Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2015

Supporting Information

Pd(II)-catalyzed asymmetric addition of arylboronic acids to cyclic *N*sulfonyl ketimine esters and a DFT study of its mechanism

Mao Quan,^{a,‡} Guoqiang Yang,^{a,‡} Fang Xie,^{a,*} Ilya D. Gridnev,^b and Wanbin Zhang^{a*}

^a School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R.

China. Fax: +86-21-5474-3265; Tel: +86-21-5474-3265; E-mail: xiefang@sju.edu.cn; wanbin@sjtu.edu.cn.

^b Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki 3-6, Aoba-ku, Sendai 9808578, Japan.

CONTENTS

1. General	S2
2. Synthesis of Substrates	S2
3. Asymmetric Catalysis	S4
4. Reduction of arylation product 3cb	S9
5. Computational Details	S9
6. NMR Spectra	S13
7. HPLC Spectra of Products	S46
8. Cartesian Coordinates	S68
9. X-Ray Crystal Structure Data	S82

1. General

All air and moisture sensitive manipulations were carried out with standard Schlenk techniques nitrogen atmosphere. Column chromatography was performed using 100-200 mesh silica gels. DMA was distilled before use from CaH₂ under nitrogen. All solvents were refined by the standard of solvent manual. The other reagents were purchased from Adamas-Beta Ltd., Energy Chemical Inc. or J&K Scientific Inc. and used without further purification unless otherwise specified. The NMR spectra were recorded on a Varian MERCURY plus-400 (400 MHz, ¹H; 100 MHz, ¹³C) spectrometer with chemical shifts reported in ppm relative to the residual deuterated solvents. Mass spectrometery analysis was carried out using an electrospray spectrometer Waters Micromass Q-TOF Premier Mass Spectrometer. Melting points were measured with SGW X-4 micro melting point apparatus. Optical rotations were measured on a Rudolph Research Analytical Autopol VI automatic polarimeter using a 50 mm path-length cell at 589 nm. Chiral analyses were performed on a Shimadzu LC-2010 HPLC system and using Daicel Chiralcel AD-H, and IE-H columns with *n*-hexane / *i*-propyl alcohol as an eluent.

2. Synthesis of Substrates¹

A were synthesized based on the literature.² To a solution of A (2.78 mmol) in 5.0 mL of DMA was quickly transferred solid H₂NSO₂Cl (1.12 g, 9.71 mmol, 3.5 equiv) and stirred for 1 h. NaH (60% in mineral oil, 388 mg, 9.71 mmol, 3.5 equiv) was added for 3 potions in 2 h and stirred for another 2 h at room temperature. After stirring at 50 °C for 12 h, the reaction was quenched by the addition of 5 mL of H₂O and transferred to a separatory funnel with 20 mL of Et₂O. The organic layer was separated, and the aqueous layer was extracted with 2 x 15 mL of Et₂O. The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. Purification by chromatography on silica gel (EtOAc/petroleum ether=1:4) afforded the product as a light yellow solid.

Methyl benzo[e][1,2,3]oxathiazine-4-carboxylate 2,2-dioxide (1a)

Light yellow solid, 342 mg, yield: 51%, Mp: 80-81 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.03$ (d, J = 8.4 Hz, 1H), 7.79 (t, J = 8.0 Hz, 1H), 7.43 (t, J = 8.0 Hz, 1H), 7.35 (d, J = 8.0 Hz, 1H), 4.07 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 165.0$, 161.4, 155.0, 138.5, 130.5, 126.6, 119.4, 113.8, 54.4; IR (v/cm⁻¹): 2961, 1743, 1589, 1549, 1387, 1231, 1024, 929, 864, 758; HRMS (ESI) calcd for C₉H₈NO₅S (M+H)⁺

242.0123, found 242.0129

Methyl 8-methylbenzo[e][1,2,3]oxathiazine-4-carboxylate 2,2-dioxide (1b)

Light brown solid, 432 mg, yield: 61%, Mp: 71-72 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.79 (d, *J* = 8.0 Hz, 1H), 7.63 (d, *J* = 7.6 Hz, 1H), 7.31 (t, *J* = 7.8 Hz, 1H), 4.05 (s, 3H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 165.7, 161.6, 153.3, 140.0, 129.3, 128.0, 125.9, 113.6, 54.3, 15.1; IR (v/cm⁻¹): 2595, 2922, 1746, 1563, 1557, 1393, 1236, 1204, 1098, 882, 732, 573; HRMS (ESI) calcd +H)⁺ 256 0280 found 256 0282

for $C_{10}H_{10}NO_5S$ (M+H)⁺ 256.0280, found 256.0282.

Methyl 7-methylbenzo[e][1,2,3]oxathiazine-4-carboxylate 2,2-dioxide (1c)

Light yellow solid, 404 mg, yield: 57%, Mp: 57-58 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.89 (d, J = 8.2 Hz, 1H), 7.21 (d, J = 8.2 Hz, 1H), 7.14 (s, 1H), 4.04 (s, 3H), 2.50 (s, 3H); ¹³C NMR (100

MHz, CDCl₃): $\delta = 164.8$, 161.6, 155.2, 151.5, 130.2, 127.6, 119.5, 111.5, 54.3, 22.6; IR (v/cm⁻¹): 2965, 2925, 1746, 1621, 1509, 1541, 1395, 1229, 1197, 1125, 567; HRMS (ESI) calcd for C₁₀H₁₀NO₅S (M+H)⁺ 256.0280, found 256.0278.

Methyl 6-methylbenzo[e][1,2,3]oxathiazine-4-carboxylate 2,2-dioxide (1d)

Yellow solid, 376 mg, yield: 53%, Mp: 65-66 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.76 (s, 1H), 7.58 (d, *J* = 8.5 Hz, 1H), 7.24 (t, *J* = 7.8 1H), 4.06 (s, 3H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 165.2, 161.5, 153.0, 139.3, 136.8, 130.1, 119.1, 113.5, 54.3, 21.1; IR (v/cm⁻¹): 2953, 2923, 1747, 1556, 1456, 1376, 1242, 1189, 596; HRMS (ESI) calcd for C₁₀H₁₀NO₅S (M+H)⁺ 256.0280, found 256.0280.

