Supporting Information

Synthetic Strategies Toward the Decalin Motif of Maklamicin and Related Spirotetronates

Michelle H. Lacoske,^{*a*} Jing Xu,^{*b*} Noel Mansour,^{*a*} Chao Gao,^{*a*} and E. A. Theodorakis^{*a}

^a Department of Chemistry and Biochemistry, University of California - San Diego 9500 Gilman Drive, La Jolla, California, 92093-0358, United States <u>etheodor@ucsd.edu</u>

^b Department of Chemistry, South University of Science and Technology of China, Shenzhen, Guangdong 518055, China. E-mail: xuj@sustc.edu.cn

Contents:	Pages
General Procedures	SI-2
Experimental Procedures	SI-3 – SI-23
NMR Spectra	SI-24 – SI-83

General Procedures

Unless indicated, all commercially available reagents and anhydrous solvents were purchased at the highest commercial quality and were used as received without further purification. All non-aqueous reactions were carried out under argon atmosphere using dry glassware that had been flame-dried under a stream of argon unless otherwise noted. Anhydrous tetrahydrofuran (THF), dichloromethane (CH₂Cl₂), and dimethylformamide (DMF) were obtained by passing commercially available pre-dried, oxygen-free formulations through activated alumina columns. Flash column chromatography was performed on silica gel (Merck Kieselgel 60, 230-400 mesh) using Hexanes-EtOAc or CH₂Cl₂-MeOH mixtures of increasing polarity. The progress of all the reactions were monitored by thin-layer chromatography (TLC) using glass plates precoated with silica gel-60 F₂₅₄ to a thickness of 0.5 mm (Merck), and compounds were visualized by irradiation with UV light and/or by treatment with a solution of KMnO₄ stain or Seebach's stain followed by heating. ¹³C NMR and ¹H NMR spectra were recorded on either 500 MHz Varian instrument or 500 MHz JEOL instrument. CDCl₃ was treated with flame dried K_2CO_3 , chemical shifts (δ) are quoted in parts per million (ppm) referenced to the appropriate residual solvent peak reference (CDCl₃), with the abbreviations s, br s, d, t, q, m, td, dt and qd denoting singlet, broad singlet, doublet, triplet, quartet, multiplet, quartet of doublets, triplet of doublets, doublet of triplets and quartet of doublets respectively. J = coupling constants given in Hertz (Hz). IR spectras were collected on a Jasco 4100 FTIR. High resolution Mass spectra (HRMS) were recorded on a trisector WG AutoSpecQ spectrometer. Optical rotation data were collected on a Jasco P-1010 polarimeter using HPLC grade anhydrous CHCl₃.

Dialdehyde (11) (Method 1): To a solution of (*S*)-(–)-citronellal (1.45 mL, 1.23 g, 8.0 mmol, purchased from TCI America, > 96.0%, $[\alpha]_D^{20} = -15.5$, neat) in CH₂Cl₂ (150 mL) was added methacrolein (1.32 mL, 16.0 mmol) and Grubbs catalyst (2nd generation, 340 mg, 0.4 mmol). The reaction mixture was refluxed for 24 hours under argon atmosphere. The reaction was allowed to cool to room temperature and concentrated. The residue was purified via silica column chromatography (hexanes: EtOAc, 100:1 to 10:1) to recover the (*S*)-(–)-citronellal (205 mg, 17%) and yield the di-aldehyde **11** (1.01 g, 75%, 90% brsm) as a pale yellow oil.

Dialdehyde (11) (Method 2): To a solution of SeO₂ (416 mg, 3.7 mmol) and salicylic acid (1.99 g, 12.4 mmol) in CH₂Cl₂ (40 mL) was added *t*-butyl hydrogen peroxide slowly (70% in H₂O, 71.0 mL, 496 mmol). The mixture was stirred for 15 min then (S)-(-)citronellal (18.8 g, 122 mmol) was added. The reaction was stirred at room temperature for 36 hours. The reaction was diluted with benzene (100 mL) and concentrated. The residue was diluted with ether (400 mL) and washed with 10% NaOH (2 x 130 mL) and brine (120 mL). The organic layer was dried over MgSO₄ filtered, concentrated and purified through silica column chromatography (hexanes:EtOAc, 200:1 to 5:1) to recover the (S)-(-)-citronellal (3.23 g, 17%) and yield the di-aldehyde 11 (2.80 g, 14%) and corresponding allylic alcohol (9.10 g, 44%) as a clear oil. To a solution of this allylic alcohol (1.60 g, 9.4 mmol) in DMSO (35 mL) was added IBX (3.76 g, 13.4 mmol) in one portion. The reaction was stirred for 1.5 hours, then was diluted with water (180 mL) and filtered through Celite[®] to remove the precipitate. The filtrate was extracted with diethyl ether (5 x 100 mL). The combined organic layers were washed with brine (100 mL) and 10% NaOH (2 x 100 mL), dried over MgSO₄, filtered and concentrated to yield 11 (1.35 g, 87 %) as a pale yellow oil. The analytical data were identical with the compound obtained from method 1. Characterization of this compound matched the literature data.¹

(2*E*,4*E*)-Hexa-2,4-dien-1-yltriphenylphosphonium bromide (17): To a stirred solution of (2*E*,4*E*)-hexadien-l-o1 (9.80 g, 100 mmol) in CH_2Cl_2 (20 mL) at -10 °C was slowly

added a solution of phosphorus tribromide (9.20 g, 34.0 mmol) in CH₂Cl₂ (20 mL) dropwise via an addition funnel. After all the phosphorous tribromide was added, the reaction mixture was stirred for 3 hours before it was diluted with ether (150 mL) and quenched with a saturated NaHCO₃ (100 mL) solution. The mixture was separated with diethyl ether with the aid of brine. The aqueous phase was extracted with ether (2 x 100 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure to afford crude (2*E*,4*E*)- hexadienylbromide (10.4 g, 65%) as a brown oil. The crude (2*E*,4*E*)- hexadienylbromide was then dissolved in anhydrous toluene (90 mL), followed by the addition of triphenyl phosphine (18.9 g, 72.0 mmol). This reaction was then stirred for 72 hours at room temperature, and the resulting crystalline product was collected by suction filtration, rinsing the solids with a small amount of toluene. After pumping under high vacuum at room temperature for 12 hours, the phosphonium salt **17** were obtained (27.2 g, 99%, 64% from (2*E*,4*E*)-hexadien-1-ol). mp: 159–160 °C. Characterization of this compound matched the literature data.¹

Triene (3): To a suspension of (2E,4E)-hexa-2,4-dien-1-yltriphenylphosphonium bromide **17** (20.6 g, 48.7 mmol) in THF (240 mL) was added dropwise *n*-BuLi (30.4 mL, 48.7 mmol, 1.6 M in hexane) via addition funnel at -78 °C. The mixture was stirred for 1 hour at -60 °C then re-cooled to -78 °C and transferred via cannula, slowly dropwise to a solution of aldehyde **11** (8.2 g, 48.7 mmol) in THF (240 mL) at -78 °C over 2 hours. After completion of addition, the reaction mixture was stirred at this temperature for 10 min, quenched with saturated NH₄Cl solution (250 mL), diluted with ethyl ether (350 mL) and allowed to reach room temperature. The layers were separated and the aqueous layer was extracted with ether (2 x 200 mL). The combined organic layers were washed with brine, dried over MgSO₄, filtered, concentrated and purified through neutralized (Et₃N, 5%) silica column chromatography (pure hexanes, then hexanes:EtOAc, 500:1 to 50:1) to yield polyene **3** (6.8 g, 61%) as a pale yellow oil as an inseparable *E/Z* isomeric mixture (*E:Z* = ca. 3:2). To a solution of the (*E/Z*) **3** (113 mg, 0.28 mmol) in CH₂Cl₂ (5.6 mL) at RT was added iodine (3.5 mg, 14 µmol) in CH₂Cl₂ (0.2 mL). The reaction mixture was irradiated with visible light (sunlamp, visible light) for 10 minutes. (caution: keep the flask a few feet from the light source to avoid the heating-induced IMDA reaction). Then the reaction was quenched with saturated sodium thiosulfate (11 mL). The mixture was extracted with CH_2Cl_2 (3 x 15 mL). All organic layers were washed with brine (15 mL), dried over Na₂SO₄ and concentrated to yield polyene **3** (112 mg, 99%) as a clear oil and inseparable *E/Z* isomeric mixture (*E*:*Z* = ca. 95:1). Characterization of this compound matched the literature data.¹

Decalin aldehyde (4): To a mixture of MacMillan's catalyst (20 mol%) (listed in Scheme 1) in MeCN or ethanol (0.86 mL) was added triene (**3**) (10 mg, 43 μ mol) in ethanol (0.1 mL) followed by perchloric acid (0.52 μ l, 8.61 μ mol, 0.2 eq, 70% in water) at -20°C. This reaction continued to stir at this temperature for 3 days and then was concentrated and purified via preparative thin layer chromatography (hexanes:EtOAc, 9:1) to yield decalin aldehyde **4** (6.0 mg, 60%) as a clear oil. Characterization of this compound matched the literature data.¹

