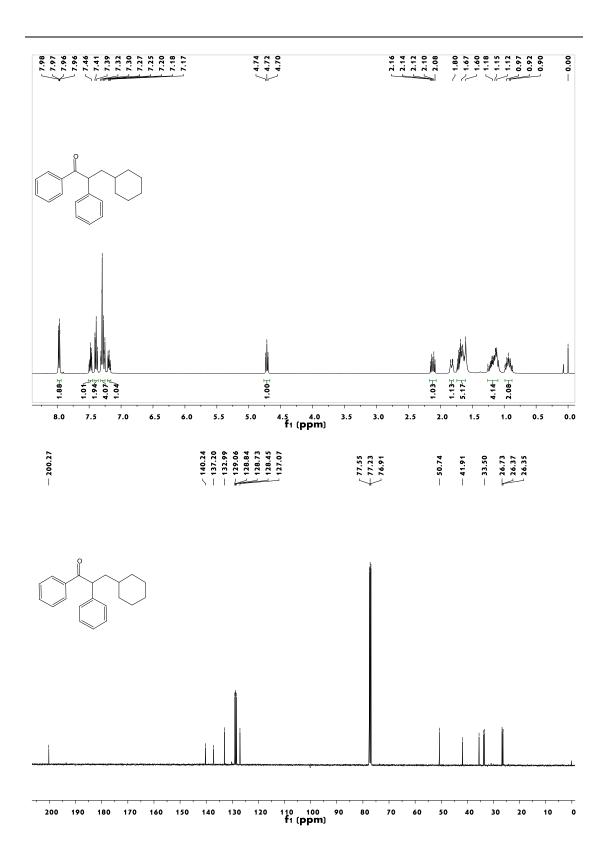


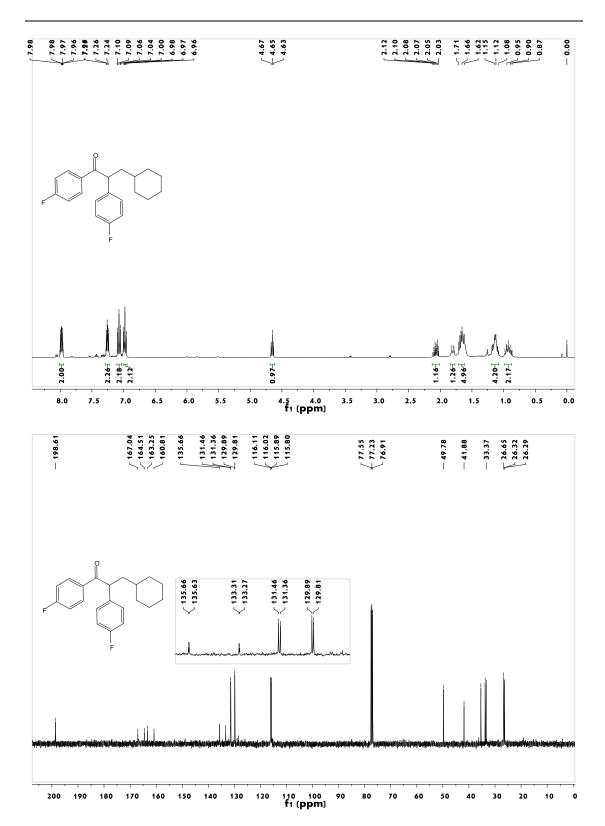