Methyl 6-ethylbenzo[e][1,2,3]oxathiazine-4-carboxylate 2,2-dioxide (1e)

Colorless gummy oil, 386 mg, yield: 49%. ¹H NMR (400 MHz, CDCl₃): δ = 7.78 (d, *J* = 2.1 Hz, 1H), 7.61 (dd, *J* = 8.5, 2.1 Hz, 1H), 7.28 – 7.24 (m 1H), 4.07 (s, 3H), 2.72 (q, *J* = 7.6 Hz, 2H), 1.26 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 165.2, 161.6, 153.1, 143.1, 138.3, 129.1, 119.2, 113.6, 54.3, 28.5 15.5; IR (v/cm⁻¹): 2953, 2920, 2854, 1757, 1556, 1458, 1377, 1242, 1191, 785, 608; HRMS (ESI) calcd for C₁₁H₁₂NO₅S (M+H)⁺ 270.0436, found 270.0438.

Mthyl 7-methoxybenzo[e][1,2,3]oxathiazine-4-carboxylate 2,2-dioxide (1f)

Yellow solid, 444 mg, yield: 59%, Mp: 107-108 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.98 (d, *J* = 9.1 Hz, 1H), 6.89 (dd, *J* = 9.0, 2.4 Hz, 1H), 6.78 (d, *J* = 2.4, 1H), 4.03 (s, 3H), 3.95 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 167.9, 164.0, 161.8, 157.8, 132.3, 114.1, 107.5, 103.6, 56.8, 54.2; IR (v/cm⁻¹): 3110, 2969, 1746, 1621, 1578, 1536, 1505, 1384, 1301, 1200, 1129, 1032, 863, 785,

685, 564; HRMS (ESI) calcd for $C_{10}H_{10}NO_6S$ (M+H)⁺ 272.0229, found 272.0225.

Mthyl 6-methoxybenzo[e][1,2,3]oxathiazine-4-carboxylate 2,2-dioxide (1g)

Yellow solid, 467 mg, yield: 62%, Mp: 80-81 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.50 (d, *J* = 2.8 Hz, 1H), 7.34 – 7.27 (m, 2H), 4.06 (s, 3H), 3.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 164.5, 161.5, 157.2, 148.9, 125.4, 120.4, 114.3, 113.0, 56.3, 54.4; IR (v/cm⁻¹): 2920, 2849, 1740, 1562, 1503, 1382, 1282, 1259, 1206, 1174, 1035, 837, 823, 711, 695, 530; HRMS (ESI) calcd for C₁₀H₁₀NO₆S (M+H)⁺ 272.0229, found 272.0235.

Methyl 7-chlorobenzo[e][1,2,3]oxathiazine-4-carboxylate 2,2-dioxide (1h)

Yellow solid, 428 mg, yield: 56%, Mp: 127-128 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.05$ (d, J = 8.6 Hz, 1H), 7.43 – 7.34 (m, 2H), 4.06 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 163.8$, 161.2, 155.4, 144.9, 131.5, 127.2, 119.9, 112.4, 54.5; IR (v/cm⁻¹): 3100, 2963, 1743, 1582, 1434, 1393, 1263, 1203, 795, 627; HRMS (ESI) calcd for C₉H₇NO₅SCl (M+H)⁺ 275.9733, found 275.9733.

Methyl naphtho[2,1-e][1,2,3]oxathiazine-4-carboxylate 2,2-dioxide (1i)

Yellow solid, 380 mg, yield: 47%, Mp: 137-138 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.43$ (d, J = 8.0 Hz, 1H), 7.93 (d, J = 8.2 Hz, 1H), 7.78 (ddd, J = 22.3, 15.2, 8.4 Hz 1H), 4.10 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 165.8$, 161.8, 154.7, 138.0, 132.4, 128.7, 128.3, 125.9, 123.4, 123.0, 122.7, 109.3, 54.3; IR (v/cm⁻¹): 2949, 2920, 1739, 1580, 1402, 1256, 1229, 1204, 1112, 1054, 896, 839,

775, 676, 568; HRMS (ESI) calcd for $C_{13}H_{10}NO_5S$ (M+H)⁺ 292.0280, found 292.0288.

Ethyl benzo[e][1,2,3]oxathiazine-4-carboxylate 2,2-dioxide (1j)

Colorless gummy oil, 362 mg, yield: 51%. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.95$ (dd, J = 8.0, 1.5 Hz, 1H), 7.85 – 7.71 (m, 1H), 7.41 (td, J = 7.7, 1.0 Hz, 1H), 7.31 (dd, J = 8.4, 1.0 Hz, 1H), 4.50 (q, J = 7.1 Hz, 2H), 1.42 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 165.7, 161.0, 154.9, 138.6, 130.5, 126.7, 119.3, 113.7, 64.3, 14.2; IR (v/cm⁻¹): 2962, 2920, 1750, 1566, 1460, 1338, 1241, 1180, 1095, 893, 615; HRMS (ESI) calcd for $C_{10}H_{10}NO_5S$ (M+H)⁺ 256.0280, found 256.0288.

Propyl benzo[e][1,2,3]oxathiazine-4-carboxylate 2,2-dioxide (1j)

Colorless gummy oil, 426 mg, yield: 54%. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.95$ (dd, J = 8.0, 1.6 Hz, 1H), 7.78 (ddd, J = 8.3, 7.6, 1.6 Hz, 1H), 7.41 (ddd, J = 8.0, 7.5, 1.0 Hz, 1H), 7.32 (dd, J = 8.4, 0.7 Hz, 1H), 4.41 (t, J = 6.7 Hz, 2H), 1.82 (tq, J = 14.17.1 Hz, 2H), 1.01 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 165.8$, 161.1, 154.9, 138.6, 130.4, 126.6, 119.4, 113.7, 69.6, 22.0, 10.5; IR (v/cm⁻¹):

2972, 2882, 1741, 1597, 1556, 1401, 1206, 1189, 1123, 1016, 864, 749; HRMS (ESI) calcd for C₁₁H₁₂NO₅S (M+H)⁺ 270.0436, found 270.0436.

3. Asymmetric Catalysis

General procedure A: (in test tube opened to air): A test tube (20 mL) was charged with Pd(TFA)₂ (3.3 mg, 0.010 mmol, 0.050 equiv), L1a (3.9 mg, 0.015 mmol, 0.075 equiv) and unpurified TFE (1.0 mL). The solution was stirred at 30 °C for 2 h, then substrate (0.20 mmol, 1.0 equiv) and arylboronic acid (0.30 mmol, 1.5 equiv) were added into the tube. The wall of the tube was rinsed with an additional portion of TFE (1.0 mL). After stirring at 60 °C for 24 h in air, the reaction mixture was cooled to room temperature and the solvent was removed by rotary evaporation. The residue was purified by preparative TLC on silica gel (petroleum ether/EtOAc = 5/1) to give the product.