Acetal aldehyde (11_1): To a solution of the dialdehyde 11 (14 g, 83 mmol) in ethylene glycol (93 mL, 20 eq.) was added *p*-toluenesulfonic acid, *p*-TsOH (1.583 g, 8.32 mmol, 0.1 eq.) and stirred for 5 minutes. Then reaction was diluted with water (500 mL) and extracted with CH₂Cl₂ (3 x 500 mL). All organic layers were washed with water (2 x 750 mL), dried over Na₂SO₄ and concentrated to yield 11_1 (17.67 g, 100%). This compound was used directly to the next step without further purification. $R_f = 0.65$ (silica gel, hexanes:EtOAc, 3:1); $[\alpha]_D^{23} = -5.5$ (c = 0.34, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 9.37 (s, 1H), 6.47 (t, J = 7.5 Hz, 1H), 4.88 (t, J = 5.2 Hz, 1H), 3.95 (m, 2H), 3.83 (m, 2H), 2.35 (m, 2H), 1.72 (s, 3H), 1.66-1.37 (m, 5H), 0.98 (d, J = 6.9 Hz, 3H); ¹³C NMR (125

MHz, CDCl₃) δ 195.4, 154.8, 139.3, 103.6, 64.8, 64.8, 40.6, 35.7, 29.1, 26.6, 19.8, 8.9; HRMS (ESI) m/e 235.1301 [M+Na⁺] calcd for C₁₂H₂₀O₃Na⁺: 235.1305.

Carboxylic acid (12): To aldehyde **11_1** (17.67 g, 83 mmol) in THF (357 mL) was added at 0°C sulfamic acid (11.31 g, 117 mmol) dissolved in water (170 mL) followed by sodium chlorite (10.54 g, 117 mmol) dissolved in water (170 mL) and stirred for 30 minutes at room temperature. The reaction was acidified to pH 2 with 2N HCl (50 mL) and extracted with ethyl acetate (3 x 500 mL). All organic layers were washed with brine (500 mL), dried over Na₂SO₄ and concentrated. The resultant product was then purified through silica column chromatography (hexanes:EtOAc, 100:1 to 1:1) to yield carboxylic acid **12** (15.20 g, 80%) as a clear oil. R_f = 0.22 (silica gel, hexanes:EtOAc, 3:1); $[\alpha]_D^{23}$ = – 28.5 (c = 0.32, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 6.88 (t, J = 7.5 Hz, 1H), 4.88 (t, J = 4.9 Hz, 1H), 3.95 (m, 2H), 3.82 (m, 2H), 2.19 (m, 2H), 1.81 (s, 3H), 1.66 (m, 2H), 1.50 (m, 2H), 1.32 (m, 1H), 0.95 (d, J = 6.3 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.7, 145.3, 127.0, 103.6, 64.8, 64.7, 40.7, 35.8, 29.2, 26.4, 19.8, 12.0; HRMS (ESI) m/e 251.1256 [M+Na⁺] calcd for C₁₂H₂₀O₄Na⁺: 251.1254.

Acetal (12_1): To a suspension of (*R*)-4-benzyl-2-oxazolidinone (12.98 g, 73.2 mmol), 4-dimethylaminopyridine, DMAP (1.057 g, 8.66 mmol), and carboxylic acid 12 (15.20 g, 66.6 mmol) in CH₂Cl₂ (89 mL) at 0°C was added *N*,*N*'-dicyclohexylcarbodiimide, DCC (17.86 g, 87 mmol). The reaction stirred at this temp for 10 min and then rt overnight. The reaction was filtered through a fritted funnel to remove the urea byproduct and rinsed with 500 mL CH₂Cl₂. The organic layer was washed with saturated NaHCO₃ (500 mL), dried over Na₂SO₄, and concentrated. The crude compound was purified by silica chromatography (hexane:EtOAc, 100:1 to 1:1) to yield 12_1 (19.35 g, 75%) as a clear oil. $R_f = 0.42$ (silica gel, hexanes:EtOAc, 7:3); $[\alpha]_D^{23} = -40.5$ (c = 0.27, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.33-7.18 (m, 5H), 6.07 (t, *J* = 7.5 Hz, 1H), 4.90 (t, *J* = 5.2 Hz, 1H), 4.71 (m, 1H) 4.22 (t, *J* = 8.6 Hz, 1H), 4.14 (dd, *J* = 5.2, 8.6 Hz, 1H), 3.96 (m, 2H), 3.84 (m, 2H), 3.33 (dd, *J* = 3.5, 13.8 Hz, 1H), 2.82 (dd, *J* = 9.2, 13.8 Hz, 1H), 2.20 (m, 2H), 1.90 (s, 3H), 1.71-1.17 (m, 5H), 0.98 (d, *J*=6.9 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 172.0, 153.3, 140.2, 135.3, 130.5, 129.6, 129.0, 127.4, 103.7, 66.4, 64.8, 64.7, 55.6, 40.8, 37.6, 35.8, 29.2, 26.0, 19.8, 13.6; HRMS (ESI) m/e 388.2119 [M+H⁺] calcd for C₂₂H₃₀O₅N⁺: 388.2118.

Acetal (12 2): To a suspension of (S)-4-benzyl-2-oxazolidinone (0.77 g, 4.3 mmol), 4dimethylaminopyridine, DMAP (0.06 g, 0.5 mmol), and carboxylic acid 12 (0.9 g, 3.9 mmol) in CH₂Cl₂ (5.3 mL) at 0°C was added N,N'-dicyclohexylcarbodiimide, DCC (1.06 g, 5.1 mmol). The reaction stirred at this temp for 10 min and then rt overnight. The reaction was filtered through a fritted funnel to remove the urea byproduct and rinsed with CH₂Cl₂ (20 mL). The organic layer was washed with saturated NaHCO₃ (15 mL), dried over Na₂SO₄, and concentrated. The crude compound was purified by silica chromatography (hexane:EtOAc, 100:1 to 1:1) to yield 12 2 (1.15 g, 75%) as a clear oil. $R_{\rm f} = 0.5$ (silica gel, hexanes: EtOAc, 3:2); $[\alpha]_{\rm D}^{22} = +6.9$ (c = 0.32, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.36-7.20 (m, 5H), 6.10 (t, J = 7.3 Hz, 1H), 4.92 (t, J = 5.1 Hz, 1H), 4.72 (m, 1H), 4.26 (t, J = 8.5 Hz, 1H), 4.16 (dd, J = 5.6, 9.0 Hz, 1H), 3.99 (m, 2H), 3.86 (m, 2H), 3.36 (dd, J = 3.4, 13.5 Hz, 1H), 2.83 (dd, J = 9.3, 13.5 Hz, 1H), 2.24 (m, 2H), 1.92 (s, 3H), 1.71-1.30 (m, 5H), 1.00 (d, J = 6.6 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 172.0, 153.2, 140.1, 135.2, 130.4, 129.5, 128.9, 127.3, 103.6, 66.4, 64.8, 64.7, 55.5, 40.7, 37.5, 35.7, 29.2, 25.9, 19.8, 13.5; HRMS (ESI) m/e 410.1940 [M+Na⁺] calcd for C₂₂H₃₀NO₅Na⁺: 410.1938.

Aldehyde 15: To a solution of the acetal 12_1 (19.35 g, 49.9 mmol) in THF (333 mL) was added 18% aqueous HCl solution (333 mL). After 2 hrs the reaction was carefully quenched with saturated NaHCO₃ solution (1 L) and extracted with EtOAc (3 x 800 mL). All organic layers were washed with brine (700 mL), dried over Na₂SO₄ and concentrated to yield aldehyde 15 (17.15 g, 100%) as a clear oil. R_f = 0.42 (silica gel, hexanes:EtOAc, 7:3); [α]_D²³ = -48.0 (*c* = 2.17, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 9.72 (s, 1H), 7.30-7.16 (m, 5H), 6.00 (t, *J* = 7.5 Hz, 1H), 4.68 (m, 1H), 4.22 (t, *J* = 8.6 Hz, 1H), 4.12 (dd, *J* = 5.8, 9.2 Hz, 1H), 3.30 (d, *J* = 13.2 Hz, 1H), 2.80 (dd, *J* = 9.2, 13.2 Hz, 1H), 2.38 (dd, *J* = 5.8, 16.1 Hz, 1H), 2.23 (m, 2H), 2.10 (m, 1H), 1.88 (s, 3H), 1.71-1.30 (m, 3H), 0.96 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 202.8, 171.8, 153.2, 138.8, 135.2, 131.1, 129.5, 129.0, 127.4, 66.5, 55.5, 50.9, 37.6, 35.3, 27.7, 25.9, 19.8, 13.6; HRMS (ESI) m/e 344.1859 [M+H⁺] calcd for C₂₀H₂₆O₄N⁺: 344.1856.

