Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2015

4-Alkenyl-5*H*-1,2,3-oxathiazole 2,2-dioxides in Catalytic and Enantioselective [4+2] Cycloaddition under Iminium Activation. Straightforward Access to the *trans*-Decaline Framework and to Densely Functionalized Cyclohexanes

Iker Riaño, Uxue Uria, Efraim Reyes, Luisa Carrillo, and Jose L. Vicario*

Deparment of Organic Chemistry II University of the Basque Country (UPV/EHU) P.O. Box 644, 48080 Bilbao (Spain) Phone: (+) 34 601 5454 Fax: (+) 34 601 2748 E-mail: joseluis.vicario@ehu.es

Contents

General Methods	page SI-1
Materials	page SI-1
Synthesis of 4-Alkenyl-5 <i>H</i> -1,2,3-oxathiazole 2,2-dioxides 1a-c	page SI-3
Synthesis of Cycloadducts 4a-i	page SI-5
Synthesis of Cycloadducts 5a-o	page SI-10
Synthesis of Cyclic sulfamidate amine 6	page SI-18
Synthesis of β-aminoalcohol 7	page SI-19
NMR Spectra	page SI-20
HPLC Chromatograms	page SI-50

General Methods.¹ NMR spectra were acquired on a 300 spectrometer, running at 300 or 500 MHz and 75.4 MHz for ¹H and ¹³C, respectively. Chemical shifts (δ) are reported in ppm relative to residual solvent signals (CHCl₃, 7.26 ppm for ¹H NMR; CDCl₃, 77.0 ppm for ¹³C NMR). The following abbreviations are used to indicate the multiplicity in ¹H NMR spectra: s, singlet; d, doublet; t, triplet; m, multiplet; bs, broad signal. ¹³C NMR spectra were acquired on a broad band decoupled mode. For infrared (IR) spectra only characteristic bands are given in cm⁻¹. Mass spectra (MS) were recorded on a GC-MS spectrometer using electronic impact (EI) techniques (70 eV). High resolution mass spectrometry (HRMS) were recorded under chemical ionization (CI) TOF conditions using GC when necesary. Analytical thin layer chromatography (TLC) was performed using precoated aluminum-backed plates and visualized by ultraviolet irradiation, phosphomolybdic acid or potassium permanganate reagent. Melting points (M.p.) are given in °C. Optical rotations (α value) were measured in the specified solvent at given concentration in g/100 mL. The enantiomeric excess (e.e.) of the products were determined by chiral stationary phase HPLC using photodiode array detector and using the indicated chiral column in each case.

Materials. Analytical grade solvents and commercially available reagents were used without further purification. For flash chromatography (FC) silica gel was used.

¹ SGIker technical support (MEC, GV/EJ and European Social Fund) is gratefully acknowledged (NMR, Elementary analysis, HRMS analysis and allocation of computational resources).

General procedure for the synthesis of 4-Alkenyl-5*H*-1,2,3-oxathiazole 2,2-dioxides (1a-c).

To a solution of trifluoroacetic acid (2.00 mmol) in a mixture of CH_3CN/H_2O (5:1 mL), the ketone (1.00)corresponding α , β -unsaturated mmol) was added. Then [bis(trifluoroacetoxy)iodo]benzene (2.00 mmol) was added and the reaction was stirred under reflux for the corresponding time in each case and then allowed to reach room temperature. The solvent was removed under reduced pressure and H₂O (5 mL) was added to the obtained crude product. The mixture was extracted with CH_2CI_2 (3 × 10 mL). The combined organic layers were washed with saturated solution of NaHCO₃ (3×30 mL) and then were dry over anhydrous Na₂SO₄, filtered and the solvent was removed under reduced pressure obtaining the corresponding α -hydroxy ketone, which was employed in the following step without further purification.

Chlorosulfonyl amine (2.00 mmol), previously released from chlorosulfonyl isocyanate with formic acid following representative procedure,² was added portionwise to a solution of α -hydroxy ketone (1.00 mmol) in dry DMA (3 mL) under Ar atmosphere. After stirring at room temperature for 2 h, the reaction mixture was diluted with EtOAc (10 mL) and washed with brine (10 mL). The solvent was removed under reduced pressure and then *p*-toluensulfonic acid (0.10 mmol) and toluene (3 mL) were added, and the reaction was stirred under reflux for 1 h with a Dean-Stark receiver. The mixture was diluted with EtOAc (10 mL) and washed with NaHCO₃ (10 mL). The organic layer was dry over anhydrous Na₂SO₄ and the solvent was evaporated. The crude was purified by flash column chromatography (hexanes/EtOAc gradient from 6:4 to 1:1) to give the corresponding sulfamidate.

4-(Cyclohex-1-en-1-yl)-5*H*-1,2,3-oxathiazole 2,2-dioxide (1a).

Following the general procedure, cyclohex-1-en-1-yl methyl ketone (0.51 mL, 4.00 mmol), [bis(trifluoroacetoxy)iodo]benzene (3.44 g, 8.00 mmol) and trifluoroacetic acid (0.61 mL, 8.00 mmol) in a mixture of CH₃CN/H₂O (20:4 mL) afforded the α -hydroxy ketone after 5 hours. Then to a solution of α -hydroxy ketone in DMA (12 mL), chlorosulfonyl amine (924 mg, 8.00

mmol) was added, and then *p*-toluensulfonic acid (76 mg, 0.40 mmol) and toluene (12 mL) was added, affording the sulfamidate **1a** (283 mg, 1.41 mmol, 35%) as a yellow solid. ¹H-NMR (CDCl₃, 300 MHz) δ 6.80-6.77 (m, 1H), 5.31 (s, 2H), 2.40-2.35 (m, 4H), 1.81-1.61 (m, 4H). ¹³C-NMR (CDCl₃, 75 MHz) δ 175.7, 146.8, 131.3, 74.0, 26.9, 24.2, 21.3, 21.1. FTIR (ATR, cm⁻¹): 1632 (C=N st), 1570 (C=C st), 1354 (SO₂ st as), 1186 (SO₂ st sym). MS (70 eV) *m*/*z* (%): 201 (87), 186 (13), 172 (5), 160 (1), 144 (2), 136 (5), 120 (33), 106 (100), 92 (56), 79 (88), 66 (26), 52 (33). HRMS: calculated for [C₈H₁₂NO₃S]⁺: 202.0538 [(M+H)⁺]; found: 202.0525. M.p.: 151-153°C (hexanes/EtOAc).

² H.-K. Lee, S. Kang, E. B. Choi, *J. Org. Chem.* 2012, **77**, 5454.

4-(1-Methylprop-1-en-1-yl)-5*H*-1,2,3-oxathiazole 2,2-dioxide (1b).

Following the general procedure, 3-methylpent-3-en-2-one (2.34 mL, 20.00 mmol), [bis(trifluoroacetoxy)iodo]benzene (17.73 g, 40.00 mmol) and trifluoroacetic acid (3.06 mL, 40.00 mmol) in a mixture of CH₃CN/H₂O (100:20 mL) afforded the α -hydroxy ketone after 4 hours. Then to a solution of α -hydroxy ketone in DMA (60 mL), chlorosulfonyl amine (4.62 g, 40.00 mmol) was added, and then *p*-toluensulfonic acid (380 mg, 2.00 mmol) and

toluene (60 mL) was added, affording the sulfamidate **1b** (544 mg, 3.11 mmol, 16%) as a yellow solid. ¹H-NMR (CDCl₃, 300 MHz) δ 6.59-6.52 (m, 1H), 5.32 (s, 2H), 2.01-1.99 (m, 6H). ¹³C-NMR (CDCl₃, 75 MHz) δ 176.6, 144.2, 130.2, 74.1, 15.6, 12.5. FTIR (ATR, cm⁻¹): 1638 (C=N st), 1561 (C=C st), 1351 (SO₂ st as), 1181 (SO₂ st sym). MS (70 eV) *m/z* (%): 175 (39), 160 (1), 135 (1), 110 (4), 94 (14), 81 (100), 75 (1), 66 (21), 54 (46). HRMS: calculated for [C₆H₁₀NO₃S]⁺:176.0381 [(M+H)⁺]; found: 176.0376. M.p.: 122-124°C (hexanes/EtOAc).

4-(1-Methylbut-1-en-1-yl)-5*H*-1,2,3-oxathiazole 2,2-dioxide (1c).

Following the general procedure, 3-methylhex-3-en-2-one (1.14 g, 10.16 mmol), [bis(trifluoroacetoxy)iodo]benzene (9.01 g, 20.32 mmol) and trifluoroacetic acid (1.56 mL, 20.32 mmol) in a mixture of CH₃CN/H₂O (50:10 mL) afforded the α -hydroxy ketone after 2 hours. Then to a solution of α -hydroxy ketone in DMA (30 mL), chlorosulfonyl amine (2.34 g, 20.32

mmol) was added, and then *p*-toluensulfonic acid (194 mg, 1.02 mmol) and toluene (30 mL) was added, affording the sulfamidate **1c** (305 mg, 1.61 mmol, 16%) as a orange solid . ¹H-NMR (CDCl₃, 300 MHz) δ 6.46-6.40 (m, 1H), 5.33 (s, 2H), 2.42-2.32 (m, 2H), 2.00 (s, 3H), 1.10 (t, *J* = 7.6 Hz, 3H). ¹³C-NMR (CDCl₃, 75 MHz) δ 176.9, 150.8, 128.7, 74.2, 23.0, 12.6, 12.6. FTIR (ATR, cm⁻¹): 1631 (C=N st), 1563 (C=C st), 1346 (SO₂ st as), 1190 (SO₂ st sym). MS (70 eV) *m/z* (%): 189 (15), 174 (16), 162 (1), 149 (3), 135 (1), 124 (7), 110 (33), 94 (100), 80 (29), 68 (48), 53 (39). HRMS: calculated for [C₇H₁₂NO₃S]⁺: 190.0538 [(M+H)⁺]; found: 190.0523. M.p.: 56-58°C (hexanes/EtOAc).

General procedure for the synthesis of Cycloadducts (4a-i).

The α , β -unsaturated aldehyde **2** (1.50 or 2.00 mmol) was added to a solution of diphenyl-2-pyrrolidinemethanoltrimethylsilyl ether **3a** (0.20 mmol), DABCO (0.20 mmol) and the 4-(cyclohex-1-en-1-yl)-5*H*-1,2,3-oxathiazole 2,2-dioxide **1a** (1.00 mmol) in dry CHCl₃ (2 mL). The reaction was stirred at the indicated temperature in each case, following its evolution by ¹H-NMR. After consumption of the starting material, the product was purified by flash column chromatography with the indicated eluent, yielding the cycloadducts **4a-i**.