General procedure B: (in sealed tube charged with O₂): Pd(TFA)₂ (3.3 mg, 0.010 mmol, 0.050 equiv) and L1a (3.9 mg, 0.015 mmol, 0.075 equiv) were weighted in air and placed in a vial. The unpurified TFE (1.0 mL) was added and the solution was stirred at 30 °C for 2 h to afford the catalyst solution. A sealed tube (25 mL) was charged with substrate (0.20 mmol, 1.0 equiv) and arylboronic acid (0.30 mmol, 1.5 equiv), then degassed and recharged with O₂ (balloon) three times. The above catalyst solution was added to the tube via syringe. The wall of the tube was rinsed with TFE (1.0 mL). The tube was sealed and heated to 60 °C. After stirring for a certain time, the reaction mixture was cooled to room temperature, and the solvent was removed by rotary evaporation. The residue was purified by preparative TLC on silica gel (petroleum ether/EtOAc = 5/1) to give the product.

(R)-Methyl 4-phenyl-3,4-dihydrobenzo[e][1,2,3]oxathiazine-4-carboxylate 2,2-dioxide (3aa).

General procedure A, colorless gummy oil, 63 mg, yield: 99%. ¹H NMR (400 MHz, CDCl₃) δ = 7.48 (dd, J = 8.0, 1.4 Hz, 1H), 7.44 (td, J = 8.0, 1.4 Hz, 1H), 7.38 - 7.34 (m, 3H), 7.26 - 7.20 (m, 3H), 7.13 (dd, J = 8.0, 1.4 Hz, 1H), 6.45 (br, 1H), 3.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 170.8, 151.2,$ 139.4, 131.1, 130.7, 129.3, 128.9 127.8, 125.3, 119.9, 119.0, 71.5, 54.8; IR (v/cm⁻¹): 3206, 2963, 1732,

1485, 1413, 1262, 1207, 1105, 1020, 803, 691, 579; HPLC [Daicel Chiralpak AD-H, hexane/i-PrOH = 90/10, 210 nm, 0.5 mL/min. $t_{R1} = 30.6 \text{ min (major)}, t_{R2} = 46.2 \text{ min (minor)}]; ee = 98\%, [\alpha]^{25}_{D} = +36.7 (c = 0.63, CHCl_3); HRMS (ESI)$ calcd for C₁₅H₁₄NO₅S (M+H)⁺ 320.0593, found 320.0590.

(R)-Methyl 4-(m-tolyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine-4-carboxylate 2,2-dioxide (3ab).

General procedure A, colorless gummy oil, 66 mg, yield: 99%. ¹H NMR (400 MHz CDCl₃) δ = 7.47 (dd, J = 7.8, 1.4 Hz, 1H), 7.42 (td, J = 8.0, 1.4 Hz, 3H), 7.27 - 7.16 (m, 3H), 7.13 (dd, J = 8.4, 0.8 Hz, 1H), 7.02 (m, 2H), 6.39 (s, 1H), 3.89 (s, 3H), 2.32 (s, 3H); ¹³C NMR (100 MHz CDCl₃) δ = 170.9, 151.1, 139.3, 138.7, 131.0, 130.8, 130.1, 128.7, 128.3, 125.2, 124.8, 119.8, 119.2, 71.5, 54.7, 21.8; IR (v/cm⁻¹): 3208, 2963, 1732, 1460, 1405, 1260, 1095, 1023, 863, 800; HPLC [Daicel Chiralpak AD-H, hexane/*i*-PrOH = 85/15, 210 nm, 0.5 mL/min. t_{R1} = 18.2 min (major), t_{R2} = 21.0 min (minor)]; ee = 99%, [α]²⁵_D = +31.5 (c = 0.66, CHCl₃); HRMS (ESI) calcd for C₁₆H₁₆NO₅S (M+H)⁺ 334.0749, found 334.0740.

(R)-Methyl 4-(p-tolyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine-4-carboxylate 2,2-dioxide (3ac).

General procedure A, colorless gummy oil, 66 mg, yield: 99%. ¹H NMR (400 MHz CDCl₃) δ = 7.46 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.41 (td, *J* = 8.0, 1.4 Hz, 1H), 7.21 (td, *J* = 8.0, 1.2 Hz, 1H), 7.17 – 7.09 (m, 5H), 6.39 (s, 1H), 3.89 (s, 3H), 2.35 (s, 3H); ¹³C NMR (100 MHz CDCl₃) δ = 170.9, 151.2, 139.3, 136.5, 131.0, 130.7, 129.6, 127.6, 125.2, 119.8, 119.3, 71.3, 54.7, 21.4; IR (v/cm⁻¹): 3254, 2963, 1732, 1614, 1580, 1507, 1416, 1261, 1100, 1020, 799, 705; HPLC [Daicel Chiralpak AD-H, hexane/*i*-PrOH

= 85/15, 210 nm, 0.5 mL/min. t_{R1} = 23.3 min (major), t_{R2} = 35.2 min (minor)]; ee = 98%, $[\alpha]^{25}_{D}$ = +42.3 (c = 0.66, CHCl₃); HRMS (ESI) calcd for C₁₆H₁₆NO₅S (M+H)⁺ 334.0749, found 334.0744.

(R)-Methyl 4-(4-methoxyphenyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine-4-carboxylate 2,2-dioxide (3ad).

General procedure A, colorless gummy oil, 69 mg, yield: 99%. ¹H NMR (400 MHz CDCl₃) δ = 7.46 (d, *J* = 8.0 Hz, 1H), 7.42 (td, *J* = 8.0, 1.4 Hz, 1H), 7.22 (td, *J* = 8.0, 1.4 Hz, 1H), 7.13 (d, *J* = 9.2 Hz, 2H), 7.13 (d, *J* = 8.4 Hz, 1H), 6.86 (d, *J* = 9.6 Hz, 2H), 6.36 (s, 1H), 3.89 (s, 3H), 3.80 (s, 3H); ¹³C NMR (100 MHz CDCl₃) δ = 171.0, 160.1, 151.1, 131.4, 131.0, 130.8, 129.1, 125.2, 119.8, 119.6, 114.1, 71.2, 55.5, 54.6; IR (v/cm⁻¹): 3271, 2960, 2052, 1646, 1608, 1507, 1488, 1472, 1259, 1173, 1104, 1019, 894, 799; HPLC [Daicel Chiralpak AD-H, hexane/*i*-PrOH = 85/15, 210 nm, 0.5

mL/min. $t_{R1} = 35.5 \text{ min (major)}, t_{R2} = 42.8 \text{ min (minor)}]; ee = 98\%, [\alpha]^{25}_{D} = +45.3 (c = 0.70, CHCl_3); HRMS (ESI) calcd for C₁₆H₁₆NO₆S (M+H)⁺ 350.0698, found 350.0691.$

(R)-Methyl 4-([1,1'-biphenyl]-4-yl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine-4-carboxylate 2,2-dioxide (3ae).