Aldehyde 16: To a solution of the acetal 12_2 (1.15 g, 2.97 mmol) in THF (20 mL) was added 18% aqueous HCl solution (20 mL). After 2 hrs the reaction was carefully quenched with saturated NaHCO₃ solution (100 mL) and extracted with EtOAc (3 x 20 mL). All organic layers were washed with brine (70 mL), dried over Na₂SO₄ and concentrated to yield aldehyde 16 (1.02 g, 100%) as a clear oil. $R_f = 0.5$ (silica gel, hexanes: EtOAc, 3:2); $[\alpha]_D^{24} = +2.1$ (c = 0.37, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 9.77 (t, J = 2.2 Hz, 1H), 7.37-7.20 (m, 5H), 6.05 (t, J = 7.3 Hz, 1H), 4.72 (m, 1H), 4.26 (t, J = 8.5 Hz, 1H), 4.17 (dd, J = 5.4, 9.0 Hz, 1H), 3.36 (dd, J = 3.4, 13.5 Hz, 1H), 2.84 (dd, J = 9.3, 13.5 Hz, 1H), 2.43 (dd, J = 5.7, 16.3 Hz, 1H), 2.25 (m, 2H), 2.14 (m, 1H), 1.93 (s, 3H), 1.65-1.37 (m, 3H), 1.01 (d, J = 6.7 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 202.8, 171.8, 153.2, 138.9, 135.1, 131.0, 129.5, 128.9, 127.4, 66.4, 55.5, 50.9, 37.5, 35.3, 27.7, 25.8, 19.8, 13.6; HRMS (ESI) m/e 366.1677 [M+Na⁺] calcd for C₂₀H₂₅NO₄Na⁺: 366.1676.

Polyene (18): To a stirred solution of phosphonate 17 (0.77 g, 1.8 mmol) in THF (9.7 mL) at -78°C was added *n*-butyl lithium (*n*-BuLi) (1.15 mL, 1.8 mmol, 1.6M) dropwise and this solution turned deep red in color and continued to stir for 1 hr at this temperature. Then aldehyde 15 (0.63 g, 1.8 mmol) in THF (9.6 mL) was added to this solution dropwise. After stirring at -78°C for 5 minutes the reaction was quenched with sat. NH₄Cl solution (10 mL) and warmed to RT. The reaction was extracted with ether (3 x 30 mL). All organic layers were washed with brine (30 mL), dried over Na₂SO₄, and concentrated. The resulting product was purified through neutralized (Et_3N , 5%) silica column chromatography (pure hexanes, then hexanes: EtOAc, 500:1 to 3:1) to yield polyene 18 (0.47 g, 63%) as a clear oil and inseparable E/Z isomeric mixture (E:Z = ca. 3:2). $R_{\rm f} = 0.63$ (silica gel, hexanes:EtOAc, 7:3); $[\alpha]_{\rm D}^{23} = -18.2$ (c = 0.52, CHCl₃); ¹H NMR (500 MHz, CDCl₃) (*E*:*Z* = ca. 3:2) δ 7.37- 7.20 (m, 5H), 6.51-6.04 (m, 5H), 5.75-5.41 (m, 2H), 4.72 (m, 1H), 4.26 (t, J = 8.5 Hz, 1H), 4.16 (dd, J = 5.6, 8.9 Hz, 1H), 3.35 (dd, J = 3.5, 13.5 Hz, 1H), 2.84 (dd, J = 9.3, 13.5 Hz, 1H), 2.27-2.10 (m, 4H), 1.92 (s, 10.1)3H), 1.78 (m, 3H), 1.60-1.41 (m, 3H), 0.92 (m, 3H); 13 C NMR (125 MHz, CDCl₃) (*E*:*Z* = ca. 3:2) δ 171.9, 153.2, 152.1, 140.4, 140.4, 140.4, 140.3, 135.2, 133.2, 132.9, 132.5, 131.9, 131.7, 130.9, 130.5, 130.4, 130.4, 130.1, 129.7, 129.7, 129.5, 129.0, 128.9, 127.3, 125.9, 125.8, 105.0, 66.4, 55.5, 40.2, 40.2, 37.5, 35.1, 35.0, 34.9, 33.2, 33.0, 26.2, 26.1, 19.4, 19.4, 18.4, 18.4, 13.5, 13.5; HRMS (ESI) m/e 408.2536 [M+H⁺] calcd for $C_{26}H_{34}O_3N^+$: 408.2533.

Polyene (18) isomerized: To a solution of the (E/Z) **18** (113 mg, 0.28 mmol) in CH₂Cl₂ (5.6 mL) at RT was added iodine (3.5 mg, 14 µmol) in CH₂Cl₂ (0.2 mL). The reaction mixture was irradiated with visible light (sunlamp, visible light) for 10 minutes. (caution: keep the flask a few feet from the light source to avoid the heating-induced IMDA reaction). Then the reaction was quenched with saturated sodium thiosulfate (11 mL). The mixture was extracted with CH_2Cl_2 (3 x 15 mL). All organic layers were washed with brine (15 mL), dried over Na₂SO₄ and concentrated to yield polyene 18 (112 mg, 99%) as a clear oil and inseparable E/Z isomeric mixture (E:Z = ca. 95:1). $R_f = 0.63$ (silica gel, hexanes:EtOAc, 7:3); $[\alpha]_D^{24} = -21.4$ (c = 3.04, CHCl₃); ¹H NMR (500 MHz, CDCl₃) & 7.37-7.20 (m, 5H), 6.51-6.04 (m, 5H), 5.75-5.41 (m, 2H), 4.72 (m, 1H), 4.26 (t, J = 8.5 Hz, 1H), 4.16 (dd, J = 5.6, 8.9 Hz, 1H), 3.35 (dd, J = 3.5, 13.5 Hz, 1H), 2.84 (dd, J = 9.3, 13.5 Hz, 1H), 2.27-2.10 (m, 4H), 1.92 (s, 3H), 1.78 (d, J = 5.9, 3H), 1.60-1.41 (m, 3H), 0.92 (d, J = 6.6 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 172.0, 153.2, 152.1, 140.4, 135.3, 132.5, 132.0, 131.9, 131.0, 130.6, 130.5, 129.6, 129.0, 127.4, 66.4, 55.6, 40.3, 37.6, 35.1, 33.1, 26.2, 19.5, 18.4, 13.6; HRMS (ESI) m/e 344.1859 [M+H⁺] calcd for $C_{26}H_{33}O_3N^+$: 344.1856.

Polyene (19): To a stirred solution of phosphonate **17** (1.00 g, 2.36 mmol) in THF (12.4 mL) at -78° C was added *n*-butyl lithium (*n*-BuLi) (1.47 mL, 2.36 mmol, 1.6M in hexanes) dropwise and this solution turned deep red in color and continued to stir for 1 hr at this temperature. Then aldehyde **16** (0.81 g, 2.36 mmol) in THF (12.4 mL) was added to this solution dropwise. After stirring at -78° C for 5 minutes the reaction was quenched with saturated NH₄Cl solution (40 mL) and warmed to RT. The reaction was extracted with ether (3 x 40 mL). All organic layers were washed with brine (50 mL), dried over Na₂SO₄, and concentrated. The resulting product was purified through neutralized (Et₃N, 5%) silica column chromatography (pure hexanes, then hexanes:EtOAc, 500:1 to 3:1) to yield polyene **19** (0.61 g, 63%) as a clear oil and inseparable *E/Z* isomeric mixture (*E:Z* = ca.

3:2). $R_{\rm f}$ = 0.65 (silica gel, hexanes:EtOAc, 7:3); $[\alpha]_{\rm D}^{23}$ = +38.1 (*c* = 2.13, CHCl₃); ¹H NMR (500 MHz, CDCl₃) (*E*:*Z* = ca. 3:2) δ 7.31- 7.18 (m, 5H), 6.51-5.19 (m, 7H), 4.69 (m, 1H), 4.23 (t, *J* = 8.3 Hz, 1H), 4.14 (m, 1H), 3.33 (d, *J* = 13.7 Hz, 1H), 2.82 (dd, *J* = 9.2, 13.2 Hz, 1H), 2.25-1.94 (m, 4H), 1.90 (s, 3H), 1.75 (m, 3H), 1.60-1.45 (m, 3H), 0.89 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) (*E*:*Z* = ca. 3:2) δ 171.9, 153.2, 152.1, 140.4, 140.4, 140.4, 140.4, 140.3, 135.2, 133.2, 132.9, 132.5, 131.9, 131.7, 130.9, 130.5, 130.4, 130.4, 130.1, 129.7, 129.7, 129.5, 129.0, 128.9, 127.3, 125.9, 125.8, 105.0, 66.4, 55.5, 40.2, 40.2, 37.5, 35.1, 35.0, 34.9, 33.2, 33.0, 26.2, 26.1, 19.4, 19.4, 18.4, 18.4, 13.5, 13.5; HRMS (ESI) m/e 408.2535 [M+H⁺] calcd for C₂₆H₃₄O₃N⁺: 408.2533.