(3a*S*,4*R*,5*S*,5a*R*,9a*R*)-4-Methyl-4,5,5a,6,7,8,9,9a-octahydro-3a*H*-naphtho[1,2*d*][1,2,3]oxathiazole-5-carbaldehyde 2,2-dioxide, (4a).

The cycloadduct **4a** (27 mg, 0.10 mmol, 66%, dr: >20:1) was obtained after 48 hours at -30°C as a white solid, after isolation by flash column chromatography (hexanes/EtOAc gradient from 8:2 to 7:3) according to the general procedure using 4-(cyclohex-1-en-1-yl)-5*H*-1,2,3-oxathiazole 2,2-dioxide **1a** (30 mg, 0.15 mmol) and crotonaldehyde **2a** (19 μ L, 0.23 mmol) in the presence of DABCO (3 mg, 0.03 mmol), diphenyl-2-

pyrrolidinemethanoltrimethylsilyl ether **3a** (10 mg, 0.03 mmol) and using dry CHCl₃ (0.3 mL) as solvent. ¹H-NMR (CDCl₃, 300 MHz) δ 9.49 (d, J = 4.2 Hz, 1H), 4.81 (d, J = 10.6 Hz, 1H), 2.39-2.28 (m, 1H), 2.25-2.17 (m, 3H), 1.97-1.87 (m, 1H), 1.86-1.76 (m, 3H), 1.68-1.54 (m, 1H), 1.36-1.22 (m, 3H), 1.19 (d, J = 6.0 Hz, 3H). ¹³C-NMR (CDCl₃, 75 MHz) δ 200.4, 185.5, 89.9, 58.5, 44.5, 43.6, 40.7, 31.3, 26.2, 25.0, 24.4, 17.0. FTIR (ATR, cm⁻¹): 1725 (C=O st), 1630 (C=N st), 1368 (SO₂ st as), 1194 (SO₂ st sym). MS (70 eV) *m/z* (%): 271 (5), 243 (12), 227 (46), 214 (3), 201 (25), 192 (15), 178 (58), 162 (31), 150 (29), 134 (9), 122 (16), 108 (36), 91 (19), 81 (49), 71 (100), 55 (37). HRMS: calculated for [C₁₂H₁₈NO₄S]⁺: 272.0957 [(M+H)⁺]; found: 272.0946. The ee was determined by HPLC using a Chiralpak IA column [*n*-hexane/*i*-PrOH (90:10)]; flow rate 1.0 mL/min; T_{major} = 22.19 min, T_{minor} = 35.50 min (96% ee). [α]_D²⁰ = +1.2 (*c* = 0.69, CH₂Cl₂). M.p.: 137-139 (*n*-hexane/*i*-PrOH).

(3a*S*,4*R*,5*S*,5a*R*,9a*R*)-4-Ethyl-4,5,5a,6,7,8,9,9a-octahydro-3a*H*-naphtho[1,2*d*][1,2,3]oxathiazole-5-carbaldehyde 2,2-dioxide, (4b).

The cycloadduct **4b** (28 mg, 0.10 mmol, 66%, dr: >20:1) was obtained after 60 hours at room temperature as a yellow oil, after isolation by flash column chromatography (hexanes/EtOAc gradient from 8:2 to 7:3) according to the general procedure using 4-(cyclohex-1-en-1-yl)-5*H*-1,2,3oxathiazole 2,2-dioxide **1a** (30 mg, 0.15 mmol) and (*E*)-pent-2-enal **2b** (29 μ L, 0.30 mmol) in the presence of DABCO (3 mg, 0.03 mmol), diphenyl-2-

pyrrolidinemethanoltrimethylsilyl ether **3a** (10 mg, 0.03 mmol) and using dry CHCl₃ (0.3 mL) as solvent. ¹H-NMR (CDCl₃, 300 MHz) δ 9.47 (d, *J* = 4.5 Hz, 1H), 5.01 (d, *J* = 10.7 Hz, 1H), 2.40-2.16 (m, 4H), 1.96-1.87 (m, 1H), 1.83-1.76 (m, 3H), 1.74-1.66 (m, 1H), 1.62-1.49 (m, 2H), 1.35-1.21 (m, 3H), 0.97 (t, *J* = 7.5 Hz, 3H). ¹³C-NMR (CDCl₃, 75 MHz) δ 200.4, 186.2, 87.2, 55.6, 45.6, 44.4, 43.4, 31.4, 26.3, 25.0, 24.4, 23.1, 8.7. FTIR (ATR, cm⁻¹):

1725 (C=O st), 1631 (C=N st), 1369 (SO₂ st as), 1194 (SO₂ st sym). MS (70 eV) *m/z* (%): 285 (6), 256 (11), 241 (24), 228 (16), 216 (5), 205 (78), 192 (93), 176 (100), 164 (36), 148 (27), 136 (35), 125 (34), 108 (55), 95 (40), 81 (97), 67 (69), 55 (63). The ee was determined by HPLC using a Chiralpak IA column [*n*-hexane/*i*-PrOH (90:10)]; flow rate 1.0 mL/min; $\tau_{maior} = 17.93 \text{ min}$, $\tau_{minor} = 25.57 \text{ min}$ (95% ee). $[\alpha]_D^{20} = +1.9$ (*c* = 1.00, CH₂Cl₂).

(3a*S*,4*R*,5*S*,5a*R*,9a*R*)-4-Propyl-4,5,5a,6,7,8,9,9a-octahydro-3a*H*-naphtho[1,2*d*][1,2,3]oxathiazole-5-carbaldehyde 2,2-dioxide, (4c).

The cycloadduct **4c** (32 mg, 0.11 mmol, 71%, dr: >20:1) was obtained after 60 hours at room temperature as a yellow oil, after isolation by flash column chromatography (hexanes/EtOAc gradient from 8:2 to 7:3) according to the general procedure using 4-(cyclohex-1-en-1-yl)-5*H*-1,2,3oxathiazole 2,2-dioxide **1a** (30 mg, 0.15 mmol) and (*E*)-hex-2-enal **2c** (35 μ L, 0.30 mmol) in the presence of DABCO (3 mg, 0.03 mmol), diphenyl-2-

pyrrolidinemethanoltrimethylsilyl ether **3a** (10 mg, 0.03 mmol) and using dry CHCl₃ (0.3 mL) as solvent. ¹H-NMR (CDCl₃, 300 MHz) δ 9.47 (d, J = 4.4 Hz, 1H), 4.97 (d, J = 10.4 Hz, 1H), 2.37-2.24 (m, 3H), 2.22-2.15 (m, 1H), 1.96-1.88 (m, 1H), 1.86-1.75 (m, 3H), 1.61-1.22 (m, 8H), 0.91 (t, J = 7.0 Hz, 3H). ¹³C-NMR (CDCl₃, 75 MHz) δ 200.4, 185.9, 88.1, 56.6, 44.8, 44.4, 43.5, 33.3, 31.4, 26.3, 25.0, 24.4, 18.3, 14.1. FTIR (ATR, cm⁻¹): 1725 (C=O st), 1631 (C=N st), 1369 (SO₂ st as), 1194 (SO₂ st sym). MS (70 eV) *m/z* (%): 299 (5), 270 (11), 255 (16), 235 (13), 219 (76), 206 (45), 190 (100), 176 (24), 164 (37), 150 (30), 136 (25), 125 (32), 108 (45), 95 (47), 81 (67), 67 (58), 55 (64). HRMS: calculated for [C₁₄H₂₂NO₄S]⁺: 300.1270 [(M+H)⁺]; found: 300.1258. The ee was determined by HPLC using a Chiralpak IA column [*n*-hexane/*i*-PrOH (95:5)]; flow rate 1.0 mL/min; T_{major} = 30.42 min, T_{minor} = 43.34 min (96% ee). [α]_D²⁰ = +2.8 (c = 1.00, CH₂Cl₂).

(3a*S*,4*R*,5*S*,5a*R*,9a*R*)-4-Butyl-4,5,5a,6,7,8,9,9a-octahydro-3a*H*-naphtho[1,2*d*][1,2,3]oxathiazole-5-carbaldehyde 2,2-dioxide, (4d).

The cycloadduct **4d** (32 mg, 0.11 mmol, 67%, dr: >20:1) was obtained after 72 hours at room temperature as a yellow oil, after isolation by flash column chromatography (hexanes/EtOAc gradient from 8:2 to 7:3) according to the general procedure using 4-(cyclohex-1-en-1-yl)-5*H*-1,2,3-oxathiazole 2,2-dioxide **1a** (30 mg, 0.15 mmol) and (*E*)-hept-2-enal **2d** (39 μ L, 0.30 mmol) in the presence of DABCO (3 mg, 0.03 mmol),

diphenyl-2-pyrrolidinemethanoltrimethylsilyl ether **3a** (10 mg, 0.03 mmol) and using dry CHCl₃ (0.3 mL) as solvent. ¹H-NMR (CDCl₃, 300 MHz) δ 9.47 (d, *J* = 4.4 Hz, 1H), 4.99 (d, *J* = 10.5 Hz, 1H), 2.38-2.24 (m, 3H), 2.21-2.16 (m, 1H), 1.91-1.88 (m, 1H), 1.85-1.76 (m, 3H), 1.65-1.48 (m, 4H), 1.35-1.24 (m, 6H), 0.88 (t, *J* = 7.0 Hz, 3H). ¹³C-NMR (CDCl₃, 75 MHz) δ 200.5, 186.1, 88.0, 56.4, 44.8, 44.4, 43.5, 31.4, 30.6, 26.8, 26.3, 25.0, 24.4, 22.7, 13.8. FTIR (ATR, cm⁻¹): 1724 (C=O st), 1632 (C=N st), 1371 (SO₂ st as), 1195 (SO₂ st sym). MS (70 eV) *m/z* (%): 313 (3), 233 (45), 220 (28), 204 (100), 190 (16), 176 (15), 164 (25), 148 (17), 125 (23), 109 (22), 95 (29), 81 (43), 67 (39), 55 (45). HRMS: calculated for [C₁₅H₂₄NO₄S]⁺: 314.1426 [(M+H)⁺]; found: 314.1420. The ee was determined by HPLC

using a Chiralpak IA column [*n*-hexane/*i*-PrOH (95:5)]; flow rate 1.0 mL/min; $\tau_{major} = 27.02$ min, $\tau_{minor} = 36.08$ min (95% ee). [α]_D²⁰ = +2.3 (c = 1.00, CH₂Cl₂).

(3a*S*,4*R*,5*S*,5a*R*,9a*R*)-4-IsobutyI-4,5,5a,6,7,8,9,9a-octahydro-3a*H*-naphtho[1,2*d*][1,2,3]oxathiazole-5-carbaldehyde 2,2-dioxide, (4e).