General procedure A, colorless gummy oil, 73 mg, yield: 92%. ¹H NMR (400 MHz CDCl₃) δ = 7.59 – 7.56 (m, 4H), 7.54 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.48 – 7.42 (m, 3H), 7.36 (tt, *J* = 7.4, 1.6 Hz, 1H), 7.32 – 7.28 (m, 2H), 7.26 (td, *J* = 7.6, 1.2 Hz, 1H), 7.16 (dd, *J* = 8.4, 1.2 Hz, 1H), 6.50 (s, 1H), 3.92 (s, 3H); ¹³C NMR (100 MHz CDCl₃) δ = 170.8, 151.2, 142.1, 140.2, 138.3, 131.2, 130.7, 129.1, 128.2, 128.0, 127.5, 127.4, 125.4, 120.0, 119.0, 71.3, 54.9; IR (v/cm⁻¹): 3264, 2961, 2851, 1739, 1486, 1418, 1258,

1175, 1107, 863, 804, 699; HPLC [Daicel Chiralpak AD-H, hexane/*i*-PrOH = 85/15, 210 nm, 0.5 mL/min. t_{R1} = 36.7 min (minor), t_{R2} = 47.6 min (major)]; ee = 98%, $[\alpha]^{25}_{D}$ = +36.0 (c = 0.70, CHCl₃); HRMS (ESI) calcd for C₂₁H₁₈NO₅S (M+H)⁺ 396.0906, found 396.0915.

(R)-Methyl 4-(4-fluorophenyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine-4-carboxylate 2,2-dioxide (3af).

General procedure A, colorless gummy oil, 61 mg, yield: 90%. ¹H NMR (400 MHz CDCl₃) δ = 7.50 – 7.43 (m, 2H), 7.26 (dd, *J* = 7.4, 1.4 Hz, 1H), 7.23 – 7.19 (m, 2H), 7.15 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.06 (m, 2H), 6.47 (s, 1H). 3.89 (s, 3H); ¹³C NMR (100 MHz CDCl₃) δ = 170.6, 163.0 (d, *J* = 247.3 Hz), 151.3, 135.2 (d, *J* = 3.5 Hz), 131.4, 130.2, 129.8 (d, *J* = 8.4 Hz), 125.4, 120.1, 118.7, 115.8 (q, *J* = 22.4 Hz) 70.9, 54.9; IR (v/cm⁻¹): 3254, 2961, 2852, 1733, 1605, 1508, 1417, 1260,

1104, 1016, 802, 711, 623; HPLC [Daicel Chiralpak AD-H, hexane/*i*-PrOH = 85/15, 210 nm, 0.5 mL/min. t_{R1} = 19.1 min (major), t_{R2} = 23.0 min (minor)]; ee = 98%, [α]²⁵_D = +63.7 (c = 0.60, CHCl₃); HRMS (ESI) calcd for C₁₅H₁₃FNO₅S (M+H)⁺ 338.0498, found 338.0494.

(R)-Methyl 4-(4-chlorophenyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine-4-carboxylate 2,2-dioxide (3ag).

General procedure A, colorless gummy oil, 66 mg, yield: 94%. ¹H NMR (400 MHz CDCl₃) δ = 7.50 – 7.43 (m, 2H), 7.25 (td, *J* = 7.6, 1.6 Hz, 1H), 7.18 – 7.13 (m, 3H), 6.50 (s, 1H), 3.89 (s, 3H); ¹³C NMR (100 MHz CDCl₃) δ = 170.4, 151.3, 137.8, 135.3, 131.4, 130.1, 129.3, 129.0, 125.4, 120.2, 118.3, 70.8, 55.0; IR (v/cm⁻¹): 3257, 2960, 2862, 1732, 1580, 1489, 1417, 1260, 1174, 1095, 935, 831, 761; HPLC [Daicel Chiralpak AD-H, hexane/*i*-PrOH = 85/15, 210 nm, 0.5 mL/min. t_{R1} = 20.9 min (major), t_{R2} =

24.4 min (minor)]; ee = 98%, $[\alpha]^{25}_{D}$ = +63.9 (c = 0.66, CHCl₃); HRMS (ESI) calcd for C₁₅H₁₃ClNO₅S (M+H)⁺ 354.0203, found 354.0200.

(R)-Methyl 4-(4-bromophenyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine-4-carboxylate 2,2-dioxide (3ah).

General procedure A, colorless gummy oil, 73 mg, yield: 92%. ¹H NMR (400 MHz CDCl₃) δ = 7.55 – 7.40 (m, 4H), 7.35 – 7.20 (m, 1H), 7.18 – 7.06 (m, 3H), 6.52 (s, 1H), 3.89 (s, 3H); ¹³C NMR (100 MHz CDCl₃) δ = 170.4, 151.3, 138.4, 132.0, 131.5, 130.1, 129.6, 125.5, 123.5, 120.2, 118.1, 70.9, 55.1; IR (v/cm⁻¹): 3293, 2958, 1735, 1578, 1485, 1413, 1395, 1175, 1007, 893, 743; HPLC [Daicel Chiralpak AD-H, hexane/*i*-PrOH = 90/10, 210 nm, 0.5 mL/min. t_{R1} = 32.5 min (major), t_{R2} = 37.2 min (minor)];

ee = 98%, $[\alpha]^{20}_{D}$ = +40.1 (c = 1.0, CHCl₃); HRMS (ESI) calcd for C₁₅H₁₂BrNO₅SNa (M+Na)⁺ 419.9517, found 419.9519.

(R)-Methyl 4-(4-(methoxycarbonyl)phenyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine-4-carboxylate 2,2-dioxide (3ai).