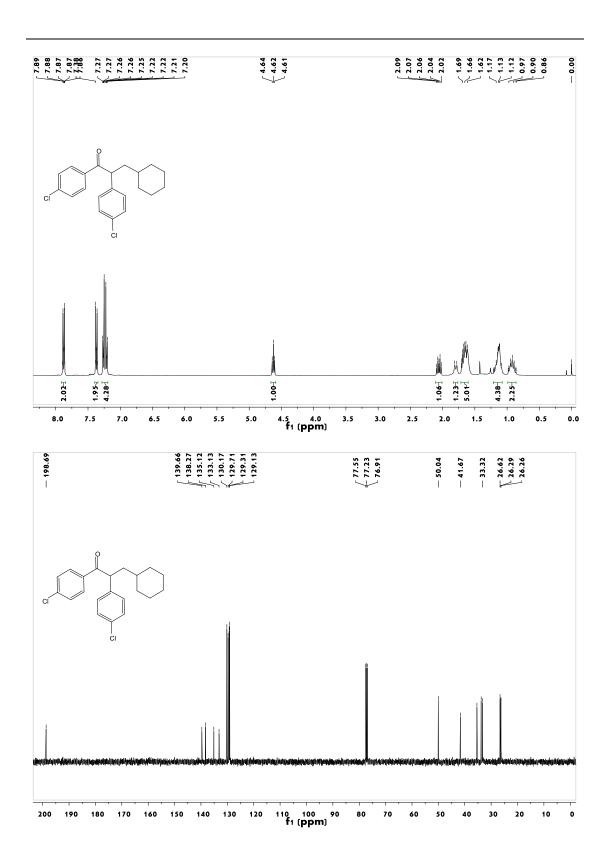


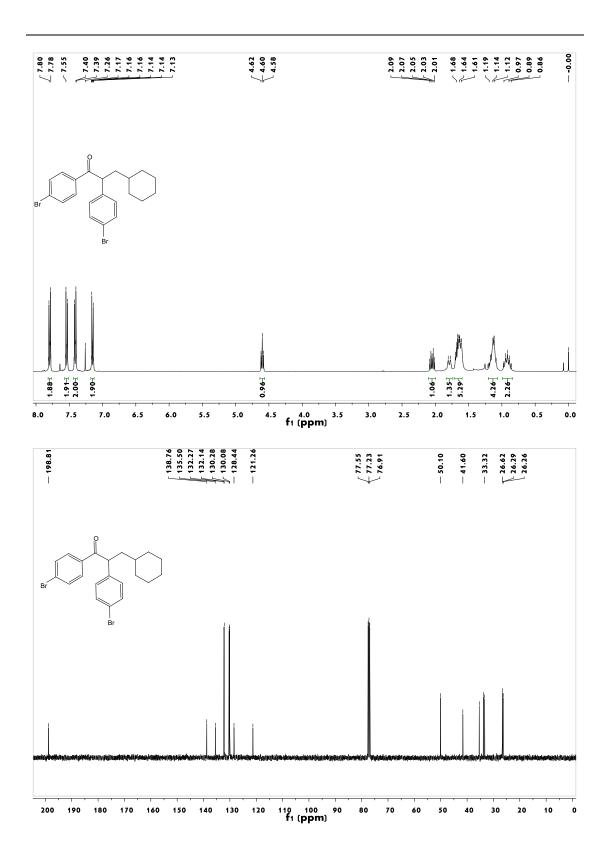


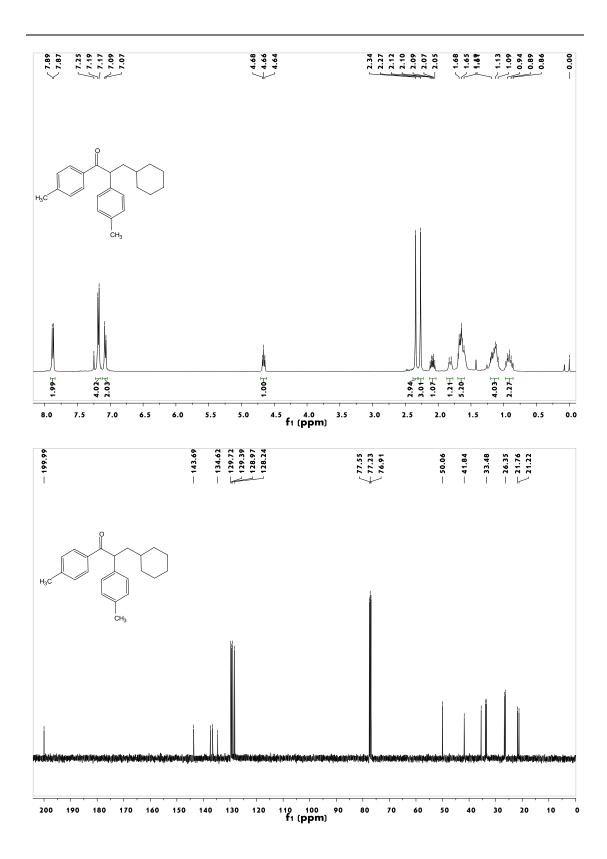