The cycloadduct **4e** (30 mg, 0.10 mmol, 65%, dr: >20:1) was obtained after 60 hours at room temperature as a yellow oil, after isolation by flash column chromatography (hexanes/EtOAc gradient from 8:2 to 7:3) according to the general procedure using 4-(cyclohex-1-en-1-yl)-5*H*-1,2,3-oxathiazole 2,2-dioxide **1a** (30 mg, 0.15 mmol) and (*E*)-5methylhex-2-enal **2e** (34 mg, 0.30 mmol) in the presence of DABCO (3

mg, 0.03 mmol), diphenyl-2-pyrrolidinemethanoltrimethylsilyl ether **3a** (10 mg, 0.03 mmol) and using dry CHCl₃ (0.3 mL) as solvent. ¹H-NMR (CDCl₃, 300 MHz) δ 9.46 (d, *J* = 4.4 Hz, 1H), 4.89 (d, *J* = 10.1 Hz, 1H), 2.35-2.16 (m, 4H), 1.94-1.89 (m, 1H), 1.84-1.75 (m, 3H), 1.63-1.46 (m, 3H), 1.34-1.22 (m, 4H), 0.91-0.87 (m, 6H). ¹³C-NMR (CDCl₃, 75 MHz) δ 200.4, 185.4, 90.0, 58.4, 44.4, 43.3, 43.0, 42.9, 31.4, 26.3, 25.6, 25.0, 24.4, 23.3, 21.9. FTIR (ATR, cm⁻¹): 1725 (C=O st), 1632 (C=N st), 1368 (SO₂ st as), 1194 (SO₂ st sym). MS (70 eV) *m/z* (%): 233 (82), 204 (46), 176 (61), 162 (11), 146 (95), 120 (100), 106 (40), 91 (32), 77 (30), 64 (19). HRMS: calculated for $[C_{15}H_{24}NO_4S]^+$: 314.1426 $[(M+H)^+]$; found: 314.1421. The ee was determined by HPLC using a Chiralpak IA column [*n*-hexane/*i*-PrOH (95:5)]; flow rate 1.0 mL/min; T_{major} = 26.32 min, T_{minor} = 32.17 min (97% ee). [α]_D²⁰ = +5.3 (c = 0.69, CH₂Cl₂).

(3a*S*,4*R*,5*S*,5a*R*,9a*R*)-4-Pentyl-4,5,5a,6,7,8,9,9a-octahydro-3a*H*-naphtho[1,2*d*][1,2,3]oxathiazole-5-carbaldehyde 2,2-dioxide, (4f).

The cycloadduct **4f** (30 mg, 0.09 mmol, 61%, dr: >20:1) was obtained after 72 hours at room temperature as a yellow oil, after isolation by flash column chromatography (hexanes/EtOAc gradient from 9:1 to 8:2) according to the general procedure using 4-(cyclohex-1-en-1-yl)-5H-1,2,3-oxathiazole 2,2-dioxide **1a** (30 mg, 0.15 mmol) and (*E*)-oct-2-

¹¹ CHO enal **2f** (45 μL, 0.30 mmol) in the presence of DABCO (3 mg, 0.03 mmol), diphenyl-2-pyrrolidinemethanoltrimethylsilyl ether **3a** (10 mg, 0.03 mmol) and using dry CHCl₃ (0.3 mL) as solvent. ¹H-NMR (CDCl₃, 300 MHz) δ 9.47 (d, *J* = 4.4 Hz, 1H), 4.99 (d, *J* = 10.4 Hz, 1H), 2.38-2.24 (m, 3H), 2.22-2.16 (m, 1H), 1.93-1.88 (m, 1H), 1.85-1.74 (m, 3H), 1.66-1.43 (m, 4H), 1.34-1.22 (m, 8H), 0.87 (t, *J* = 6.9 Hz, 3H). ¹³C-NMR (CDCl₃, 75 MHz) δ 200.4, 186.0, 88.0, 56.4, 44.9, 44.4, 43.5, 31.7, 31.4, 30.8, 26.3, 25.0, 24.4, 24.3, 22.3, 13.9. FTIR (ATR, cm⁻¹): 1724 (C=O st), 1632 (C=N st), 1372 (SO₂ st as), 1195 (SO₂ st sym). MS (70 eV) *m/z* (%): 327 (6), 281 (38), 234 (89), 207 (100), 164 (33), 136 (49), 108 (34), 81 (68), 55 (90). HRMS: calculated for [C₁₆H₂₆NO₄S]⁺: 328.1583 [(M+H)⁺]; found: 328.1585. The ee was determined by HPLC using a Chiralpak IA column [*n*-hexane/*i*-PrOH (95:5)]; flow rate 1.0 mL/min; T_{major} = 25.69 min, T_{minor} = 34.01 min (95% ee). [α]_D²⁰ = +3.4 (c = 1.00, CH₂Cl₂).

(3a*S*,4*R*,5*S*,5a*R*,9a*R*)-4-Hexyl-4,5,5a,6,7,8,9,9a-octahydro-3a*H*-naphtho[1,2*d*][1,2,3]oxathiazole-5-carbaldehyde 2,2-dioxide, (4g).

The cycloadduct **4g** (29 mg, 0.08 mmol, 57%, dr: >20:1) was obtained after 72 hours at room temperature as a yellow oil, after isolation by flash column chromatography (hexanes/EtOAc gradient from 9:1 to 8:2) according to the general procedure using 4-(cyclohex-1-en-1-yl)-5*H*-1,2,3-oxathiazole 2,2-dioxide **1a** (30 mg, 0.15 mmol) and (*E*)-non-2-enal **2g** (50 µL, 0.30 mmol) in the presence of DABCO (3 mg, 0.03

mmol), diphenyl-2-pyrrolidinemethanoltrimethylsilyl ether **3a** (10 mg, 0.03 mmol) and using dry CHCl₃ (0.3 mL) as solvent. ¹H-NMR (CDCl₃, 300 MHz) δ 9.47 (d, J = 4.3 Hz, 1H), 4.99 (d, J = 10.4 Hz, 1H), 2.39-2.23 (m, 3H), 2.21-2.14 (m, 1H), 1.95-1.87 (m, 1H), 1.84-1.75 (m, 3H), 1.66-1.43 (m, 4H), 1.35-1.20 (m, 10H), 0.87 (t, J = 6.4 Hz, 3H). ¹³C-NMR (CDCl₃, 75 MHz) δ 200.4, 186.0, 88.0, 56.4, 44.9, 44.4, 43.5, 31.5, 31.4, 30.9, 29.2, 26.3, 25.0, 24.7, 24.4, 22.5, 14.0. FTIR (ATR, cm⁻¹): 1725 (C=O st), 1632 (C=N st), 1371 (SO₂ st as), 1197 (SO₂ st sym). MS (70 eV) *m/z* (%): 341 (2), 281 (12), 261 (54), 232 (5), 207 (28), 146 (13), 96 (20), 79 (18), 55 (24). HRMS: calculated for [C₁₇H₂₈NO₄S]⁺: 342.1739 [(M+H)⁺]; found: 342.1725. The ee was determined by HPLC using a Chiralpak IA column [*n*-hexane/*i*-PrOH (95:5)]; flow rate 1.0 mL/min; T_{major} = 26.36 min, T_{minor} = 34.75 min (95% ee). [α]_p²⁰ = +2.3 (c = 1.01, CH₂Cl₂).

(3aS,3bR,7S,7aS,7bR,11aR)-Benzyl 7-hydroxy-4,5,7,7a,7b,8,9,10,11,11a-decahydro-3aH-benzo[h][1,2,3]oxathiazolo[5,4-f]isoquinoline-6(3bH)-carboxylate 2,2-dioxide, (4h).

The cycloadduct **4h** (39 mg, 0.09 mmol, 61%, dr: >20:1) was obtained after 48 hours at room temperature as a yellow oil, after isolation by flash column chromatography (hexanes/EtOAc gradient from 7:3 to 6:4) according to the general procedure using 4-(cyclohex-1-en-1-yl)-5*H*-1,2,3oxathiazole 2,2-dioxide **1a** (30 mg, 0.15 mmol) and (*E*)-benzyl (5-oxopent-3-en-1-yl)carbamate **2h** (70 µL, 0.30 mmol) in the presence of DABCO (3 mg, 0.03 mmol), diphenyl-2-pyrrolidinemethanoltrimethylsilyl ether **3a** (10 mg, 0.03 mmol) and using dry CHCl₃ (0.3 mL) as solvent. ¹H-NMR (CDCl₃,

300 MHz) δ 7.40-7.32 (m, 5H), 5.98-5.92 (m, 1H), 5.15 (s, 2H), 4.73 (d, *J* = 10.8 Hz, 1H), 4.05-3.97 (m, 1H), 3.23-3.17 (m, 1H), 2.46 (bs, 1H), 2.26-2.11 (m, 4H), 1.92-1.83 (m, 2H), 1.72-1.59 (m, 2H), 1.48-1.40 (m, 2H), 1.32-1.24 (m, 3H), 1.18-1.10 (m, 1H). ¹³C-NMR (CDCl₃, 75 MHz) δ 186.1, 156.1, 136.0, 128.7, 128.4, 128.0, 89.9, 73.6, 67.7, 45.2, 45.1, 44.3, 41.7, 37.5, 29.8, 29.4, 26.2, 25.1, 24.7. FTIR (ATR, cm⁻¹): 3408 (O-H st), 1682 (C=O st), 1629 (C=N st), 1369 (SO₂ st as), 1197 (SO₂ st sym). MS (70 eV) *m/z* (%): 207 (13), 218 (4), 147 (18), 129 (100), 112 (24), 83 (17), 70 (31), 57 (38). The ee was determined by HPLC using a Chiralpak ASH column [*n*-hexane/*i*-PrOH (85:15)]; flow rate 1.0 mL/min; T_{major} = 32.52 min, T_{minor} = 63.03 min (94% ee). [α]_D²⁰ = +7.1 (c = 1.00, CH₂Cl₂).

(3a*S*,4*S*,5*S*,5a*R*,9a*R*,9b*R*)-5-(Hydroxymethyl)-4-phenyldecahydro-1*H*-naphtho[1,2*d*][1,2,3]oxathiazole 2,2-dioxide (4i).