General procedure A, colorless gummy oil, 39 mg, yield: 52%. ¹H NMR (400 MHz CDCl₃) δ = 8.01 (d, *J* = 8.4 Hz, 2H), 7.51 – 7.45 (m, 2H), 7.30 (d, *J* = 8.4 Hz, 2H), 7.26 (t, *J* = 7.2 Hz, 1H), 7.16 (d, *J* = 7.6 Hz, 1H), 6.55 (s, 1H), 3.90 (s, 3H), 3.89 (s, 3H); ¹³C NMR (100 MHz CDCl₃) δ = 170.3, 166.5, 151.4, 143.9, 131.5, 130.9, 130.1, 130.0, 127.9, 125.5, 120.3, 118.0, 71.0, 55.1, 52.5; IR (v/cm⁻¹): 3260, 2962, 1716, 1614, 1580, 1507, 1485, 1417, 1261, 1104, 1019, 865, 803, 698; HPLC [Daicel

Chiralpak AD-H, hexane/*i*-PrOH = 85/15, 210 nm, 0.5 mL/min. t_{R1} = 38.8 min (major), t_{R2} = 44.4 min (minor)]; ee = 97%, $[\alpha]^{25}_{D}$ = +35.1 (c = 0.22, CHCl₃); HRMS (ESI) calcd for $C_{17}H_{16}NO_7S$ (M+H)⁺ 378.0647, found 378.0658.

(R)-Methyl 4-(naphthalen-2-yl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine-4-carboxylate 2,2-dioxide (3aj).

General procedure A, colorless gummy oil, 55 mg, yield: 74%. ¹H NMR (400 MHz CDCl₃) δ = 7.84 (t, J = 8.0 Hz, 2H), 7.75 (dd, J = 7.6, 1.6 Hz, 1H), 7.61 (d, J = 1.6 Hz, 1H), 7.54 (td, J = 8.0, 1.6 Hz, 2H), 7.51 – 7.45 (m, 2H), 7.36 (dd, J = 8.4, 2.0 Hz, 1H), 7.26 (td, J = 8.0, 1.0 Hz, 1H), 7.18 (dd, J = 8.0, 1.0 Hz, 1H), 6.54 (br, 1H), 3.90 (s, 3H); ¹³C NMR (100 MHz CDCl₃) δ = 170.8, 151.3, 136.4, 133.4, 132.7, 131.3, 130.7, 129.1, 128.7, 127.8, 127.4, 127.3, 126.9, 125.3, 124.9, 120.0, 118.8, 71.6, 54.8; IR (v/cm⁻)

¹): 3256, 2963, 1733, 1716, 1508, 1412, 1261, 1093, 1020, 864, 799, 704; HPLC [Daicel Chiralpak AD-H, hexane/*i*-PrOH = 85/15, 210 nm, 0.5 mL/min. t_{R1} = 35.8 min (major), t_{R2} = 50.4 min (minor)]; ee = 99%, [α]²⁵_D = +17.6 (c = 0.26, CHCl₃); HRMS (ESI) calcd for C₁₉H₁₆NO₅S (M+H)⁺ 370.0749, found 370.0746.

(S)-Methyl 4-(thiophen-3-yl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine-4-carboxylate 2,2-dioxide (3ak).

General procedure A, colorless gummy oil, 49 mg, yield: 67%. ¹H NMR (400 MHz CDCl₃) δ = 7.55 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.45 – 7.40 (m, 1H), 7.34 (dd, *J* = 5.0, 2.6 Hz, 1H), 7.26 – 7.21 (m, 1H), 7.14 (dd, *J* = 2.8, 1.2 Hz, 1H), 7.11 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.00 (dd, *J* = 5.2, 1.6 Hz, 1H), 6.32 (s, 1H), 3.90 (s, 3H); ¹³C NMR (100 MHz CDCl₃) δ = 170.2, 150.7, 139.9, 131.1, 130.3, 127.1, 126.7, 125.4,

125.4, 119.8, 119.6, 68.2, 54.8; IR (v/cm⁻¹): 3245, 2962, 1731, 1580, 1417, 1261, 1019, 799, 699; HPLC [Daicel Chiralpak AD-H, hexane/*i*-PrOH = 85/15, 210 nm, 0.5 mL/min. t_{R1} = 26.0 min (major), t_{R2} = 30.4 min (minor)]; ee = 96%, $[\alpha]^{25}_{D}$ = +30.2 (c = 0.28, CHCl₃); HRMS (ESI) calcd for C₁₃H₁₂NO₅S₂ (M+H)⁺ 326.0157, found 326.0150.

(R)-Methyl 8-methyl-4-(m-tolyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine-4-carboxylate 2,2-dioxide (3bb).

General procedure A, colorless gummy oil, 69 mg, yield: 99%. ¹H NMR (400 MHz CDCl₃) δ = 7.29 – 7.20 (m, 3H), 7.18 – 7.00 (m, 4H), 6.37 (s, 1H), 3.88 (s, 3H), 2.32 (s, 6H); ¹³C NMR (100 MHz CDCl₃) δ = 171.0, 149.5, 139.4, 138.6, 132.4, 130.0, 129.2, 128.6, 128.4, 128.2, 124.9, 124.5, 119.4, 71.6, 54.6, 21.8, 16.0; IR (v/cm⁻¹): 3259, 2956, 2925, 1738, 1607, 1488, 1422, 1362, w 870, 786, 568; HDLC (Databack IE H, havena/i DrOH = 00/10, 210 nm, 0.5 mL/min, t

1259, 1209, 1161, 1077, 879, 786, 568; HPLC [Daicel Chiralpak IE-H, hexane/*i*-PrOH = 90/10, 210 nm, 0.5 mL/min. t_{R1} = 28.6 min (minor), t_{R2} = 31.6 min (major)]; ee = 95%, $[\alpha]^{20}_{D}$ = +19.3 (c = 0.73, CHCl₃); HRMS (ESI) calcd for $C_{17}H_{18}NO_5S$ (M+H)⁺ 348.0906, found 348.0902.

(R)-Methyl 7-methyl-4-(m-tolyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine-4-carboxylate 2,2-dioxide (3cb).

General procedure A, white solid, 69 mg, yield: 99%, Mp: 137-138 °C. ¹H NMR (400 MHz CDCl₃) δ = 7.25 (ddd, *J* = 32.4, 30.2, 7.9 Hz, 4H), 7.07 – 7.00 (m, 3H), 6.94 (s, 1H), 3.88 (s, 3H), 2.39 (s, 3H), 2.33 (s, 3H); ¹³C NMR (100 MHz CDCl₃) δ = 171.0, 150.9, 141.8, 139.5, 138.7, 130.5, 130.0, 128.7, 128.3, 126.2, 121.8, 120.0, 116.1, 71.3, 54.6, 21.8, 21.3; IR (v/cm⁻¹): 3257, 2969, 2923, 1732, 1622, 1497, 1423, 1350, 1259, 1203, 1117, 904, 807, 703; HPLC [Daicel

Chiralpak AD-H, hexane/*i*-PrOH = 90/10, 210 nm, 0.5 mL/min. t_{R1} = 31.5 min (major), t_{R2} = 50.5 min (minor)]; ee = 97%, $[\alpha]^{20}_{D}$ = +33.9 (c = 0.73, CHCl₃); HRMS (ESI) calcd for $C_{17}H_{18}NO_5S$ (M+H)⁺ 348.0906, found 348.0916.