Polyene (19) isomerized: To a solution of the (*E*/*Z*) **19** (68 mg, 0.17 mmol) in CH₂Cl₂ (3.3 mL) at RT was added iodine (2.1 mg, 8.3 µmol) in CH₂Cl₂ (0.1 mL). The reaction mixture was irradiated with visible light (sunlamp, visible light) for 10 minutes. (caution: keep the flask a few feet from the light source to avoid the heating-induced IMDA reaction). Then the reaction was quenched with saturated sodium thiosulfate (7 mL). The mixture was extracted with CH₂Cl₂ (3 x 7 mL). All organic layers were washed with brine (10 mL), dried over Na₂SO₄ and concentrated to yield polyene **19** (67 mg, 99%) as a clear oil and inseparable *E*/*Z* isomeric mixture (*E*:*Z* = ca. 95:1). *R*_f = 0.63 (silica gel, hexanes:EtOAc, 7:3); $[\alpha]_D^{25} = +44.9$ (*c* = 2.49, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.31- 7.18 (m, 5H), 6.51-5.19 (m, 7H), 4.69 (m, 1H), 4.23 (t, *J* = 8.3 Hz, 1H), 4.14 (m, 1H), 3.33 (d, *J* = 13.7 Hz, 1H), 2.82 (dd, *J* = 9.2, 13.2 Hz, 1H), 2.25-1.94 (m, 4H), 1.90 (s, 3H), 1.75 (d, *J* = 6.9, 3H), 1.60-1.45 (m, 3H), 0.89 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 171.9, 153.2, 140.3, 135.2, 132.5, 131.9, 131.7, 130.9, 130.5, 130.4, 129.5, 129.0, 128.9, 127.3, 66.4, 55.5, 40.2, 37.5, 35.0, 33.0, 26.1, 19.4, 18.4, 13.5; HRMS (ESI) m/e 408.2535 [M+H⁺] calcd for C₂₆H₃₄O₃N⁺: 408.2533.

Decalin (22/23): Then to a stirred solution of polyene 19 (0.18 g, 0.44 mmol) in CH₂Cl₂ (6.3 mL) was added iodine (5.6 mg, 22 µmol, 0.05 eq.). The reaction mixture was irradiated with visible light (sunlamp, visible light) for 10 minutes. (caution: keep the flask a few feet from the light source to avoid the heating-induced IMDA reaction). The mixture was cooled to -78°C at which time Me₂AlCl (0.49 mL, 0.49 mmol, 1M in hexanes) was added dropwise. The reaction mixture was then warmed to -20°C and continued to stir at this temperature for 2 days. The reaction mixture was quenched with a 1:1 sat. NaHCO₃/sodium thiosulfate solution (20 mL) and the mixture was ran through a Celite[®] plug followed by rinse with CH₂Cl₂ (50 mL). The reaction was extracted with CH₂Cl₂ (3 x 20 mL). All organic layers were dried over Na₂SO₄ and concentrated. The crude compound was purified by silica column chromatography (hexanes:EtOAc, 200:1 to 5:1) to yield decalin 23 (74 mg, 41%) and decalin 22 (74 mg, 41%) as a white foam. Characterization of decalin 22: $R_f = 0.47$ (silica gel, hexanes: EtOAc, 9:1); $[\alpha]_D^{24} =$ +168.1 (c = 1.8, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.33-7.24 (m, 5H), 5.51 (m, 1H), 5.40 (m, 2H), 5.26 (m, 1H), 4.47 (m, 1H), 4.08 (m, 2H), 3.86 (dd, J = 3.4, 9.7 Hz, 1H), 3.38 (d, J = 13.2 Hz, 1H), 2.46 (t, J = 12.3 Hz, 1H), 1.91- 0.99 (m, 9H), 1.58 (d, J = 6.3Hz, 3H), 1.36 (s, 3H), 0.93 (d, J = 6.3 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 175.8, 152.3, 136.5, 132.2, 129.9, 129.6, 129.0, 127.2, 127.0, 126.7, 65.9, 59.2, 50.6, 44.5, 42.5, 42.4, 38.0, 37.2, 35.8, 33.5, 28.1, 22.6, 17.9, 14.0; HRMS (ESI) m/e 408.2536 [M+H⁺] calcd for $C_{26}H_{34}NO_3^+$: 408.2533.

Characterization of decalin **23**: $R_f = 0.29$ (silica gel, hexanes: EtOAc, 9:1); $[\alpha]_D^{24} = -26.8$ (c = 1.4, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.32-7.20 (m, 5H), 5.66 (m, 1H), 5.50 (m, 2H), 5.42 (d, J = 10.3 Hz, 1H), 4.75 (m, 1H), 4.15 (t, J = 8.6 Hz, 1H), 4.10 (dd, J = 3.5, 9.2 Hz, 1H), 3.50 (br s, 1H), 3.20 (dd, J = 3.5, 13.2 Hz, 1H), 2.68 (dd, J = 9.8, 13.2 Hz, 1H), 2.59 (m, 1H), 2.24 (br s, 1H), 1.69 (d, J = 5.2 Hz, 3H), 1.67-0.86 (m, 7H), 1.42 (s, 3H), 0.82 (d, J = 6.9 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 178.6, 152.7, 135.6, 131.3, 130.6, 129.5, 129.5, 129.0, 128.1, 127.3, 66.2, 58.0, 51.4, 44.9, 40.6, 38.2, 37.9,

35.5, 34.9, 28.4, 22.8, 22.6, 18.3, 18.2; HRMS (ESI) m/e 408.2535 [M+H⁺] calcd for $C_{26}H_{34}NO_3^+$: 408.2533.

Decalin (20/21): Then to a stirred solution of 18 (0.37 g, 0.91 mmol) in CH₂Cl₂(13 mL) was added iodine (12.0 mg, 45 µmol, 0.05 eq.). The reaction mixture was irradiated with visible light (sunlamp, visible light) for 10 minutes. (caution: keep the flask a few feet from the light source to avoid the heating-induced IMDA reaction). The mixture was cooled to -78°C at which time Me₂AlCl (1.00 mL, 1.0 mmol, 1M in hexanes) was added dropwise. The reaction mixture was then warmed to -20°C and continued to stir at this temperature for 2 days. The reaction mixture was guenched with a 1:1 sat. NaHCO₃/sodium thiosulfate solution (40 mL) and the mixture was ran through a Celite[®] plug followed by a rinse with CH₂Cl₂ (80 mL). The reaction was extracted with CH₂Cl₂ (3 x 30 mL). All organic layers were dried over Na₂SO₄ and concentrated. The crude compound was purified by silica column chromatography (hexanes:EtOAc, 200:1 to 5:1) to yield decalin 20 (0.15 g, 41%) and decalin 21 (0.15 g, 41%) as a white foam. Characterization for **20**: $R_f = 0.47$ (silica gel, hexanes:EtOAc, 9:1); $[\alpha]_D^{25} = -19.2$ (c =0.58, CHCl₃); ¹H NMR (500 MHz, CDCl₃) & 7.35-7.24 (m, 5H), 5.51 (m, 1H), 5.40 (m, 2H), 5.25 (m 1H), 4.47 (m, 1H), 4.08 (m, 2H), 3.86 (m, 1H), 3.37 (d, J = 12.6 Hz, 1H), 2.44 (t, J = 12.0 Hz, 1H), 2.08 (m, 2H), 1.80-1.19 (m, 7H), 1.58 (d, J = 6.3 Hz, 3H), 1.39 (s, 3H), 1.03 (d, J = 6.9 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 175.8, 152.3, 136.5, 132.2, 130.2, 129.6, 129.0, 127.3, 127.2, 126.7, 65.8, 59.2, 50.6, 44.4, 43.4, 39.7, 37.2, 32.7, 31.9, 27.9, 22.7, 18.8, 17.9, 14.1; HRMS (ESI) m/e 408.2534 [M+H⁺] calcd for $C_{26}H_{34}NO_3^+$: 408.2533.

Characterization for **21:** $R_f = 0.10$ (silica gel, hexanes:EtOAc, 9:1); $[\alpha]_D^{24} = +10.5$ (c = 3.67, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.31- 7.12 (m, 5H), 6.10 (m, 2H), 5.75 (m, 1H), 5.42 (dd, J = 8.0, 14.3 Hz, 1H), 4.45 (m, 1H), 4.32 (t, J = 8.3 Hz, 1H), 4.01 (t, J = 8.3 Hz, 1H), 3.51 (br s, 1H), 2.98 (dd, J = 6.3, 13.8 Hz, 1H), 2.73 (dd, J = 7.5, 13.8 Hz,

1H), 1.95-0.40 (m, 9H), 1.77 (d, J = 6.9 Hz, 3H), 1.58 (s, 3H), 0.88 (d, J = 6.3 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 171.2, 155.2, 136.2, 134.3, 130.9, 130.8, 129.1, 128.7, 128.0, 127.0, 106.9, 81.4, 67.8, 55.7, 43.6, 42.6, 40.0, 36.7, 35.2, 32.6, 29.5, 22.6, 18.2, 14.1; HRMS (ESI) m/e 408.2535 [M+H⁺] calcd for C₂₆H₃₄NO₃⁺: 408.2533.