The cycloadduct **4i** (15 mg, 0.05 mmol, 30%, dr: >20:1) was obtained after 48 hours at room temperature as a white solid, according to the general procedure using 4-(cyclohex-1-en-1-yl)-5*H*-1,2,3-oxathiazole 2,2-dioxide **1a** (30 mg, 0.15 mmol) and cinnamaldehyde **2i** (28 μ L, 0.23 mmol) in the presence of DABCO (3 mg, 0.03 mmol), diphenyl-2-pyrrolidinemethanoltrimethylsilyl ether **3a** (10 mg, 0.03 mmol) and using dry CHCl₃ (0.3 mL) as solvent, following by reduction with NaBH₄ (7 mg,

0.18 mmol) in MeOH (2 mL) at 0°C and then purified by flash column chromatography (hexanes/EtOAc gradient from 6:4 to 1:1). ¹H-NMR (MeOD, 300 MHz) δ 7.35-7.23 (m, 5H), 4.92-4.88 (m, 1H), 4.10-4.04 (m, 1H), 3.62 (dd, J = 11.2, 2.3 Hz, 1H), 3.40-3.29 (m, 3H), 3.05 (dd, J = 11.3, 2.0 Hz, 1H), 2.19-2.10 (m, 1H), 1.87-1.66 (m, 5H), 1.44-1.29 (m, 4H), 1.00-0.86 (m, 1H). ¹³C-NMR (MeOD, 75 MHz) δ 142.0, 130.2, 129.7, 128.1, 92.0, 61.9, 58.7, 47.9, 47.2, 43.2, 35.8, 31.8, 31.1, 27.6, 27.3. FTIR (ATR, cm⁻¹): 3551 (O-H st), 1339 (SO₂ st as), 1185 (SO₂ st sym). MS (70 eV) m/z (%): 281 (38), 239 (13), 207 (100), 179 (13), 148 (60), 117 (24), 91 (44), 64 (26). HRMS: calculated for [C₁₇H₂₄NO₄S]⁺: 338.1426 [(M+H)⁺]; found: 338.1431. The ee was determined by HPLC using a Chiralpak IA column [*n*-hexane/*i*-PrOH (85:15)]; flow rate 1.0 mL/min; $\tau_{major} = 26.01$ min, $\tau_{minor} = 17.56$ min (94% ee). [α]₂²⁰ = -92.5 (c = 0.44, MeOH). M.p.: 177-179°C (hexanes/EtOAc).

General procedure for the synthesis of Cycloadducts (5a-o).

The α , β -unsaturated aldehyde **2** (1.50 mmol) was added to a solution of diphenyl-2pyrrolidinemethanoltrimethylsilyl ether **3a** (0.20 mmol), DABCO (0.20 mmol) and the corresponding 4-alkenyl-5*H*-1,2,3-oxathiazole 2,2-dioxide **1b-c** (1.00 mmol) in dry CHCl₃ (2 mL). The reaction was stirred at -30°C, following its evolution by ¹H-NMR. After consumption of the starting material, the product was purified by flash column chromatography with the indicated eluent, yielding the cycloadducts **5a-o**.

(4R,5R,6S,7S,7aS)-4,5-Dimethyl-7-phenyl-5,6,7,7a-tetrahydro-4*H*-benzo[*d*][1,2,3]oxathiazole-6-carbaldehyde 2,2-dioxide, (5a).

The cycloadduct **5a** (30 mg, 0.10 mmol, 66%, dr: >20:1) was obtained after 60 hours as a yellow oil, after isolation by flash column chromatography (hexanes/EtOAc gradient from 8:2 to 7:3) according to the general procedure using 4-(1-methylprop-1-en-1-yl)-5*H*-1,2,3oxathiazole 2,2-dioxide **1b** (26 mg, 0.15 mmol) and cinnamaldehyde **2i**

CHO (28 μL, 0.23 mmol) in the presence of DABCO (3 mg, 0.03 mmol), diphenyl-2-pyrrolidinemethanoltrimethylsilyl ether **3a** (10 mg, 0.03 mmol) and using dry CHCl₃ (0.3 mL) as solvent. ¹H-NMR (CDCl₃, 300 MHz) δ 9.34 (d, *J* = 3.8 Hz, 1H), 7.40-7.20 (m, 5H), 5.28 (d, *J* = 11.5 Hz, 1H), 3.23 (dd, *J* = 11.7, 11.7 Hz, 1H), 2.95-2.82 (m, 1H), 2.60 (dq, *J* = 12.6, 6.3 Hz, 1H), 2.08-1.93 (m, 1H), 1.43 (d, *J* = 6.4 Hz, 3H), 1.18 (d, *J* = 6.5 Hz, 3H). ¹³C-NMR (CDCl₃, 75 MHz) δ 199.7, 186.2, 135.0, 129.5, 128.8, 127.8, 89.1, 57.9, 51.5, 41.7, 40.2, 17.6, 13.0. FTIR (ATR, cm⁻¹): 1727 (C=O st), 1631 (C=N st), 1369 (SO₂ st as), 1198 (SO₂ st sym). MS (70 eV) *m/z* (%): 307 (7), 278 (21), 198 (100), 182 (31), 145 (13), 131 (64), 117 (15), 104 (31), 91 (58), 77 (32), 64 (11), 51 (12). HRMS: calculated for [C₁₅H₁₈NO₄S]⁺: 308.0957 [(M+H)⁺]; found: 308.0954. The ee was determined by HPLC using a Chiralpak ASH column [*n*-hexane/*i*-PrOH (85:15)]; flow rate 1.0 mL/min; T_{major} = 50.49 min, T_{minor} = 39.03 min (98% ee). [α]_D²⁰ = -50.3 (c = 1.00, CH₂Cl₂).

(4R,5R,6S,7S,7aS)-4,5-Dimethyl-7-(*p*-tolyl)-5,6,7,7a-tetrahydro-4*H*-benzo[*d*][1,2,3]oxathiazole-6-carbaldehyde 2,2-dioxide, (5b).

The cycloadduct **5b** (28 mg, 0.09 mmol, 59%, dr: >20:1) was obtained after 60 hours as a yellow oil, after isolation by flash column chromatography (hexanes/EtOAc gradient from 7:3 to 6:4) according to the general procedure using 4-(1-methylprop-1-en-1-yl)-5*H*-1,2,3-oxathiazole 2,2-dioxide **1b** (26 mg, 0.15 mmol) and (*E*)-4-methylcinnamaldehyde **2j** (33 mg, 0.23 mmol) in the presence of DABCO (3 mg, 0.03 mmol), diphenyl-2-

pyrrolidinemethanoltrimethylsilyl ether **3a** (10 mg, 0.03 mmol) and using dry CHCl₃ (0.3 mL) as solvent. ¹H-NMR (CDCl₃, 300 MHz) δ 9.34 (d, *J* = 3.9 Hz, 1H), 7.17 (d, *J* = 8.0 Hz, 2H), 7.11 (d, *J* = 8.2 Hz, 2H), 5.25 (d, *J* = 11.3 Hz, 1H), 3.20 (dd, *J* = 11.7, 11.7 Hz 1H), 2.91-2.79 (m, 1H), 2.59 (dq, *J* = 12.6, 6.3 Hz, 1H), 2.33 (s, 3H), 2.06-1.92 (m, 1H), 1.43 (d, *J* = 6.4 Hz, 3H), 1.18 (d, *J* = 6.5 Hz, 3H). ¹³C-NMR (CDCl₃, 75 MHz) δ 199.7, 186.1, 138.8,

132.0, 130.2, 127.6, 89.2, 58.0, 51.2, 41.7, 40.1, 21.1, 17.7, 13.0. FTIR (ATR, cm⁻¹): 1727 (C=O st), 1626 (C=N st), 1368 (SO₂ st as), 1198 (SO₂ st sym). MS (70 eV) m/z (%): 321 (12), 292 (16), 212 (100), 196 (33), 145 (39), 128 (17), 115 (30), 91 (27), 77 (11). HRMS: calculated for [C₁₆H₂₀NO₄S]⁺: 322.1113 [(M+H)⁺]; found: 322.1115. The ee was determined by HPLC using a Chiralpak IA column [*n*-hexane/*i*-PrOH (90:10)]; flow rate 1.0 mL/min; $T_{major} = 20.88 \text{ min}, T_{minor} = - (>99\% \text{ ee}). [\alpha]_D^{20} = -71.8 (c = 1.03, CH₂Cl₂).$

(4*R*,5*R*,6*S*,7*S*,7*aS*)-7-(4-Methoxyphenyl)-4,5-dimethyl-5,6,7,7a-tetrahydro-4*H*-benzo[*d*][1,2,3]oxathiazole-6-carbaldehyde 2,2-dioxide, (5c).

The cycloadduct **5c** (33 mg, 0.10 mmol, 65%, dr: >20:1) was obtained after 48 hours as a yellow oil, after isolation by flash column chromatography (hexanes/EtOAc gradient from 7:3 to 6:4) according to the general procedure using 4-(1-methylprop-1-en-1-yl)-5*H*-1,2,3-oxathiazole 2,2-dioxide **1b** (26 mg, 0.15 mmol) and (*E*)-4-methoxycinnamaldehyde **2k** (37 mg, 0.23 mmol) in the presence

of DABCO 0.03 diphenyl-2-(3 mg, mmol), pyrrolidinemethanoltrimethylsilyl ether 3a (10 mg, 0.03 mmol) and using dry CHCl₃ (0.3 mL) as solvent. ¹H-NMR (CDCl₃, 300 MHz) δ 9.33 (d, J = 3.9 Hz, 1H), 7.14 (d, J = 8.7 Hz, 2H), 6.88 (d, J = 8.6 Hz, 2H), 5.22 (d, J = 11.3 Hz, 1H), 3.78 (s, 3H), 3.19 (dd, J = 11.7, 11.7 Hz), 1H), 2.90-2.78 (m, 1H), 2.58 (dq, J = 12.6, 6.3 Hz, 1H), 2.07-1.89 (m, 1H), 1.42 (d, J = 6.3 Hz, 3H), 1.17 (d, J = 6.4 Hz, 3H). ¹³C-NMR (CDCl₃, 75 MHz) δ 199.8, 186.2, 159.8, 128.9, 126.9, 114.8, 89.3, 58.1, 55.3, 50.8, 41.7, 40.1, 17.6, 13.0. FTIR (ATR, cm⁻¹): 1726 (C=O st), 1625 (C=N st), 1368 (SO₂ st as), 1197 (SO₂ st sym). MS (70 eV) m/z (%): 337 (32), 281 (15), 256 (17), 228 (93), 207 (40), 160 (56), 134 (100), 108 (57), 91 (28), 64 (28). HRMS: calculated for [C₁₆H₂₀NO₅S]⁺: 338.1062 [(M+H)⁺]; found: 338.1053. The ee was determined by HPLC using a Chiralpak IA column [n-hexane/i-PrOH (85:15)]; flow rate 1.0 mL/min; $\tau_{major} = 21.73 \text{ min}$, $\tau_{minor} = - (>99\% \text{ ee})$. $[\alpha]_D^{20} = -60.5 \text{ (c} = 1.00, \text{CH}_2\text{Cl}_2)$.

(4*R*,5*R*,6*S*,7*S*,7*aS*)-7-(4-Acetoxy-3-methoxyphenyl)-4,5-dimethyl-5,6,7,7a-tetrahydro-4*H*-benzo[*d*][1,2,3]oxathiazole-6-carbaldehyde 2,2-dioxide, (5d).