(R)-Methyl 6-methyl-4-(m-tolyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine-4-carboxylate 2,2-dioxide (3db).

General procedure A, colorless gummy oil, 69 mg, yield: 99%. ¹H NMR (400 MHz CDCl₃) δ = 7.28 – 7.15 (m, 4H), 7.07 – 6.99 (m, 3H), 6.31 (s, 1H), 3.90 (s, 3H), 2.34 (s, 3H), 2.32 (s, 3H); ¹³C NMR (100 MHz CDCl₃) δ = 170.9, 149.0, 139.4, 138.7, 135.0, 131.7, 130.8, 130.1, 128.7, 128.3, 124.9, 119.5, 119.0, 71.5, 54.6, 21.8, 21.2; IR (v/cm⁻¹): 3281, 2960, 1730, 1661, 1608, 1488, 1417, 1260, 1178, 1116, 1024, 801, 700; HPLC [Daicel Chiralpak AD-H, hexane/*i*-PrOH = 90/10, 210 nm, 0.5

mL/min. $t_{R1} = 20.4 \text{ min (major)}, t_{R2} = 25.7 \text{ min (minor)}]; ee = 96\%, [\alpha]^{20}_{D} = +22.9 (c = 0.95, CHCl_3); HRMS (ESI) calcd for C_{17}H_{18}NO_5S (M+H)^+ 348.0906, found 348.0909.$

(R)-Methyl 6-ethyl-4-(m-tolyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine-4-carboxylate 2,2-dioxide (3eb).

General procedure A, colorless gummy oil, 72 mg, yield: 99%. ¹H NMR (400 MHz CDCl₃) δ = 7.26 (ddd, *J* = 7.6, 5.6, 2.8 Hz, 3H), 7.18 (d, *J* = 7.6 Hz, 1H), 7.04 (dd, *J* = 10.7, 4.6 Hz, 3H), 6.37 (s, 1H), 3.90 (s, 3H), 2.62 (q, *J* = 7.6 Hz, 2H), 2.34 (s, 3H) 1.19 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz CDCl₃) δ = 171.0, 149.2, 141.3, 139.4, 138.7, 130.6, 130.0, 129.8, 128.7, 128.4, 124.9, 119.6, 118.8, 71.5, 54.6, 28.5, 21.8, 15.8; IR (v/cm⁻¹): 3261, 2964, 2862, 1734, 1614, 1580, 1488, 1417, 1262, 1120,

1116, 1019, 803, 698; HPLC [Daicel Chiralpak AD-H, hexane/*i*-PrOH = 90/10, 210 nm, 0.5 mL/min. t_{R1} = 20.4 min (major), t_{R2} = 25.7 min (minor)]; ee = 96%, $[\alpha]^{20}_{D}$ = +22.9 (c = 0.95, CHCl₃); HRMS (ESI) calcd for C₁₈H₂₀NO₅S (M+H)⁺ 362.1062, found 362.1065.

(R)-Methyl 7-methoxy-4-(m-tolyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine-4-carboxylate 2,2-dioxide (3fb).

General procedure A, white solid, 72 mg, yield: 99%, Mp: 166-167 °C. ¹H NMR (400 MHz CDCl₃) δ = 7.37 (d, *J* = 8.9 Hz, 1H), 7.20 (dd, *J* = 25.9, 7.9 Hz, 2H), 7.06 – 6.98 (m, 2H), 6.78 (dd, *J* = 8.9, 2.7 Hz, 1H), 6.62 (d, *J* = 2.6 Hz, 1H), 6.39 (s, 1H), 3.88 (s, 3H), 3.83 (s, 3H), 2.33 (s, 3H); ¹³C NMR (100 MHz CDCl₃) δ = 171.1, 161.3, 152.0, 139.6, 138.7, 131.5, 130.0, 128.7,

128.2, 124.8, 112.4, 110.7, 104.1, 71.0, 55.9, 54.6, 21.8; IR (v/cm⁻¹): 3214, 2955, 1738, 1620, 1573, 1505, 1412, 1261, 1190, 1157, 1027, 939, 814, 707; HPLC [Daicel Chiralpak AD-H, hexane/*i*-PrOH = 90/10, 210 nm, 0.5 mL/min. t_{R1} = 48.4 min (major), t_{R2} = 65.1 min (minor)]; ee = 96%, $[\alpha]^{20}_{D}$ = +17.5 (c = 1.0, CHCl₃); HRMS (ESI) calcd for $C_{17}H_{18}NO_6S$ (M+H)⁺ 364.0855, found 364.0861.

(R)-Methyl 6-methoxy-4-(m-tolyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine-4-carboxylate 2,2-dioxide (3gb).

General procedure A, colorless gummy oil, 72 mg, yield: 99%. ¹H NMR (400 MHz CDCl₃) δ = 7.25 (dd, J = 10.8, 4.3 Hz, 1H), 7.17 (d, J = 7.9 Hz, 1H), 7.10 – 7.01 (m, 3H), 6.96 (dq, J = 5.8, 3.0 Hz, 1H), 6.33 (s, 1H), 3.90 (s, 3H), 3.75 (s, 3H), 2.33 (s, 3H); ¹³C NMR (100 MHz CDCl₃) δ = 170.8, 156.4, 144.9, 139.2, 138.7, 130.1, 128.7, 128.3, 124.8, 120.5, 120.2, 116.4, 115.8, 71.6, 56.0, 51.7, 21.8; IR (v/cm⁻¹): 3257, 2956, 1744, 1608, 1491, 1419, 1250, 1175, 1036, 855, 702; HPLC [Daicel

Chiralpak AD-H, hexane/*i*-PrOH = 90/10, 210 nm, 0.5 mL/min. t_{R1} = 31.9 min (major), t_{R2} = 37.7 min (minor)]; ee = 98%, $[\alpha]^{20}_{D}$ = +45.9 (c = 1.0, CHCl₃); HRMS (ESI) calcd for C₁₇H₁₈NO₅S (M+H)⁺ 364.0855, found 364.0865.

(R)-Methyl 7-chloro-4-(m-tolyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine-4-carboxylate 2,2-dioxide (3hb).