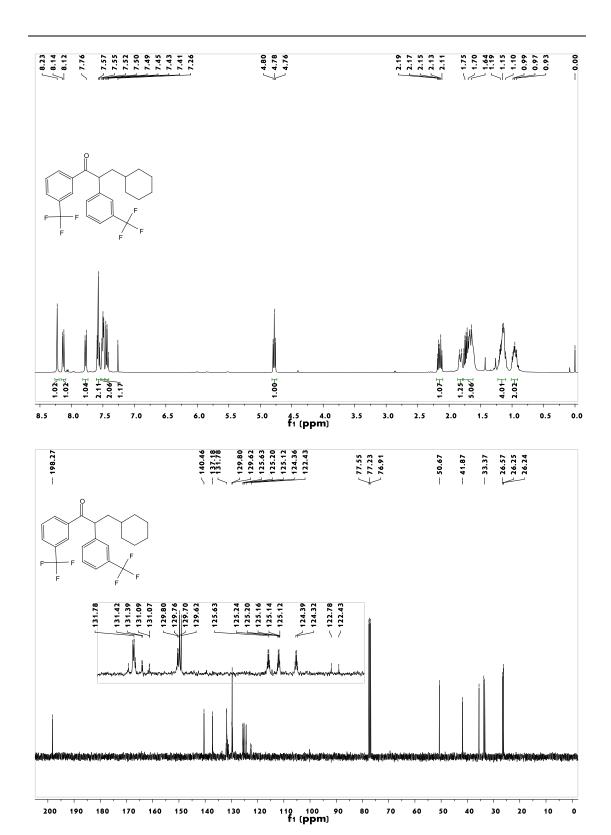


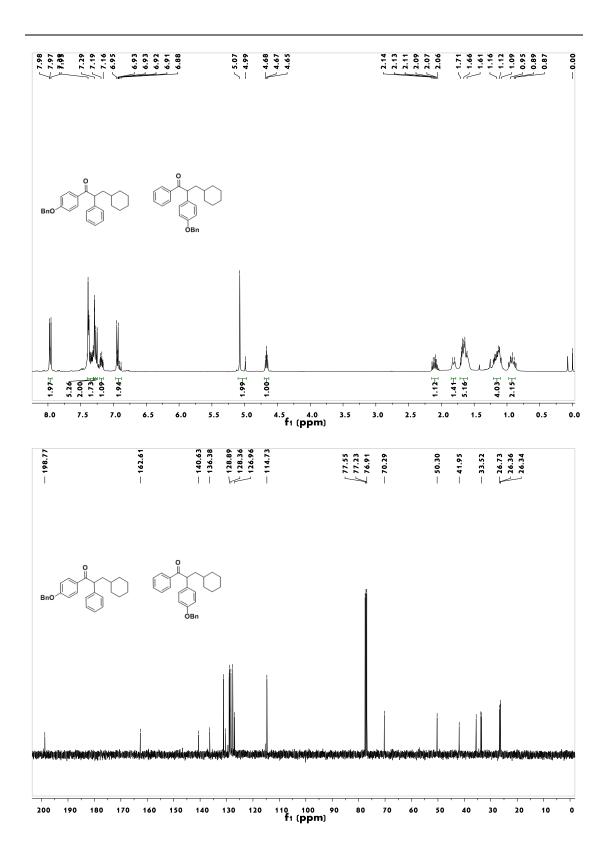











bn