The cycloadduct **5d** (43 mg, 0.11 mmol, 72%, dr: >20:1) was obtained after 48 hours as a yellow oil, after isolation by flash column chromatography (hexanes/EtOAc gradient from 7:3 to 6:4) according to the general procedure using 4-(1-methylprop-1-en-1-yl)-5*H*-1,2,3-oxathiazole 2,2-dioxide **1b** (26 mg, 0.15 mmol) and (*E*)-4-acetoxy-3-methoxycinnamaldehyde **2l** (52 mg, 0.23 mmol) in the presence of DABCO (3 mg, 0.03 mmol), diphenyl-2-

pyrrolidinemethanoltrimethylsilyl ether **3a** (10 mg, 0.03 mmol) and using dry CHCl₃ (0.3 mL) as solvent. ¹H-NMR (CDCl₃, 300 MHz) δ 9.36 (d, *J* = 3.7 Hz, 1H), 7.02 (d, *J* = 8.1 Hz, 1H), 6.85-6.76 (m, 2H), 5.23 (d, *J* = 11.2 Hz, 1H), 3.81 (s, 3H), 3.20 (dd, *J* = 11.7, 11.7 Hz, 1H), 2.95-2.86 (m, 1H), 2.59 (dq, *J* = 12.6, 6.3 Hz, 1H), 2.30 (s, 3H), 2.04-1.89 (m, 1H), 1.41 (d, *J* = 6.4 Hz, 3H), 1.17 (d, *J* = 6.5 Hz, 3H). ¹³C-NMR (CDCl₃, 75 MHz) δ 199.6, 185.9, 168.7, 151.7, 140.0, 133.8, 123.7, 119.4, 112.3, 88.9, 57.6, 56.1, 51.3, 41.7, 40.3,

20.7, 17.6, 13.0. FTIR (ATR, cm⁻¹): 1762 (OC=O st), 1727 (C=O st), 1629 (C=N st), 1367 (SO₂ st as), 1196 (SO₂ st sym). MS (70 eV) *m/z* (%): 281 (46), 253 (10), 207 (100), 177 (12), 129 (59), 96 (17), 64 (33). The ee was determined by HPLC using a Chiralpak ASH column [*n*-hexane/*i*-PrOH (85:15)]; flow rate 1.0 mL/min; $T_{major} = 85.52$ min, $T_{minor} = -$ (>99% ee). $[\alpha]_D^{20} = -46.1$ (c = 1.00, CH₂Cl₂).

(4*R*,5*R*,6*S*,7*S*,7*aS*)-7-(3,5-Dimethoxyphenyl)-4,5-dimethyl-5,6,7,7a-tetrahydro-4*H*-benzo[*d*][1,2,3]oxathiazole-6-carbaldehyde 2,2-dioxide, (5e).

The cycloadduct **5e** (39 mg, 0.11 mmol, 71%, dr: >20:1) was obtained after 60 hours as a yellow oil, after isolation by flash column chromatography (hexanes/EtOAc gradient from 7:3 to 6:4) according to the general procedure using 4-(1-methylprop-1-en-1-yl)-5*H*-1,2,3-oxathiazole 2,2-dioxide **1b** (26 mg, 0.15 mmol) and (*E*)-3,5-dimethoxycinnamaldehyde **2m** (43 mg, 0.23 mmol) in the

DABCO (3 0.03 mmol), presence of mg, diphenvl-2-OMe pyrrolidinemethanoltrimethylsilyl ether 3a (10 mg, 0.03 mmol) and using dry CHCl₃ (0.3 mL) as solvent. ¹H-NMR (CDCl₃, 300 MHz) δ 9.38 (d, J = 3.6 Hz, 1H), 6.39 (t, J = 2.2 Hz, 1H), 6.35 (d, J = 2.2 Hz, 2H), 5.27 (d, J = 11.3 Hz, 1H), 3.77 (s, 6H), 3.13 (dd, J = 11.7, 11.7 Hz, 1H), 2.90-2.77 (m, 1H), 2.57 (dq, J = 12.6, 6.3 Hz, 1H), 2.03-1.91 (m, 1H), 1.42 (d, J = 6.4 Hz, 3H), 1.18 (d, J = 6.5 Hz, 3H). ¹³C-NMR (CDCl₃, 75 MHz) δ 199.5, 186.0, 161.5, 137.3, 105.9, 100.1, 88.8, 57.8, 55.4, 51.8, 41.7, 40.2, 17.6, 13.0. FTIR (ATR, cm⁻¹): 1726 (C=O st), 1629 (C=N st), 1367 (SO₂ st as), 1197 (SO₂ st sym). MS (70 eV) m/z (%): 348 (5), 277 (23), 217 (13), 191 (15), 164 (100), 113 (21), 71 (33). HRMS: calculated for [C₁₇H₂₂NO₆S]⁺: 368.1168 [(M+H)⁺]; found: 368.1167. The ee was determined by HPLC using a Chiralpak ASH column [n-hexane/i-PrOH (80:20)]; flow rate 1.0 mL/min; T_{major} = 56.28 min, $\tau_{minor} = 42.95$ min (99% ee). $[\alpha]_D^{20} = -38.8$ (c = 0.90, CH₂Cl₂).

(4*R*,5*R*,6*S*,7*S*,7*aS*)-7-(4-Bromophenyl)-4,5-dimethyl-5,6,7,7a-tetrahydro-4*H*-benzo[*d*][1,2,3]oxathiazole-6-carbaldehyde 2,2-dioxide, (5f).

The cycloadduct **5f** (39 mg, 0.10 mmol, 67%, dr: >20:1) was obtained after 60 hours as a orange solid, after isolation by flash column chromatography (hexanes/EtOAc gradient from 7:3 to 6:4) according to the general procedure using 4-(1-methylprop-1-en-1-yl)-5*H*-1,2,3oxathiazole 2,2-dioxide **1b** (26 mg, 0.15 mmol) and (*E*)-4bromocinnamaldehyde **2n** (49 mg, 0.23 mmol) in the presence of

DABCO (3 mg, 0.03 mmol), diphenyl-2-pyrrolidinemethanoltrimethylsilyl ether **3a** (10 mg, 0.03 mmol) and using dry CHCl₃ (0.3 mL) as solvent. ¹H-NMR (CDCl₃, 300 MHz) δ 9.35 (d, J = 3.8 Hz, 1H), 7.50 (d, J = 8.5 Hz, 2H), 7.11 (d, J = 8.5 Hz, 2H), 5.23 (d, J = 11.3 Hz, 1H), 3.21 (dd, J = 11.7, 11.7 Hz, 1H), 2.93-2.81 (m, 1H), 2.60 (dq, J = 12.6, 6.3 Hz, 1H), 2.06-1.92 (m, 1H), 1.42 (d, J = 6.4 Hz, 3H), 1.19 (d, J = 6.5 Hz, 3H). ¹³C-NMR (CDCl₃, 75 MHz) δ 199.4, 185.9, 134.1, 132.6, 129.5, 122.9, 88.7, 57.7, 50.8, 41.7, 40.3, 17.6, 13.0. FTIR (ATR, cm⁻¹): 1726 (C=O st), 1630 (C=N st), 1369 (SO₂ st as), 1198 (SO₂ st sym). MS (70 eV) *m/z* (%): 305 (53), 281 (36), 207 (89), 180 (29), 147 (59), 119 (3), 84 (100), 51 (41).

HRMS: calculated for $[C_{15}H_{17}NO_4SBr]^+$: 386.0062 $[(M+H)^+]$; found: 386.0072. The ee was determined by HPLC using a Chiralpak IA column [*n*-hexane/*i*-PrOH (90:10)]; flow rate 1.0 mL/min; $\tau_{major} = 29.41 \text{ min}$, $\tau_{minor} = 22.99 \text{ min}$ (96% ee). $[\alpha]_D^{20} = -62.3$ (c = 1.00, CH₂Cl₂). M.p.: 110-112°C (hexanes/EtOAc).

(4R,5R,6S,7S,7aS)-4,5-Dimethyl-7-(4-nitrophenyl)-5,6,7,7a-tetrahydro-4*H*-benzo[*d*][1,2,3]oxathiazole-6-carbaldehyde 2,2-dioxide, (5g).

The cycloadduct **5g** (39 mg, 0.11 mmol, 73%, dr: >20:1) was obtained after 60 hours as a yellow oil, after isolation by flash column chromatography (hexanes/EtOAc gradient from 6:4 to 1:1) according to the general procedure using 4-(1-methylprop-1-en-1-yl)-5*H*-1,2,3-oxathiazole 2,2-dioxide **1b** (26 mg, 0.15 mmol) and (*E*)-4-nitrocinnamaldehyde **2o** (41 mg, 0.23 mmol) in the presence of DABCO (3 mg, 0.03 mmol), diphenyl-2-

pyrrolidinemethanoltrimethylsilyl ether **3a** (10 mg, 0.03 mmol) and using dry CHCl₃ (0.3 mL) as solvent. ¹H-NMR (CDCl₃, 300 MHz) δ 9.42 (d, *J* = 3.7 Hz, 1H), 8.22 (d, *J* = 8.7 Hz, 2H), 7.44 (d, *J* = 8.7 Hz, 2H), 5.28 (d, *J* = 11.3 Hz, 1H), 3.40 (dd, *J* = 11.7, 11.7 Hz, 1H), 3.02-2.93 (m, 1H), 2.67 (dq, *J* = 12.7, 6.3 Hz, 1H), 2.10-1.97 (m, 1H), 1.45 (d, *J* = 6.4 Hz, 3H), 1.24 (d, *J* = 6.5 Hz, 3H). ¹³C-NMR (CDCl₃, 75 MHz) δ 198.9, 185.5, 148.0, 142.4, 129.0, 124.6, 88.1, 57.5, 50.8, 41.8, 40.6, 17.6, 12.9. FTIR (ATR, cm⁻¹): 1726 (C=O st), 1629 (C=N st), 1521 (NO₂ st as), 1372 (SO₂ st as), 1347 (NO₂ st sym), 1199 (SO₂ st sym). MS (70 eV) *m/z* (%): 281 (34), 245 (40), 207 (100), 170 (41), 142 (69), 115 (57), 91 (25), 64 (33). HRMS: calculated for [C₁₅H₁₇N₂O₆S]⁺: 353.0807 [(M+H)⁺]; found: 353.0815. The et was determined by HPLC using a Chiralpak ADH column [*n*-hexane/*i*-PrOH (85:15)]; flow rate 1.0 mL/min; T_{major} = 41.51 min, T_{minor} = 49.45 min (97% ee). [α]_D²⁰ = -54.8 (c = 1.00, CH₂Cl₂).

(4*R*,5*R*,6*S*,7*S*,7a*S*)-7-(4-Cianophenyl)-4,5-dimethyl-5,6,7,7a-tetrahydro-4*H*-benzo[*d*][1,2,3]oxathiazole-6-carbaldehyde 2,2-dioxide, (5h).