General procedure A, colorless gummy oil, 71 mg, yield: 97%. ¹H NMR (400 MHz CDCl₃) δ = 7.38 (d, *J* = 8.6, Hz, 1H), 7.25 – 7.12 (m, 4H), 7.00 (dd, *J* = 5.5, 4.8 Hz, 2H), 6.42 (s, 1H), 3.89 (s, 3H), 2.32 (s, 3H); ¹³C NMR (100 MHz CDCl₃) δ = 170.6, 151.3, 139.0, 136.4, 132.2, 130.4, 128.9, 128.1, 125.7, 124.7, 119.9, 118.1, 71.3, 54.8, 21.8; IR (v/cm⁻¹): 3257, 2961, 2926, 2855, 1732, 1607, 1568, 1417, 1260, 1089, 1016, 799, 700; HPLC [Daicel Chiralpak AD-H, hexane/*i*-PrOH =

90/10, 210 nm, 0.5 mL/min. $t_{R1} = 22.8$ min (major), $t_{R2} = 36.0$ min (minor)]; ee = 96%, $[\alpha]^{20}{}_{D} = +7.4$ (c = 0.5, CHCl₃); HRMS (ESI) calcd for $C_{16}H_{15}NO_5SCl$ (M+H)⁺ 368.0359, found 368.0361.

(R)-Methyl 4-(m-tolyl)-3,4-dihydronaphtho[2,1-e][1,2,3]oxathiazine-4-carboxylate 2,2-dioxide (3ib).

General procedure A, white solid, 74 mg, yield: 96%, Mp: 185-186 °C. ¹H NMR (400 MHz CDCl₃) $\delta = 8.25$ (dd, J = 6.1, 3.6, Hz, 1H), 7.86 (dd, J = 6.2, 3.2 Hz, 1H), 7.64 (ddd, J = 10.2, 6.7, 3.2 Hz, 3H), 7.46 (d, J = 8.8 Hz, 1H), 7.24 (dt, J = 23.6, 6.7 Hz, 2H), 7.06 (d, J = 9.0 Hz, 2H), 6.49 (s, 1H), 3.93 (s, 3H), 2.33 (s, 3H); ¹³C NMR (100 MHz CDCl₃) $\delta = 170.9$, 147.0, 130.2,

128.8, 128.5, 128.4, 127.7, 127.6, 125.0, 124.4, 114.6, 71.9, 54.6, 21.7; IR (v/cm⁻¹): 3260, 2962, 1736, 1603, 1404, 1260, 1176, 1095, 927, 811; HPLC [Daicel Chiralpak AD-H, hexane/*i*-PrOH = 90/10, 210 nm, 0.5 mL/min. t_{R1} = 66.4 min (major), t_{R2} = 120.0 min (minor)]; ee = 98%, $[\alpha]^{20}_{D}$ = -17.8 (c = 1.2, CHCl₃); HRMS (ESI) calcd for C₂₀H₁₈NO₅S (M+H)⁺ 384.0906, found 384.0894.

(R)-Ethyl 4-(m-tolyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine-4-carboxylate 2,2-dioxide (3jb).

General procedure B, white solid, 69 mg, yield: 99%, Mp: 122-123 °C. ¹H NMR (400 MHz CDCl₃) $\delta = 7.52 - 7.38$ (m, 2H), 7.25 - 7.19 (m, 2H), 7.18 - 6.99 (m, 4H), 6.41 (s, 1H), 4.37 (q, J = 7.2 Hz, 2H), 2.33 (s, 3H), 1.28 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz CDCl₃) $\delta = 170.3$, 151.2, 139.5, 138.6, 131.0, 130.9, 130.0, 128.6, 128.3, 125.1, 124.8, 119.8, 119.3, 71.4, 61.3, 21.8, 14.1; IR

 (v/cm^{-1}) : 3239, 2963, 2921, 1720, 1610, 1445, 1421, 1285, 1237, 1176, 1107, 870, 691; HPLC [Daicel Chiralpak AD-H, hexane/*i*-PrOH = 90/10, 210 nm, 0.5 mL/min. t_{R1} = 23.2 min (major), t_{R2} = 25.2 min (minor)]; ee = 92%, $[\alpha]^{20}_{D}$ = +28.4 (c = 0.26, CHCl₃); HRMS (ESI) calcd for C₁₇H₁₈NO₅S (M+H)⁺ 348.0906, found 348.0909.

(R)-Propyl 4-(m-tolyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine-4-carboxylate 2,2-dioxide (3kb).

General procedure B, white solid, 71 mg, yield: 98%, Mp: 130-131 °C. ¹H NMR (400 MHz CDCl₃) $\delta = 7.54 - 7.38$ (m, 2H), 7.26 - 7.19 (m, 2H), 7.18 - 7.09 (m, 2H), 7.08 - 6.98 (m, 2H), 6.43 (s, 1H), 4.26 (ddd, J = 17.3, 10.6, 4.0 Hz, 2H), 2.32 (s, 3H), 1.66 (dd, J = 14.2, 7.0 Hz, 2H), 0.84 (t, J = 7.4Hz, 3H); ¹³C NMR (100 MHz CDCl₃) $\delta = 170.4$, 151.2, 139.6, 138.6, 131.0, 131.0, 130.0, 128.6, 128.3, 125.1, 124.9, 119.8, 119.4, 71.5, 69.8, 21.9, 21.8, 10.4; IR (v/cm⁻¹): 3229, 2967, 2877, 1716,

1609, 1483, 1420, 1287, 1263, 1177, 1070, 1051, 950, 868, 609; HPLC [Daicel Chiralpak AD-H, hexane/*i*-PrOH = 95/5, 210 nm, 0.5 mL/min. $t_{R1} = 38.7 \text{ min (major)}, t_{R2} = 41.0 \text{ min (minor)}];$ ee = 98%, [α]²⁰_D = +22.1 (c = 0.65, CHCl₃); HRMS (ESI) calcd for C₁₈H₂₀NO₅S (M+H)⁺ 362.1062, found 362.1060.