6-bromo methyl sorbate (25): A mixture of methyl sorbate (20.2 g, 160 mmol) and *N*bromosuccinimide (29.6 g, 167 mmol) in dry chlorobenzene (136 mL) was heated to 100 °C over 1 hour. Benzoylperoxide (1.75 g, 7.21 mmol) was then cautiously added portionwise. After the addition was complete, the reaction mixture was heated under reflux for 3 hr. The reaction was cooled and the chlorobenzene was concentrated. The residual paste was dissolved with Et₂O (300 mL) and was washed with sodium hydroxide (75 mL of a 5% aqueous solution) until the washings were colorless. The organic layer was then dried over MgSO₄, filtered, and concentrated. The crude residue was purified by silica column chromatography (0 to 10% ethyl acetate in hexane) to afford bromide **25** (29.5 g 90 %) as light yellow oil. This material matched what was previously reported in the literature.²

Skipped Diene (27): Optimization of literature protocol: Copper (I) bromide dimethylsulfide complex (25 mg, 0.12 mmol, 2.5 mol%) and *S*,*S*-TANIAPHOS (100 mg, 0.15 mmol, 3 mol%, purchased from Strem Chemicals Inc.) were dissolved in CH₂Cl₂ (49 mL) at room temperature and stirred for 15 minutes. Then the reaction was cooled to -78° C and methyl magnesium bromide, MeMgBr (2 mL, 5.85 mmol, 3M in diethyl ether) was added dropwise. Then the bromo methyl sorbate (**25**) (1 g, 4.88 mmol) was dissolved in CH₂Cl₂ (20 mL) and was added to reaction dropwise at a rate of 1mL/hr. The reaction was stirred at $-60 \,^{\circ}$ C for additional 48 hours and then was quenched with saturated NH₄Cl solution (100 mL). This mixture was then warmed up to room temperature, extracted with CH₂Cl₂ (100 mL x 2), dried over MgSO₄ and carefully concentrated at reduced pressure (150 torr). The residue was purified via silica column (pentane:ether, 100:1 to 20:1) to afford the skipped diene **27** as colorless oil (0.615 g, 91%, ee > 97%).

The skipped diene ester matched characterization data provided in the literature with our optimized preparation.³

Skipped Diene Wittig Salt (28): The skipped diene ester 27 (0.615 g, 4.39 mmol) was dissolved in CH₂Cl₂ (25 mL) and cooled to 0 °C. A solution of DIBAL-H (17.6 mL, 17.6 mmol, 1M in hexanes) was added in dropwise. After 5 min the reaction was diluted with ether (50 mL), and sequentially added water (0.8 mL), aqueous 15% NaOH solution (0.8 mL), and water (0.5 mL). The reaction was warmed to RT and stirred at this temperature for 30 minutes. Some MgSO₄ was added and continued to stir for another 15 min. The reaction was filtered and carefully concentrated at reduced pressure (150 torr). The afforded allylic alcohol was essentially pure to be used directly in next step. The allylic alcohol (0.492 g, 4.39 mmol) was dissolved in CH₂Cl₂ (25 mL) and cooled to 0°C. PPh₃ (1.265 g, 4.82 mmol, 1.1 eq.) and CBr₄ (1.60 g, 4.82 mmol, 1.1 eq.) were added subsequently. After stirring for 5 min the reaction was diluted with pentane (100 mL) and filtered through a short Celite[®] pad, which was washed with pentane (200 mL). The filtrate was carefully concentrated at reduced pressure (350 torr). The resultant residue was dissolved in pentane (150 mL) and the mixture was sonicated for 2 min, which was filtered through a short Celite[®] pad and washed with pentane (200 mL). The filtrate was carefully concentrated at reduced pressure (350 torr). The resultant allylic bromide was essentially pure and was dissolved in acetonitrile (30 mL) and triphenylphosphine (1.5 g, 5.70 mmol, 1.3 eq.) was added. The clear mixture stirred for 16 hours at RT. The reaction was extracted with hexanes (6 x 50 mL) to remove excess PPh₃ and the acetonitrile layer was dried over MgSO₄ and concentrated. The compound was dissolved in benzene (15 mL) and concentrated to yield Wittig salt 28 (1.40 g, 73% over 3 steps) as a white foam. Note: Precursor compounds were carried through with residual solvent to avoid removing compound during concentration and yields are based on total isolated yield of Wittig salt **28** at the end. $[\alpha]_D^{23} = +4.7$ (c = 0.17, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.86-7.59 (m, 15H), 5.79 (m, 1H), 5.54 (m, 1H), 5.27 (m, 1H), 4.86-4.55 (m, 4H), 2.77 (m, 1H), 0.92 (d, J = 8.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 145.8 (d, J = 13.1 Hz), 141.0 (d, J = 3.3 Hz), 134.9 (d, J = 5.5 Hz), 134.1, 134.0, 132.9 (d, J = 2.7 Hz), 132.5, 132.4, 130.3, 130.2, 129.1, 128.9, 128.8, 118.6, 117.9, 113.7, 113.1 (d, J = 9.8 Hz), 40.7 (d, J = 2.4 Hz), 28.0 (d, J = 48.2 Hz), 19.2; HRMS (ESI) m/e 357.1769 [M–Br⁺] calcd for C₂₅H₂₆P⁺: 357.1767.

Polyene (29): To a stirred solution of phosphonate 28 (1.40 g, 2.72 mmol) in THF (13.6 mL) at -78°C was added *n*-butyl lithium (*n*-BuLi) (1.8 mL, 2.72 mmol, 1.6M in hexanes) dropwise and this solution turned deep red in color and continued to stir for 1 hr at this temperature. Then aldehyde 15 (0.93 g, 2.72 mmol) in THF (13.6 mL) was added to this solution dropwise. After stirring at -78°C for 5 minutes the reaction was quenched with sat. NH₄Cl solution (40 mL) and warmed to RT. The reaction was extracted with ether (3 x 100 mL). All organic layers were washed with brine (50 mL), dried over Na₂SO₄, and concentrated. The resulting product was purified through neutralized (Et_3N , 5%) silica column chromatography (pure hexanes, then hexanes:EtOAc, 500:1 to 3:1) to yield polyene 29 (0.68 g, 59%) as a clear oil and inseparable E/Z isomeric mixture (E:Z = ca. 3:2). $R_{\rm f} = 0.50$ (silica gel, hexanes: EtOAc, 5:1); $[\alpha]_{\rm D}^{23} = -19.5$, (c = 2.67, CHCl₃); ¹H NMR (500 MHz, CDCl₃) (E:Z = ca. 3:2) δ 7.35-7.25 (m, 5H), 7.18 (d, J = 6.9 Hz, 2H), 6.10-5.97 (m, 2H), 5.77 (m, 1H), 5.56 (m, 1H), 5.38-4.92 (m, 2H), 4.70 (m, 1H), 4.23 (t, J = 8.6 Hz, 1H), 4.14 (dd, J = 5.8, 9.2 Hz, 1H), 3.33 (dd, J = 3.5, 13.8 Hz, 1H), 2.88 (m, 1H), 2.81 (dd, J = 9.7, 13.8 Hz, 1H), 2.23-1.90 (m, 4H), 1.90 (s, 3H), 1.55-1.24 (m, 3H), 1.10 (d, J = 6.9 Hz, 3H), 0.90 (d, J = 6.9 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) (E:Z = ca. 3:2). 8 171.9, 153.1, 152.1, 142.6, 142.5, 140.3, 140.2, 138.0, 135.7, 135.2, 131.7, 131.2, 130.4, 129.5, 129.4, 129.1, 128.9, 128.9, 127.3, 124.4, 113.1, 112.9, 105.9, 66.3, 55.5, 40.5, 40.3, 40.0, 37.6, 35.0, 35.0, 34.7, 33.2, 33.0, 26.1, 26.1, 19.8, 19.7, 19.4, 19.4, 13.5, 13.5; HRMS (ESI) m/e 444.2510 [M+Na⁺] calcd for C₂₇H₃₅NO₃Na⁺: 444.2509.