The cycloadduct **5h** (37 mg, 0.11 mmol, 73%, dr: >20:1) was obtained after 48 hours as a yellow oil, after isolation by flash column chromatography (hexanes/EtOAc gradient from 6:4 to 1:1) according to the general procedure using 4-(1-methylprop-1-en-1-yl)-5*H*-1,2,3-oxathiazole 2,2-dioxide **1b** (26 mg, 0.15 mmol) and (*E*)-4-cianocinnamaldehyde **2p** (35 mg, 0.23 mmol) in the presence of DABCO (3 mg, 0.03 mmol), diphenyl-2-

pyrrolidinemethanoltrimethylsilyl ether **3a** (10 mg, 0.03 mmol) and using dry CHCl₃ (0.3 mL) as solvent. ¹H-NMR (CDCl₃, 300 MHz) δ 9.39 (d, *J* = 3.7 Hz, 1H), 7.67 (d, *J* = 8.2 Hz, 2H), 7.37 (d, *J* = 8.3 Hz, 2H), 5.24 (d, *J* = 11.3 Hz, 1H), 3.32 (dd, *J* = 11.7, 11.7 Hz, 1H), 2.98-2.86 (m, 1H), 2.64 (dq, *J* = 12.6, 6.4 Hz, 1H), 2.08-1.95 (m, 1H), 1.44 (d, *J* = 6.4 Hz, 3H), 1.23 (d, *J* = 6.5 Hz, 3H). ¹³C-NMR (CDCl₃, 75 MHz) δ 198.9, 185.5, 140.5, 133.1, 128.8, 118.0, 112.9, 88.2, 57.4, 51.1, 41.7, 40.5, 17.6, 12.9. FTIR (ATR, cm⁻¹): 1725 (C=O st), 1627 (C=N st), 1372 (SO₂ st as), 1198 (SO₂ st sym). MS (70 eV) *m/z* (%): 281 (10),

253 (31), 225 (32), 197 (62), 180 (14), 154 (100), 116 (31), 77 (19), 51 (15). HRMS: calculated for $[C_{16}H_{17}N_2O_4S]^+$: 333.0909 $[(M+H)^+]$; found: 333.0917. The ee was determined by HPLC using a Chiralpak ADH column [*n*-hexane/*i*-PrOH (85:15)]; flow rate 1.0 mL/min; $\tau_{major} = 35.29$ min, $\tau_{minor} = 44.40$ min (98% ee). $[\alpha]_D^{20} = -59.9$ (c = 0.83, CH₂Cl₂).

(4*R*,5*R*,6*S*,7*S*,7*aS*)-4,5-Dimethyl-7-(4-(trifluoromethyl)phenyl)-5,6,7,7a-tetrahydro-4*H*-benzo[*d*][1,2,3]oxathiazole-6-carbaldehyde 2,2-dioxide, (5i).

The cycloadduct **5I** (38 mg, 0.10 mmol, 67%, dr: >20:1) was obtained after 60 hours as a yellow oil, after isolation by flash column chromatography (hexanes/EtOAc gradient from 7:3 to 6:4) according to the general procedure using 4-(1-methylprop-1-en-1-yl)-5*H*-1,2,3-oxathiazole 2,2-dioxide **1b** (26 mg, 0.15 mmol) and (*E*)-4-(trifluoromethyl)cinnamaldehyde **2p** (45 mg, 0.23 mmol) in the presence of DABCO (3 mg, 0.03 mmol), diphenyl-2-

pyrrolidinemethanoltrimethylsilyl ether **3a** (10 mg, 0.03 mmol) and using dry CHCl₃ (0.3 mL) as solvent. ¹H-NMR (CDCl₃, 300 MHz) δ 9.39 (d, *J* = 3.7 Hz, 1H), 7.64 (d, *J* = 8.0 Hz, 2H), 7.38 (d, *J* = 7.9 Hz, 2H), 5.26 (d, *J* = 11.3 Hz, 1H), 3.33 (dd, *J* = 11.7, 11.7 Hz, 1H), 3.01-2.87 (m, 1H), 2.70-2.56 (m, 1H), 2.09-1.95 (m, 1H), 1.44 (d, *J* = 6.3 Hz, 3H), 1.22 (d, *J* = 6.4 Hz, 3H). ¹³C-NMR (CDCl₃, 75 MHz) δ 199.1, 185.6, 139.2, 131.1 (q, ²*J*_{CF} = 32.9 Hz), 128.4, 126.4 (q, ³*J*_{CF} = 3.5 Hz), 123.7 (q, ¹*J*_{CF} = 272.1 Hz), 88.5, 57.6, 51.0, 41.8, 40.5, 17.6, 12.9. FTIR (ATR, cm⁻¹): 1727 (C=O st), 1622 (C=N st), 1369 (SO₂ st as), 1199 (SO₂ st sym). MS (70 eV) *m/z* (%): 266 (14), 239 (11), 215 (36), 199 (38), 172 (18), 155 (32), 127 (10), 113 (52), 100 (50), 85 (14), 71 (100), 58 (23). HRMS: calculated for [C₁₆H₁₇NO₄SF₃]⁺: 376.0830 [(M+H)⁺]; found: 376.0829. The ee was determined by HPLC using a Chiralpak ASH column [*n*-hexane/*i*-PrOH (85:15)]; flow rate 1.0 mL/min; T_{major} = 27.65 min, T_{minor} = 22.09 min (98% ee). [(]²⁰/_D: -33.4 (c = 1.00, CH₂Cl₂).

(4*R*,5*R*,6*S*,7*R*,7a*S*)-4,5,7-Trimethyl-5,6,7,7a-tetrahydro-4*H*-benzo[*d*][1,2,3]oxathiazole-6-carbaldehyde 2,2-dioxide, (5j).

The cycloadduct **5j** (14 mg, 0.10 mmol, 36%, dr: >20:1) was obtained after 48 hours as a yellow oil, after isolation by flash column chromatography (hexanes/EtOAc gradient from 8:2 to 7:3) according to the general procedure using 4-(1-methylprop-1-en-1-yl)-5*H*-1,2,3-oxathiazole 2,2-dioxide **1b** (26 mg, 0.15 mmol) and crotonaldehyde **2a** (19 μ L, 0.23 mmol) in the

СНО presence of DABCO (3 mg, 0.03 mmol). diphenyl-2pyrrolidinemethanoltrimethylsilyl ether 3a (10 mg, 0.03 mmol) and using dry CHCl₃ (0.3 mL) as solvent. ¹H-NMR (CDCl₃, 300 MHz) δ 9.48 (d, J = 4.1 Hz, 1H), 4.82 (d, J = 10.8 Hz, 1H), 2.45 (dq, J = 12.7, 6.4 Hz, 1H), 2.23-2.13 (m, 2H), 1.94-1.85 (m, 1H), 1.40 (d, J = 6.4 Hz, 3H), 1.19 (d, J = 6.0 Hz, 3H), 1.14 (d, J = 6.5 Hz, 3H). ¹³C-NMR (CDCl₃, 75 MHz) δ 200.2, 186.4, 89.8, 59.3, 41.5, 40.1, 39.7, 17.7, 16.9, 13.0. FTIR (ATR, cm⁻¹): 1725 (C=O st), 1629 (C=N st), 1367 (SO₂ st as), 1196 (SO₂ st sym). MS (70 eV) m/z (%): 217 (22), 202 (32), 188 (13), 175 (16), 152 (86), 136 (51), 124 (28), 110 (25), 96 (23), 69 (100), 55

(68). HRMS: calculated for $[C_{10}H_{16}NO_4S]^+$: 246.0800 $[(M+H)^+]$; found: 246.0789. The ee was determined by HPLC using a Chiralpak IA column [*n*-hexane/*i*-PrOH (90:10)]; flow rate 1.0 mL/min; $\tau_{major} = 18.02 \text{ min}$, $\tau_{minor} = 20.46 \text{ min}$ (91% ee). $[\alpha]_D^{20} = -19.5$ (c = 0.67, CH₂Cl₂).

(4*R*,5*R*,6*S*,7*S*,7*aS*)-5-Ethyl-4-methyl-7-phenyl-5,6,7,7a-tetrahydro-4*H*-benzo[*d*][1,2,3]oxathiazole-6-carbaldehyde 2,2-dioxide, (5k).

The cycloadduct **5k** (28 mg, 0.09 mmol, 57%, dr: >20:1) was obtained after 60 hours as a yellow solid, after isolation by flash column chromatography (hexanes/EtOAc gradient from 8:2 to 7:3) according to the general procedure using 4-(1-methylbut-1-en-1-yl)-5*H*-1,2,3-oxathiazole 2,2-dioxide **1c** (28 mg, 0.15 mmol) and cinnamaldehyde **2i** (28 μ L, 0.23 mmol) in the presence of DABCO (3 mg, 0.03 mmol),

diphenyl-2-pyrrolidinemethanoltrimethylsilyl ether **3a** (10 mg, 0.03 mmol) and using dry CHCl₃ (0.3 mL) as solvent. ¹H-NMR (CDCl₃, 300 MHz) δ 9.34 (d, *J* = 4.1 Hz, 1H), 7.40-7.21 (m, 5H), 5.23 (d, *J* = 11.1 Hz, 1H), 3.25 (dd, *J* = 11.5, 11.5 Hz, 1H), 3.12-3.03 (m, *J* = 11.5, 4.1 Hz, 1H), 2.81 (dq, *J* = 12.5, 6.3 Hz, 1H), 2.14-2.05 (m, 1H), 1.82-1.71 (m, 1H), 1.61-1.51 (m, 1H), 1.40 (d, *J* = 6.4 Hz, 3H), 0.97 (t, *J* = 7.5 Hz, 3H). ¹³C-NMR (CDCl₃, 75 MHz) δ 199.3, 186.8, 135.1, 129.5, 128.9, 127.8, 88.9, 53.9, 51.7, 44.9, 37.8, 21.4, 12.6, 7.2. FTIR (ATR, cm⁻¹): 1726 (C=O st), 1626 (C=N st), 1368 (SO₂ st as), 1196 (SO₂ st sym). MS (70 eV) *m/z* (%): 238 (24), 207 (28), 147 (19), 129 (10), 112 (23), 83 (20), 57 (38). HRMS: calculated for [C₁₆H₂₀NO₄S]⁺: 322.1113 [(M+H)⁺]; found: 322.1123. The ee was determined by HPLC using a Chiralpak ASH column [*n*-hexane/*i*-PrOH (85:15)]; flow rate 1.0 mL/min; T_{major} = 51.80 min, T_{minor} = 60.44 min (96% ee). [α]_D²⁰ = -64.1 (c = 0.44, CH₂Cl₂). M.p.: 167-169°C (hexanes/EtOAc).