Decalin (30): To a stirred solution of 29 (0.68 g, 1.61 mmol) in CH₂Cl₂ (161 mL) at -78°C was added Me₂AlCl (8.1 mL, 8.06 mmol, 1M in hexanes, 5 eq.) dropwise. The reaction mixture was then warmed to 0°C and continued to stir at this temperature for 3 hrs. The reaction was quenched with saturated NaHCO₃ solution (100 mL) and the mixture was ran through a Celite[®] plug followed by a rinse with CH₂Cl₂ (100 mL). The reaction was extracted with CH₂Cl₂ (3 x 50 mL). All organic layers were dried over Na₂SO₄ and concentrated. The crude residue was purified by silica column chromatography (hexanes: EtOAc, 200:1 to 3:1) to yield decalin 30 (171 mg, 42% from the *E* isomer) as a white foam. $R_f = 0.50$ (silica gel, hexanes:EtOAc, 4:1); $[\alpha]_D^{23} = -75.5$, $(c = 0.5, CHCl_3)$; ¹H NMR (500 MHz, CDCl₃) δ 7.30 (m, 5H), 5.92 (m, 1H), 5.44 (m, 2H) 4.97 (m, 2H), 4.48 (m, 1H), 4.14 (m, 2H), 3.57 (d, J = 13.2 Hz, 1H), 3.28 (br s, 1H), 2.71 (dd, J = 10.9, 13.2 Hz, 1H), 2.22 (s, 1H), 2.08-1.90 (m, 3H), 1.82-1.31 (m, 6H), 1.34 (s, 1.10)3H), 1.01 (d, J = 6.9 Hz, 3H), 0.94 (d, J = 6.9 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 176.7, 152.6, 144.1, 136.1, 132.0, 129.6, 129.0, 127.3, 123.6, 113.3, 66.3, 59.5, 52.0, 45.8, 44.9, 39.9, 39.3, 37.2, 32.9, 31.8, 27.8, 23.4, 18.8, 16.4, 13.8; HRMS (ESI) m/e 444.2510 $[M+Na^+]$ calcd for C₂₇H₃₅NO₃Na⁺: 444.2509.

Decalin aldehyde (31): To a stirred solution of **30** (170 mg, 0.40 mmol) in CH_2Cl_2 (5 mL) at 0°C was added diisobutylaluminum hydride (DIBAL-H) (2.02 mL, 2.02 mmol, 1M in hexanes) dropwise. This solution stirred at room temperature for 3 hours before being cooled down to 0°C. The reaction was diluted with ether (15 mL) and then water (0.1 mL), aqueous 15% NaOH (0.1 mL), and water (0.2 mL) were added subsequently dropwise. The solution was warmed to room temperature and stirred for 30 minutes. Then magnesium sulfate was added and stirred for an additional 15 minutes. The solution was filtered, concentrated and ran through a short silica plug (hexanes:EtOAc, 4:1) to

yield the crude alcohol. The resultant crude alcohol was dissolved in CH₂Cl₂ (5 mL) and sodium bicarbonate (203 mg, 2.42 mmol) and Dess-Martin periodinane (341 mg, 0.81 mmol) were subsequently added at room temperature. After stirring for 30 minutes the reaction was diluted with a 1:1 mixture of water and saturated sodium thiosulfate solution (10 mL) and stirred at rt for 30 minutes. Then the solution was extracted with CH₂Cl₂ (3 x 20 mL), dried over Na₂SO₄, and concentrated. The crude product was purified by silica column chromatography (pure hexanes, then hexanes:EtOAc, 100:1 to 5:1) to yield aldehyde **31** (77 mg, 78% over 2 steps) as a clear oil. R_f = 0.55 (silica gel, hexanes:EtOAc, 4:1); [α]_D²⁴ = -46.6 (*c* = 0.22, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 9.70 (s, 1H), 5.79 (m, 1H), 5.50 (m, 2H) 4.97 (m, 2H), 2.43 (m, 1H), 2.07 (m, 2H), 1.70-1.16 (m, 8H), 1.04 (d, *J* = 6.9 Hz, 3H), 1.03 (s, 3H), 0.99 (d, *J* = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 208.4, 143.9, 133.0, 124.5, 114.0, 50.8, 50.2, 41.3, 38.9, 38.5, 32.2, 31.0, 27.7, 21.9, 18.3, 17.2, 15.8; HRMS (ESI) m/e 247.2054 [M+H⁺] calcd for C₁₇H₂₇O⁺: 247.2056.

TBDPS Roche ester (32_1): To methyl (*R*)-(–)-3-hydroxy-2-methylpropionate (10.00 g, 85 mmol) in DMF (106 mL) at 0°C was added imidazole (11.53 g, 169 mmol) followed *tert*-butyldiphenylchlorosilane (23.1 mL, 89 mmol) dropwise. After stirring at RT for 2 hrs the reaction was diluted water (75 mL) and hexanes (200 mL). The aqueous layer was extracted with hexanes (3 × 75 mL), and the combined organic layers were dried over Na₂SO₄ and concentrated. The crude compound was purified by silica column chromatography (hexanes:Et₂O, 200:1 to 5:1) to yield **32_1** (30.2 g, 100%) as a clear oil. R_f = 0.50 (silica gel, hexanes:EtOAc, 9:1); $[\alpha]_D^{23} = -9.8$ (*c* = 0.2, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.67-7.37 (m, 10H), 3.83 (dd, *J* = 7.0, 9.8 Hz, 1H), 3.73 (dd, *J* = 5.8, 9.8 Hz, 1H), 3.70 (s, 3H), 2.73 (m, 1H), 1.17 (d, *J* = 7.1 Hz, 3H), 1.04 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 175.4, 135.6, 133.4, 129.7, 127.7, 65.9, 51.6, 42.4, 26.7, 19.2, 13.5; HRMS (ESI) m/e 379.1705 [M⁺Na⁺] calcd for C₂₁H₂₈O₃SiNa⁺: 379.1700.⁴

Aldehyde (33): To methyl ester 32_1 (30.2 g, 85 mmol) dissolved in hexanes (607 mL) at -78°C was added DIBAL-H (93 mL, 93 mmol, 1M in hexanes) via a syringe pump

over 3 hours. This reaction continued to stir at -78°C for 2 hrs until the reaction was diluted with ether (300 mL) and water (3.7 mL), aqueous 15% NaOH (3.7 mL), and water (4.8 mL) were added slowly. The mixture warmed to rt for 30 minutes and then MgSO₄ was added and stirred for an additional 15 minutes. The solution was filtered and concentrated to yield aldehyde **33** (24.89 g, 90%). This compound was used as is to the next step. R_f = 0.50 (silica gel, hexanes:EtOAc, 9:1); $[\alpha]_D^{23} = -11.1$ (c = 0.8, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 9.76 (d, J = 1.8 Hz, 1H), 7.64-7.36 (m, 10H), 3.90 (dd, J = 4.0, 9.8 Hz, 1H), 3.84 (dd, J = 6.9, 10.3 Hz, 1H), 2.56 (m, 1H), 1.09 (d, J = 6.9 Hz, 3H), 1.03 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 204.6, 135.7, 133.2, 129.9, 127.9, 64.2, 48.9, 26.8, 19.3, 10.4; HRMS (ESI) m/e 349.1602 [M+Na⁺] calcd for C₂₀H₂₆O₂SiNa⁺: 349.1600.⁴

Ethyl ester (33_1): To a solution of aldehyde 33 (24.89 g, 76 mmol) in CH₂Cl₂ (305 mL) was added (carbethoxymethylene)triphenylphosphorane (27.9 g, 80 mmol) portionwise at RT. The reaction stirred overnight and upon completion the reaction was concentrated and then taken up in hexanes (500 mL) and sonicated for 2 minutes before filtering the solution through a Celite[®] plug. The Celite[®] plug was rinsed with hexanes (200 mL) and concentrated. This procedure was repeated 1-2 more times until the triphenylphosphine oxide was removed to yield ethyl ester 33_1 (26.9 g, 89%) as a clear oil. R_f = 0.50 (silica gel, hexanes:EtOAc, 9:1); $[\alpha]_D^{23} = -10.1$ (c = 0.5, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.67-7.36 (m, 10H), 6.97 (dd, J = 7.2, 15.8 Hz, 1H), 5.84 (dd, J = 1.2, 15.8 Hz, 1H), 4.20 (q, J = 7.2 Hz, 2H), 3.58 (m, 2H), 2.56, (m, 1H), 1.31 (t, J = 7.2 Hz, 3H), 1.08 (d, J = 6.8 Hz, 3H), 1.05 (s, 9H); ¹³C NMR (125 MHz, CDCl₃); δ 166.7, 151.4, 135.6, 133.5, 129.7, 127.7, 121.0, 67.5, 60.2, 39.1, 26.8, 19.3, 15.6, 14.3; HRMS (ESI) m/e 419.2010 [M+Na⁺] calcd for C₂₄H₃₂O₃SiNa⁺: 419.2013.⁴