(4*R*,5*R*,6*S*,7*S*,7*aS*)-5-Ethyl-7-(4-methoxyphenyl)-4-methyl-5,6,7,7a-tetrahydro-4*H*-benzo[*d*][1,2,3]oxathiazole-6-carbaldehyde 2,2-dioxide, (5l).

The cycloadduct **5I** (35 mg, 0.10 mmol, 66%, dr: 10:1) was obtained after 60 hours as a yellow solid, after isolation by flash column chromatography (hexanes/EtOAc gradient from 7:3 to 6:4) according to the general procedure using 4-(1-methylbut-1-en-1-yl)-5*H*-1,2,3-oxathiazole 2,2-dioxide **1c** (28 mg, 0.15 mmol) and (*E*)-4-methoxycinnamaldehyde **2k** (37 mg, 0.23 mmol) in the

presence of DABCO (3 mg, 0.03 mmol), diphenyl-2-pyrrolidinemethanoltrimethylsilyl ether **3a** (10 mg, 0.03 mmol) and using dry CHCl₃ (0.3 mL) as solvent. ¹H-NMR (CDCl₃, 300 MHz) δ 9.32 (d, *J* = 4.1 Hz, 1H), 7.14 (d, *J* = 8.6 Hz, 2H), 6.88 (d, *J* = 8.6 Hz, 2H), 5.19 (d, *J* = 11.1 Hz, 1H), 3.78 (s, 3H), 3.20 (dd, *J* = 11.5, 11.5 Hz, 1H), 3.08-2.99 (m, 1H), 2.84-2.74 (m, 1H), 2.10-2.00 (m, 1H), 1.80-1.70 (m, 1H), 1.58-1.48 (m, 1H), 1.38 (d, *J* = 6.3 Hz, 3H), 0.95 (t, *J* = 7.5 Hz, 3H). ¹³C-NMR (CDCl₃, 75 MHz) δ 199.6, 187.0, 159.8, 128.9, 127.0, 114.8, 89.2, 55.3, 54.1, 51.0, 44.7, 37.8, 21.4, 12.6, 7.2. FTIR (ATR, cm⁻¹): 1726 (C=O st), 1626 (C=N st), 1370 (SO₂ st as), 1197 (SO₂ st sym). MS (70 eV) *m/z* (%): 244 (12), 215 (100), 187 (12), 175 (26), 134 (28), 121 (25), 91 (13), 77 (8). HRMS: calculated

for $[C_{17}H_{22}NO_5S]^+$: 352.1219 $[(M+H)^+]$; found: 352.1236. The ee was determined by HPLC using a Chiralcel OZ3 column [*n*-hexane/*i*-PrOH (85:15)]; flow rate 1.0 mL/min; $\tau_{major} = 30.50 \text{ min}$, $\tau_{minor} = 23.85 \text{ min}$ (99% ee). $[\alpha]_D^{20} = -68.6$ (c = 1.00, CH₂Cl₂). M.p.: 68-70°C (hexanes/EtOAc).

(4*R*,5*R*,6*S*,7*S*,7*aS*)-7-(3,5-Dimethoxyphenyl)-5-ethyl-4-methyl-5,6,7,7a-tetrahydro-4*H*-benzo[*d*][1,2,3]oxathiazole-6-carbaldehyde 2,2-dioxide, (5m).

The cycloadduct **5m** (35 mg, 0.09 mmol, 61%, dr: 8:1) was obtained after 60 hours as a yellow oil, after isolation by flash column chromatography (hexanes/EtOAc gradient from 7:3 to 6:4) according to the general procedure using 4-(1-methylbut-1-en-1-yl)-5*H*-1,2,3-oxathiazole 2,2-dioxide **1c** (28 mg, 0.15 mmol) and (*E*)-3,5-dimethoxycinnamaldehyde **2m** (43 mg, 0.23 mmol) in the presence of DABCO (3 mg, 0.03 mmol), diphenyl-2-pyrrolidinemethanoltrimethylsilyl ether **3a** (10 mg, 0.03 mmol) and

using dry CHCl₃ (0.3 mL) as solvent. ¹H-NMR (CDCl₃, 300 MHz) δ 9.37 (d, *J* = 3.8 Hz, 1H), 6.40-6.34 (m, 3H), 5.26 (d, *J* = 11.0 Hz, 1H), 3.77 (s, 6H), 3.20-3.07 (m, 1H), 3.07-2.97 (m, 1H), 2.85-2.75 (m, 1H), 2.08-1.99 (m, 1H), 1.76-1.68 (m, 1H), 1.59-1.49 (m, 1H), 1.38 (d, *J* = 6.3 Hz, 3H), 0.95 (t, *J* = 7.5 Hz, 3H). ¹³C-NMR (CDCl₃, 75 MHz) δ 199.4, 187.0, 161.5, 137.5, 106.0, 100.0, 88.8, 55.4, 53.8, 51.9, 44.9, 37.8, 21.3, 12.6, 7.2. FTIR (ATR, cm⁻¹): 1725 (C=O st), 1627 (C=N st), 1368 (SO₂ st as), 1196 (SO₂ st sym). MS (70 eV) *m/z* (%): 348 (8), 263 (29), 231 (12), 189 (27), 164 (100), 113 (33), 91 (9), 77 (6). HRMS: calculated for [C₁₈H₂₄NO₆S]⁺: 382.1324 [(M+H)⁺]; found: 382.1323. The ee was determined by HPLC using a Chiralcel OZ3 column [*n*-hexane/*i*-PrOH (85:15)]; flow rate 1.0 mL/min; T_{major} = 17.84 min, T_{minor} = 32.09 min (99% ee). [α]_D²⁰ = -34.4 (c = 1.00, CH₂Cl₂).

(4*R*,5*R*,6*S*,7*S*,7*aS*)-7-(4-Bromophenyl)-5-ethyl-4-methyl-5,6,7,7a-tetrahydro-4*H*-benzo[*d*][1,2,3]oxathiazole-6-carbaldehyde 2,2-dioxide, (5n).

The cycloadduct **5n** (37 mg, 0.09 mmol, 62%, dr: 8:1) was obtained after 60 hours as a yellow oil, after isolation by flash column chromatography (hexanes/EtOAc gradient from 7:3 to 6:4) according to the general procedure using 4-(1-methylbut-1-en-1-yl)-5H-1,2,3-oxathiazole 2,2-dioxide **1c** (28 mg, 0.15 mmol) and (*E*)-4bromocinnamaldehyde **2n** (49 mg, 0.23 mmol) in the presence of DABCO (3 mg, 0.03 mmol), diphenyl-2-

pyrrolidinemethanoltrimethylsilyl ether **3a** (10 mg, 0.03 mmol) and using dry CHCl₃ (0.3 mL) as solvent. ¹H-NMR (CDCl₃, 300 MHz) (*denotes minor diastereoisomer signals), δ 9.34 (d, J = 4.1 Hz, 1H), 7.49 (d, J = 8.4 Hz, 2H), 7.11 (d, J = 8.4 Hz, 2H), 5.37* (d, J = 11.1 Hz, 1H), 5.18 (d, J = 11.2 Hz, 1H), 3.49-3.36* (m, 1H), 3.23 (dd, J = 11.5, 11.5 Hz, 1H), 3.10-2.98 (m, 1H), 2.81 (dq, J = 12.5, 6.3 Hz, 1H), 2.26-2.16* (m, 1H), 2.13-2.01 (m, 1H), 1.84-1.70 (m, 1H), 1.58-1.48 (m, 1H), 1.38 (d, J = 6.3 Hz, 3H), 1.31* (d, J = 7.3 Hz, 3H), 1.12* (t, J = 7.4 Hz, 3H), 0.96 (t, J = 7.5 Hz, 3H). ¹³C-NMR (CDCl₃, 75 MHz) (*denotes minor diastereoisomer signals), δ 199.6*, 199.1, 195.6*, 186.8, 134.3*, 134.2,

132.6, 132.3^{*}, 130.5^{*}, 129.5, 122.9, 122.3^{*}, 88.7, 86.6^{*}, 53.7, 52.8^{*}, 51.0, 48.4^{*}, 45.3^{*}, 44.9, 37.8, 35.4^{*}, 23.1^{*}, 21.4, 12.6, 11.2^{*}, 10.9^{*}, 7.2. FTIR (ATR, cm⁻¹): 1724 (C=O st), 1626 (C=N st), 1371 (SO₂ st as), 1198 (SO₂ st sym). MS (70 eV) *m/z* (%): 293 (57), 265 (54), 251 (14), 186 (29), 171 (56), 157 (100), 143 (32), 129 (71), 115 (57), 102 (31), 77 (22), 63 (16). HRMS: calculated for $[C_{16}H_{19}NO_4SBr]^+$: 400.0218 $[(M+H)^+]$; found: 400.0234. The ee was determined by HPLC using a Chiralcel OZ3 column [*n*-hexane/*i*-PrOH (85:15)]; flow rate 1.0 mL/min; T_{major} = 21.40 min, T_{minor} = 14.66 min (97% ee). $[\alpha]_D^{20} = -53.5$ (c = 1.07, CH₂Cl₂).

(4R,5R,6S,7S,7aS)-5-Ethyl-4-methyl-7-(4-nitrophenyl)-5,6,7,7a-tetrahydro-4*H*-benzo[*d*][1,2,3]oxathiazole-6-carbaldehyde 2,2-dioxide, (5o).

The cycloadduct **5o** (27 mg, 0.07 mmol, 50%, dr: 13:1) was obtained after 60 hours as a yellow solid, after isolation by flash column chromatography (hexanes/EtOAc gradient from 6:4 to 1:1) according to the general procedure using 4-(1-methylbut-1-en-1-yl)-5*H*-1,2,3-oxathiazole 2,2-dioxide **1c** (28 mg, 0.15 mmol) and (*E*)-4-nitrocinnamaldehyde **2o** (41 mg, 0.23 mmol) in the presence

of DABCO (3 mg, 0.03 mmol), diphenyl-2pyrrolidinemethanoltrimethylsilyl ether 3a (10 mg, 0.03 mmol) and using dry CHCl₃ (0.3 mL) as solvent. ¹H-NMR (CDCl₃, 300 MHz) (*denotes minor diastereoisomer signals), δ 9.43^{*} (d, J = 3.8 Hz, 1H), 9.40 (d, J = 3.9 Hz, 1H), 8.22 (d, J = 8.7 Hz, 2H), 7.44 (d, J = 8.7Hz, 2H), 5.43* (d, J = 11.2 Hz, 1H), 5.25 (d, J = 11.2 Hz, 1H), 3.41 (dd, J = 11.5, 11.5 Hz, 1H), 3.20-3.11 (m, 1H), 2.87 (dq, J = 12.5, 6.3 Hz, 1H), 2.16-2.06 (m, 1H), 1.86-1.75 (m, 1H), 1.63-1.51 (m, 1H), 1.40 (d, J = 6.3 Hz, 3H), 1.00 (t, J = 7.5 Hz, 3H). ¹³C-NMR (CDCl₃, 75 MHz) δ 198.7, 186.3, 148.0, 142.5, 129.1, 124.5, 88.1, 53.6, 51.0, 45.3, 37.9, 21.4, 12.5, 7.2. FTIR (ATR, cm⁻¹): 1725 (C=O st), 1627 (C=N st), 1520 (NO₂ st as), 1373 (SO₂ st as), 1348 (NO2 st sym), 1199 (SO2 st sym). MS (70 eV) m/z (%): 281 (9), 207 (29), 147 (21), 129 (100), 112 (25), 71 (24), 57 (42). The ee was determined by HPLC using a Chiralpak ADH column [n-hexane/i-PrOH (85:15)]; flow rate 1.0 mL/min; Tmaior = 61.50 min, $T_{minor} = 41.73 \text{ min } (94\% \text{ ee}). \ [\alpha]_{D}^{20} = -59.4 \text{ (c} = 1.00, \ CH_2Cl_2). \text{ M.p.: } 91-93^{\circ}C$ (hexanes/EtOAc).