Allylic alcohol (34): To a solution of ethyl ester 33_1 (26.9 g, 67.8 mmol) in CH₂Cl₂ (136 mL) at 0°C was added DIBAL-H (203 mL, 203 mmol, 1M in hexanes) dropwise via an addition funnel. About 5 minutes later the reaction was diluted with ether (400 mL)

and water (8.1 mL), aqueous 15% NaOH (8.1 mL), and water (10 mL) were added slowly. The mixture warmed to rt for 30 minutes and then MgSO₄ was added and stirred for an additional 15 minutes. The solution was filtered and concentrated to yield alcohol **34** (21.88 g, 91%). This compound was used as is to the next step. $R_f = 0.39$ (silica gel, hexanes:EtOAc, 4:1); $[\alpha]_D^{23} = -9.2$ (c = 0.3, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.67-7.34 (m, 10H), 5.62 (m, 2H), 4.06 (t, J = 5.2 Hz, 2H), 3.55 (dd, J = 6.3, 10.3 Hz, 1H), 3.50 (dd, J = 6.3, 9.7 Hz, 1H), 2.40, (m, 1H), 1.05 (s, 9H), 1.03 (d, J = 6.9 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 135.7, 133.9, 132.3, 129.5, 128.7, 127.6, 68.5, 63.9, 39.0 26.7, 19.3, 16.4; HRMS (ESI) m/e 377.1899 [M+Na⁺] calcd for C₂₂H₃₀O₂SiNa⁺: 377.1907.⁴

Bromide (34_1): To a solution of alcohol **34** (21.88 g, 61.7 mmol) in CH₂Cl₂ (617 mL) at 0°C was added PPh₃ (17.80 g, 67.9 mmol) and CBr₄ (22.51 g, 67.9 mmol) portionwise. After 10 minutes the reaction was diluted with hexanes (500 mL) and filtered through a Celite[®] plug, which was rinsed with additional hexanes (200 mL) and concentrated. The crude extract dissolved in hexanes (400 mL) and sonicated for 2 minutes before being filtered through a Celite[®] plug which was rinsed with additional hexanes (100 mL) and concentrated. This procedure was repeated 1-2 more times until the triphenylphosphine oxide was removed to yield bromide **34_1** (22.67 g, 88%) as a light yellow oil. $R_{\rm f}$ = 0.62 (silica gel, hexanes: EtOAc, 9:1); $[\alpha]_{\rm D}^{23} = -8.7$ (*c* = 0.7, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.67-7.36 (m, 10H), 5.72 (m, 2H), 3.95 (dd, *J* = 1.6, 3.7 Hz, 2H), 3.53 (dd, *J* = 1.2, 6.5 Hz, 2H), 2.43 (m, 1H), 1.06 (s, 9H), 1.03 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 138.9, 135.6, 133.7, 129.6, 127.6, 126.1 68.2, 38.9, 33.6, 26.9, 19.3, 16.1; HRMS (ESI) m/e 439.1070 [M+Na⁺] calcd for C₂₂H₂₉OSiBrNa⁺: 439.1069.

Wittig salt (35): To a solution of bromide 34_1 (22.67 g, 54.3 mmol) in MeCN (272 mL) was added PPh₃ (15.67 g, 59.7 mmol) and stirred for 18 hours at rt. Then the reaction was extracted with hexanes (6 x 300 mL) and the MeCN layer was dried over Na₂SO₄ and concentrated. The compound was dissolved in benzene (50 mL) and concentrated to yield Wittig salt 35 (35.1 g, 95%) as a white foam. $[\alpha]_D^{23} = -4.3$ (c = 0.26, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.83-7.60 (m, 25H), 5.71 (m, 1H), 5.34 (m, 1H), 4.74 (m, 2H), 3.36

(dd, J = 5.8, 9.9 Hz, 1H), 3.26 (dd, J = 7.2, 10.0 Hz, 1H), 2.29 (m, 1H), 0.98 (s, 9H), 0.89 (d, J = 6.8 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 135.5, 135.5, 134.9, 134.9, 134.0, 134.0, 130.3, 130.2, 129.7, 128.3, 127.7, 127.7, 118.6, 117.9, 67.8 (d, J = 4.4 Hz), 39.8 (d, J = 2.5 Hz), 28.1 (d, J = 48.2 Hz), 26.8, 19.2, 16.4; HRMS (ESI) m/e 599.2896 [M–Br⁺] calcd for C₄₀H₄₄O_PSi⁺: 599.2899.

Polyene 36: To a stirred solution of phosphonate 35 (11.6 g, 17.1 mmol) in THF (90 mL) at -78°C was added *n*-butyl lithium (*n*-BuLi) (6.83 mL, 17.1 mmol, 2.5M in hexanes) dropwise and this solution turned deep red in color and continued to stir for 1 hr at this temperature. Then aldehyde 15 (5.86 g, 17.1 mmol) in THF (90 mL) was added to this solution dropwise. After stirring at -78°C for 5 minutes the reaction was quenched with sat. NH₄Cl solution (160 mL) and warmed to rt. The reaction was extracted with ether (3 x 300 mL). All organic layers were washed with brine (200 mL), dried over Na₂SO₄, and concentrated. The resulting product was purified through neutralized (Et₃N, 5%) silica column chromatography (pure hexanes, then hexanes:EtOAc, 500:1 to 5:1) to yield polyene **36** (6.91 g, 61%) as a clear oil and inseparable isomeric mixture (E:Z = ca. 3:2). $R_{\rm f} = 0.63$ (silica gel, hexanes: EtOAc, 7:3); $[\alpha]_{\rm D}^{23} = -10.0$, (c = 0.75, CHCl₃); ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3)$ (E:Z = ca. 3:2) δ 7.65-7.18 (m, 15H), 6.30-5.97 (m, 3H), 5.62-5.46 (m, 2H), 4.70 (m, 1H), 4.22 (m, 1H), 4.13 (m, 1H), 3.56-3.44 (m, 2H), 3.33 (m, 1H), 2.80 (m, 1H), 2.53 (br s, 1H), 2.44-2.00 (m, 5H), 1.90 (s, 3H), 1.72-1.30 (m, 2H), 1.05 (d, J=7.5 Hz, 3H), 1.04 (s, 12H); ¹³C NMR (125 MHz, CDCl₃) (*E*:*Z* = ca. 3:2) δ 171.9, 153.2, 140.4, 135.6, 135.2, 134.8, 134.6, 134.0, 133.9, 131.9, 131.0, 130.4, 130.0, 129.7, 129.5, 129.5, 128.9, 127.7, 127.6, 127.3, 68.6, 66.3, 55.5, 40.0, 39.3, 37.5, 35.0, 33.0, 26.9, 26.6, 26.1, 19.3, 16.6, 13.5; HRMS (ESI) m/e 686.3637 [M+Na⁺] calcd for $C_{42}H_{53}O_4SiNa^+$: 686.3636.

Decalin (37): To a stirred solution of 36 (6.91 g, 10.41 mmol) in CH₂Cl₂ (210 mL) was added iodine (132 mg, 0.52 mmol). The reaction mixture was irradiated with visible light (sunlamp, visible light) for 10 minutes. (caution: keep the flask a few feet from the light source to avoid the heating-induced IMDA reaction). The mixture was further diluted with CH₂Cl₂ (830 mL) and cooled to -78°C at which time Me₂AlCl (52 mL, 52.0 mmol, 1M in hexanes) was added dropwise. The reaction mixture was then warmed to 0°C and continued to stir at this temperature for 2 hrs. The reaction mixture was quenched with sat. NaHCO₃ solution (300 mL) and the mixture was ran through a Celite[®] plug followed by a rinse with CH₂Cl₂ (300 mL). The reaction was extracted with CH₂Cl₂ (2 x 100 mL). All organic layers were dried over Na₂SO₄ and concentrated. The crude extract was purified by silica column chromatography (hexanes: EtOAc, 200:1 to 2:1) to yield decalin 37 (3.67 g, 52%) as a white foam. $R_{\rm f} = 0.66$ (silica gel, hexanes: EtOAc, 4:1); $[\alpha]_{\rm D}^{24} = -70.5$ (c = 0.63, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.72- 7.31 (m, 15H), 5.44 (d, J = 9.7 Hz, 1H), 5.32 (m, 1H), 4.51 (m, 1H), 4.11 (m, 2H), 3.64 (dd, J = 5.2, 9.7 Hz, 1H), 3.56 (d, J =13.2 Hz, 1H), 3.46 (t, J = 9.2 Hz, 1H), 3.38 (s, 1H), 2.59 (t, J = 12.6 Hz, 1H), 2.19 (s, 1H), 2.07-1.43 (m, 9H), 1.36 (s, 3H), 1.07 (s, 9H), 1.02 (d, J = 7.5 Hz, 3H), 0.92 (d, J = 6.3 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 176.3, 152.1, 136.1, 135.6, 134.8, 134.1, 133.9, 131.9, 129.5, 128.9, 127.1, 123.8, 68.7, 66.0, 59.1, 51.7, 44.8, 42.6, 39.7, 39.0, 36.9, 32.9, 31.9, 27.8, 26.8, 23.4, 19.3, 18.8, 15.9, 13.1; HRMS (ESI) m/e 686.3637 [M+Na⁺] calcd for C₄₂H₅₃O₄SiNa⁺: 686.3636.

Decalin (38): To a solution of **37** (600 mg, 0.9 mmol) in CH_2Cl_2 (18.1 mL) at -78°C was added DIBAL-H (4.52 mL, 4.52 mmol, 1M in hexanes) dropwise. This solution continued to stir at this temperature for 1 hr and then at 0°C for 1 hr before being diluted with ether (20 mL) and then water (0.18 mL) was added dropwise and then warmed to

RT for 30 minutes. Then some MgSO₄ was added and stirred for an additional 15 minutes before being filtered and ran through a silica plug (hexanes, then hexanes:EtOAc 9:1) to isolate the crude alcohol (244 mg). Then the alcohol was dissolved in DMSO (2.2 mL) and cooled to 0°C and IBX (209 mg, 0.75 mmol) was added in one portion. The reaction continued to stir at RT for 1 hrs before being diluted with water (5 mL). Then the solution was filtered through a Celite[®] plug which was rinsed with ether (10 mL). The filtrate was extracted with ether (5 x 5 mL) and all organic layers were washed with brine (10 mL) and 10% NaOH solution (2 x 10 mL). The combined organic layers were dried over Na_2SO_4 and concentrated to yield decalin aldehyde **38** (216 mg, 49% over two steps) as a clear oil. $R_{\rm f} = 0.57$ (silica gel, hexanes: EtOAc, 9:1); $[\alpha]_{\rm D}^{23} = -54.4$ (c = 1.29, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 9.65 (s, 1H), 7.69-7.38 (m, 10H), 5.52 (d, J = 10.3 Hz, 1H), 5.36 (m, 1H), 3.43 (m, 2H), 2.50 (m, 1H), 2.19 (s, 1H), 2.07 (m, 1H), 2.01-1.22 (m, 9H), 1.08 (s, 3H), 1.06 (s, 9H), 1.02 (d, J = 7.3 Hz, 3H), 0.84 (d, J = 6.8 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) & 208.3, 135.6, 133.6, 133.2, 129.7, 127.7, 123.2, 67.3, 50.6, 44.6, 41.6, 38.9, 36.7, 32.3, 31.1, 27.7, 26.9, 22.0, 19.3, 18.4, 16.1, 14.2; HRMS (ESI) m/e 511.3009 [M+Na⁺] calcd for $C_{32}H_{44}O_2SiNa^+$: 511.3008.

Reference:

(1) (a) Xu, J.; Caro-Diaz, E. J. E.; Lacoske, M. H.; Hung, C. I.; Jamora, C.; Theodorakis, E. A. *Chem. Sci.* **2012**, *3*, 3378-3386. (b) Xu, J.; Caro-Diaz, E. J. E.; Trzoss, L.; Theodorakis, E. A. *J. Am. Chem. Soc.* **2012**, *134*, 5072-5075.

(2) Caravano, A.; Field, R. A.; Percy, J. M.; Rinaudo, G.; Roig, R.; Singh, K. Org. Biomol. Chem. 2009, 7, 996-1008.

(3) Huang, Y. G.; Fananas-Mastral, M.; Minnaard, A. J.; Feringa, B. L. *Chem. Commun.* **2013**, *49*, 3309-3311.

(4) (a) Yadav, J. S.; Venkatesh, M.; Thrimurtulu, N.; Prasad, A. R. *Synlett* **2010**, 1255-1259. (b) Chandrasekhar, S.; Yaragorla, S. R.; Sreelakshmi, L.; Reddy, C. R. *Tetrahedron* **2008**, *64*, 5174-5183. (c) Pasqua, A. E.; Ferrari, F. D.; Crawford, J. J.; Marquez, R. *Tetrahedron Lett.* **2012**, *53*, 2114-2116.

Spectrum 1¹H NMR (CDCl₃, 500 MHz) of compound 11_1

Spectrum 2 ¹³C NMR (CDCl₃, 125 MHz) of compound 11_1

Spectrum 3 ¹H NMR (CDCl₃, 500 MHz) of compound 12

Spectrum 4 ¹³C NMR (CDCl₃, 125 MHz) of compound 12

Spectrum 5 ¹H NMR (CDCl₃, 500 MHz) of compound 12_1

Spectrum 6¹³C NMR (CDCl₃, 125 MHz) of compound 12_1

Spectrum 7¹H NMR (CDCl₃, 500 MHz) of compound 12_2

Spectrum 8 ¹³C NMR (CDCl₃, 125 MHz) of compound 12_2

Spectrum 9 ¹H NMR (CDCl₃, 500 MHz) of compound 15

Spectrum 10¹³C NMR (CDCl₃, 125 MHz) of compound 15

Spectrum 11 ¹H NMR (CDCl₃, 500 MHz) of compound 16

Spectrum 12¹³C NMR (CDCl₃, 125 MHz) of compound 16

Spectrum 13 ¹H NMR (CDCl₃, 500 MHz) of compound 18

Spectrum 14¹³C NMR (CDCl₃, 125 MHz) of compound 18

Spectrum 15 ¹H NMR (CDCl₃, 500 MHz) of compound 18 isomerized

Spectrum 16¹³C NMR (CDCl₃, 125 MHz) of compound 18 isomerized

Spectrum 17¹H NMR (CDCl₃, 500 MHz) of compound 19

Spectrum 18¹³C NMR (CDCl₃, 125 MHz) of compound 19

Spectrum 19¹H NMR (CDCl₃, 500 MHz) of compound 19 isomerized

Spectrum 20¹³C NMR (CDCl₃, 125 MHz) of compound 19 isomerized

Spectrum 21 ¹H NMR (CDCl₃, 500 MHz) of compound 22

Spectrum 22 ¹³C NMR (CDCl₃, 125 MHz) of compound 22

Spectrum 23 ¹H NOESY NMR (CDCl₃, 500 MHz) of compound 22

Spectrum 24 ¹H NMR (CDCl₃, 500 MHz) of compound 23

Spectrum 25¹³C NMR (CDCl₃, 125 MHz) of compound 23

Spectrum 26 ¹H NOESY NMR (CDCl₃, 500 MHz) of compound 23

Spectrum 27 ¹H NMR (CDCl₃, 500 MHz) of compound 20

Spectrum 28¹³C NMR (CDCl₃, 125 MHz) of compound 20

Spectrum 29 ¹H NOESY NMR (CDCl₃, 500 MHz) of compound 20

Spectrum 30¹H NMR (CDCl₃, 500 MHz) of compound 21

Spectrum 31 ¹³C NMR (CDCl₃, 125 MHz) of compound 21

Spectrum 32 ¹H NOESY NMR (CDCl₃, 500 MHz) of compound 21

Spectrum 33 ¹H NMR (CDCl₃, 500 MHz) of compound 28

Spectrum 34 ¹³C NMR (CDCl₃, 125 MHz) of compound 28

Spectrum 35 ¹H NMR (CDCl₃, 500 MHz) of compound 29

Spectrum 36¹³C NMR (CDCl₃, 125 MHz) of compound 29

Spectrum 37 ¹H NMR (CDCl₃, 500 MHz) of compound 30

Spectrum 38 ¹³C NMR (CDCl₃, 125 MHz) of compound 30

Spectrum **39** ¹H NOESY NMR (CDCl₃, 500 MHz) of compound **30**

Spectrum 40¹H NMR (CDCl₃, 500 MHz) of compound 31

Spectrum 41¹³C NMR (CDCl₃, 125 MHz) of compound 31

Spectrum 42 ¹H NMR (CDCl₃, 500 MHz) of compound 32_1

Spectrum 43 ¹³C NMR (CDCl₃, 125 MHz) of compound 32_1

Spectrum 44 ¹H NMR (CDCl₃, 500 MHz) of compound 33

Spectrum 45¹³C NMR (CDCl₃, 125 MHz) of compound 33

Spectrum 46 ¹H NMR (CDCl₃, 500 MHz) of compound 33_1

Spectrum 47 ¹³C NMR (CDCl₃, 125 MHz) of compound 33_1

Spectrum 48 ¹H NMR (CDCl₃, 500 MHz) of compound 34

Spectrum 49¹³C NMR (CDCl₃, 125 MHz) of compound 34

Spectrum 50 ¹³C NMR (CDCl₃, 125 MHz) of compound 34_1

Spectrum 51¹³C NMR (CDCl₃, 125 MHz) of compound 34_1

Spectrum 52 ¹H NMR (CDCl₃, 500 MHz) of compound 35

Spectrum 53 ¹³C NMR (CDCl₃, 125 MHz) of compound 35

Spectrum 54 ¹H NMR (CDCl₃, 500 MHz) of compound 36

Spectrum 55 ¹³C NMR (CDCl₃, 125 MHz) of compound 36

Spectrum 56 ¹H NMR (CDCl₃, 500 MHz) of compound 37

Spectrum 57 ¹³C NMR (CDCl₃, 125 MHz) of compound 37

Spectrum 58 ¹H NOESY NMR (CDCl₃, 500 MHz) of compound 37

Spectrum 59 ¹H NMR (CDCl₃, 500 MHz) of compound 38

Spectrum 60¹³C NMR (CDCl₃, 125 MHz) of compound 38