General procedure for the synthesis of cyclic sulfamidate amine (6)

NaBH₄ (1.20 mmol) was added to a solution of the cycloadduct 4a (1.00 mmol) in MeOH (10 mL) at 0°C. The mixture was stirred at 0°C for 10 minutes, NH₄Cl sat. (10 mL) was added to guenched the reaction and it was stirred for another 5 minutes. The mixture was extracted with CH_2CI_2 (3 × 10 mL). The combined organic layers were dry with anhydrous Na₂SO₄, filtered and the solvent was removed under reduced pressure. The sulfamidate amine 6 were obtained following this procedure, and purified by flash column chromatography (hexanes/EtOAc gradient from 6:4 to 1:1).

(3aS,4R,5S,5aR,9aR,9bR)-5-(Hydroxymethyl)-4-methyldecahydro-1H-naphtho[1,2*d*][1,2,3]oxathiazole 2,2-dioxide (6).

The sulfamidate amine 6 (27 mg, 0.10 mmol, >99%, dr: >20:1) was obtained as a white solid according to the general procedure using NaBH₄ (5 mg, 0.12 mmol) and cycloadduct 4a (27 mg, 0.10 mmol) in MeOH (1 mL). ¹H-NMR (CDCl₃, 300 MHz) δ 5.27 (d, J = 9.0 Hz, 1H), 4.35 (dd, J = 10.4, 5.0 Hz, 1H), 4.06-4.00 (m, 1H), 3.88-3.72 (m, 2H), 2.28-2.07 (m, 3H), 1.83-1.72 (m, 3H), 1.59-1.41 (m, 2H), 1.32-1.20 (m, 3H), 1.12 (d, J = ЮH 6.4 Hz, 3H), 0.87-0.73 (m, 2H). ¹³C-NMR (CDCl₃, 75 MHz) δ 91.8, 60.2, 57.7, 47.1, 41.9, 34.0, 32.9, 30.4, 29.8, 26.1, 25.8, 15.2. FTIR (ATR, cm⁻¹): 3547 (O-H st), 3261 (N-H st), 1342 (SO₂ st as), 1184 (SO₂ st sym). . MS (70 eV) m/z (%): 245 (24), 190 (14), 163 (20), 148 (100), 133 (14), 119 (19), 105 (40), 91 (27), 70 (36), 55 (22). HRMS: calculated for $[C_{12}H_{22}NO_4S]^+$: 276.1270 $[(M+H)^+]$; found: 276.1272. The ee was determined by HPLC using a Chiralpak ADH column [n-hexane/i-PrOH (98:2)]; flow rate 1.0 mL/min; $\tau_{maior} = 20.14$ min, $\tau_{minor} = 22.86$ min (92% ee). $[\alpha]_{D}^{20} = -66.8$ (c = 1.00, CH₂Cl₂). M.p.: 155-157°C (*n*-hexane/EtOAc).

General procedure for the synthesis of β -aminoalcohol (7)

To a suspension of LAH (3.00 mmol) in dry THF (10 mL) the sulfamidate amine **6** (1.00 mmol) in dry THF (20 mL) was added dropwise at 0°C. The reaction mixture was stirred under reflux for 1 hour, and then HCl 1M (3 mL) was added at room temperature. The reaction was stirred under reflux for 1 hour and then cooled to room temperature. The mixture was washed with CH_2Cl_2 (3 × 10 mL). The aqueous layer was basified with NaOH 1M and then was extracted with CH_2Cl_2 (3 × 10 mL). The combined organic layers were dry over Na_2SO_4 and the solvent was removed under reduced pressure, obtaining the β -aminoalcohol **7**.

(1*R*,2*S*,3*R*,4*S*,4a*R*,8a*R*)-1-Amino-4-(hydroxymethyl)-3-methyldecahydronaphthalen-2-ol (7).

The β-aminoalcohol **7** (55 mg, 0.26 mmol, 56%, dr: >20:1) was obtained as a white solid according to the general procedure using LAH (52 mg, 1.38 mmol) and sulfamidate amine **6** (127 mg, 0.46 mmol) in dry THF (5 mL), and then using HCl 1M (1 mL). ¹H-NMR (CDCl₃, 300 MHz) δ 3.83-3.71 (m, 2H), 3.12 (dd, J = 10.6, 4.1 Hz, 1H), 2.86-2.80 (m, 1H), 2.24-2.02 (m, 4H), 1.80-1.72 (m, 2H), 1.62-1.48 (m, 2H), 1.40-1.14 (m, 6H), 1.07 (d,

J = 6.3 Hz, 3H), 0.86-0.66 (m, 2H). ¹³C-NMR (CDCl₃, 75 MHz) δ 76.1, 58.6, 56.0, 49.4, 44.8, 33.3, 33.3, 30.6, 30.3, 26.3, 26.2, 15.5. FTIR (ATR, cm⁻¹): 3356 (O-H st). MS (70 eV) m/z (%): 207 (94), 129 (100), 84 (23), 57 (52). HRMS: calculated for $[C_{12}H_{24}NO_2]^+$: 214.1807 $[(M+H)^+]$; found: 214.1810. $[\alpha]_D^{20} = -37.1$ (c = 1.00, CH₂Cl₂). M.p.: 102-104°C (CH₂Cl₂).

Figure 1: ¹H-NMR and ¹³C-NMR spectra for compound **1a**.

Figure 2: ¹H-NMR and ¹³C-NMR spectra for compound **1b**.

Figure 3: ¹H-NMR and ¹³C-NMR spectra for compound **1c**.

Figure 4: ¹H-NMR and ¹³C-NMR spectra for compound **4a**.

Figure 5: ¹H-NMR and ¹³C-NMR spectra for compound **4b**.

Figure 6: ¹H-NMR and ¹³C-NMR spectra for compound **4c**.

Figure 7: ¹H-NMR and ¹³C-NMR spectra for compound **4d**.

Figure 8: ¹H-NMR and ¹³C-NMR spectra for compound **4e**.

Figure 9: ¹H-NMR and ¹³C-NMR spectra for compound **4f**.

Figure 10: ¹H-NMR and ¹³C-NMR spectra for compound **4g**.

Figure 11: ¹H-NMR, ¹³C-NMR and HMBC spectra for compound **4h**.

Figure 12: ¹H-NMR and ¹³C-NMR spectra for compound **4i**.

Figure 13: ¹H-NMR and ¹³C-NMR spectra for compound **5a**.

Figure 14: ¹H-NMR and ¹³C-NMR spectra for compound **5b**.

Figure 15: ¹H-NMR and ¹³C-NMR spectra for compound **5c**.

Figure 16: ¹H-NMR and ¹³C-NMR spectra for compound **5d**.

Figure 17: ¹H-NMR and ¹³C-NMR spectra for compound **5e**.

Figure 18: ¹H-NMR and ¹³C-NMR spectra for compound **5f**.

Figure 19: ¹H-NMR and ¹³C-NMR spectra for compound **5g**.

Figure 20: ¹H-NMR and ¹³C-NMR spectra for compound **5h**.

Figure 21: ¹H-NMR and ¹³C-NMR spectra for compound **5**i.

Figure 22: ¹H-NMR and ¹³C-NMR spectra for compound **5**j.

Figure 24: ¹H-NMR and ¹³C-NMR spectra for compound **5**I.

Figure 25: ¹H-NMR and ¹³C-NMR spectra for compound **5m**.

Figure 26: ¹H-NMR and ¹³C-NMR spectra for compound **5n**.

Figure 27: ¹H-NMR and ¹³C-NMR spectra for compound **50**.

Figure 28: ¹H-NMR and ¹³C-NMR spectra for compound **6**.

HPLC Chromatograms

Figure 30: HPLC chromatogram for compounds *rac-4a* and *4a*.

Figure 31: HPLC chromatogram for compounds *rac*-4b and 4b.

Figure 32: HPLC chromatogram for compounds *rac-4c* and *4c*.

Figure 33: HPLC chromatogram for compounds *rac*-4d and 4d.

Figure 34: HPLC chromatogram for compounds *rac-4e* and *4e*.

Figure 35: HPLC chromatogram for compounds *rac*-4f and 4f.

Figure 36: HPLC chromatogram for compounds *rac*-4g and 4g.

Figure 37: HPLC chromatogram for compounds *rac*-4h and 4h.

Figure 38: HPLC chromatogram for compounds *rac*-4i and 4i.

Figure 39: HPLC chromatogram for compounds *rac*-5a and 5a.

Figure 40: HPLC chromatogram for compounds *rac*-5b and 5b.

Figure 41: HPLC chromatogram for compounds *rac-5c* and *5c*.

Figure 42: HPLC chromatogram for compounds rac-5d and 5d.

Figure 43: HPLC chromatogram for compounds *rac-5e* and **5e**.

Figure 44: HPLC chromatogram for compounds rac-5f and 5f.

Figure 45: HPLC chromatogram for compounds *rac*-5g and 5g.

Figure 46: HPLC chromatogram for compounds *rac-5h* and **5h**.

Figure 47: HPLC chromatogram for compounds *rac*-5i and 5i.

Figure 48: HPLC chromatogram for compounds rac-5j and 5j.

Figure 49: HPLC chromatogram for compounds *rac***-5k** and **5k**.

Figure 50: HPLC chromatogram for compounds rac-51 and 51.

Figure 51: HPLC chromatogram for compounds *rac*-5m and 5m.

Figure 52: HPLC chromatogram for compounds *rac*-5n and 5n.

Figure 53: HPLC chromatogram for compounds *rac-50* and **50**.

Figure 54: HPLC chromatogram for compounds *rac*-6 and 6.