4. Reduction of arylation product 3cb

The reaction was carried out in a modified procedure of Hon Wai Lam.³ To a solution of the arylation product **3cb** (208 mg, 0.6 mmol) in THF (2 mL) at room temperature was added LiAlH₄ (1.0 M in THF, 2.4 mL, 2.4 mmol) dropwise over 2 min. The mixture was heated at 55 °C overnight, cooled naturally to room temperature, and then to 0 °C with an ice bath. The reaction was quenched carefully with EtOAc (5 mL) followed by EtOH (5 mL). The solution was concentrated in vacuo. Purification of the residue by column chromatography (2:1 petroleum ether:EtOAc \rightarrow 1:1 petroleum ether:EtOAc) gave the product **4** (133 mg, 86%) as a yellow ointment. ¹H NMR (400 MHz CDCl₃) δ = 7.30 – 7.05 (m, 4H), 6.55 – 6.75 (m, 3H), 5.10 (brs, 4H), 4.15 (d, *J* = 12.0 Hz, 1H), 3.92 (d, *J* = 8.0 Hz, 1H), 2.34 (s, 3H), 2.26 (s, 3H); ¹³C NMR (100 MHz CDCl₃) δ = 158.4, 143.3, 139.7, 138.6, 128.8, 128.5, 128.0, 127.0, 123.8, 123.5, 120.1, 118.7, 68.5, 63.7, 22.0, 21.3; IR (v/cm⁻¹): 3363, 2922, 1621, 1578, 1490, 1452, 1384, 1298, 1270, 1163, 1040, 950, 781, 704; HPLC [Daicel Chiralpak AD-H, hexane/*i*-PrOH = 95/5, 210 nm, 0.5 mL/min. t_{R1} = 40.9 min (minor), t_{R2} = 46.9 min (major)]; ee = 99.9%, [α]²⁰_D = +3.6 (c = 1.0, CHCl₃); HRMS (ESI) calcd for C₁₆H₁₇O₂ (M-NH₂)⁺ 241.1229, found 241.1233.

5. Computational Details

All computations were carried out using the Hybrid Becke functional (B3)⁴ for electron exchange and the correlation functional of Lee, Yang and Parr (LYP),⁵ as implemented in the Gaussian 09 software package.⁶ For palladium the GEN basis set with the associated effective Core Potential was employed.⁷ All other atoms were modeled at the 6-31G(d,p) level of theory.⁸

Geometry optimizations were performed with the account of the solvent effects (CPCM, Ethanol) without applying any geometry Constraints (C1 symmetry).

Starting geometries for the transition state search were located either by QST2 or QST3 procedures, or by the guess based on the structure of the previously found TS. The transition states were subsequently fully optimized as saddle points of first order, employing the Berny algorithm.⁹ Frequency Calculations were carried out to confirm the nature of the stationary points, yielding zero imaginary frequencies for all Pd complexes and one imaginary frequency for all transition states, which represented the vector for the appropriate bond formation.

Energies and Free Energies of Computed Structures

Figure 1. Catalytic circle of Pd(II)-catalyzed asymmetric addition of phenylboronic acid to substrate 1a.

Compound, Mechanism	ZPVE Corrected Energy, a.u.	Free Energy (298 K), a.u.
5	-1866.831838	-1866.898422
5TS	-1866.814831	-1866.880147
6	-1866.857112	-1866.926947
7	-1238.246302	-1238.304735
8	-2414.030638	-2414.104011
8TS ^R	-2413.999566	-2414.072414
8TS ⁵	-2414.990022	-2414.061573
9	-2414.028763	-2414.100067
10	-2866.653407	-2866.733166
11	-2866.634719	-2866.714825
12	-1458.764723	-1458.823013
1a	-1175.743245	-1175.784588

2a	-408.035010	-408.067570
Заа	-1407.857238	-1407.903903
B(OH) ₂ OCH ₂ CF ₃	-628.585403	-628.620145
CF ₃ CH ₂ OH	-452.592870	-452.624038

Figure 2 Alternative pathways of arylation.

Compound, Mechanism	ZPVE Corrected Energy, a.u.	Free Energy (298 K), a.u.
13	-1238.245439	-1238.301173
14	-2414.032364	-2414.107870
14TS ^{<i>R</i>}	-2413.994120	-2414.065395
14TS ^s	-2413.997013	-2414.068774

Reference

- [1] B. H. Brodsky and J. D. Bois, J. Am. Chem. Soc., 2005, 127, 15391.
- [2] F. Hu, X. Guan and M. Shi, Tetrahedron, 2012, 68, 4782.

- [3] Y. Luo, A. J. Carnell and H. W. Lam, Angew. Chem. Int. Ed., 2012, 51, 6762.
- [4] (a) A. D. Becke, J. Chem. Phys., 1993, 98, 1372; (b) A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
- [5] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
- [6] Gaussian 09, Revision A.02, M. J. Frisch , G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. 10 Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- [7] D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chim. Acta, 1990, 77, 123.
- [8] (a) R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys., 1971, 54, 724; (b) W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys., 1972, 56, 2257; (c) P. C. Hariharan, J. A. Pople, Theor. Chim. Acta, 1973, 28, 213; (d) P. C. Hariharan, J. A. Pople, Mol. Phys. 1974, 27, 209; (e) M. S. Gordon, Chem. Phys. Lett., 1980, 76, 163.
- [9] C. Y. Peng, B. Schlegel, Isr. J. Chem., 1994, 34, 449.

6. NMR Spectrua

S31

7. HPLC Spectra of Products

LOG CALLER AND	our maouni				
峰#	保留时间	面积	高度	面积 %	高度 %
1	30. 582	9725318	248407	98.901	99.200
2	46.219	108029	2004	1.099	0.800
总计		9833347	250411	100.000	100.000

1 检测器 A 通道1/230nm

峰表 @D:\DATA\ygq\addition B-2\ygq-phenol-mMeB-cat-adh-15%.lcd 检测器 A Ch1 230nm

THE PART OF A	oni boonin				
峰#	保留时间	面积	高度	面积 %	高度 %
1	18.163	922241	41326	99.259	99.188
2	21.005	6887	338	0.741	0.812
总计		929128	41664	100.000	100.000

峰表 @D:\DATA\ygq\addition B-2\ygq-phenol-pMeB-cat-adh-15%-2.lcd 检测器 A Ch1 210nm

19 DO HE L					
峰#	保留时间	面积	高度	面积 %	高度 %
1	23.325	4654959	169153	98.989	99.270
2	35.205	47539	1245	1.011	0.730
总计		4702498	170398	100.000	100.000

1 检测器 A 通道1/210nm

峰表 @D:\DATA\ygq\addition B-2\ygq-phenol-pMeOB-rac-adh-15%.lcd

恒测岙 A	Ch1 210nm				
峰#	保留时间	面积	高度	面积 %	高度 %
1	35. 397	2345013	52936	50.382	54.252
2	42.715	2309452	44639	49.618	45.748
总计		4654466	97574	100.000	100.000

恒测岙 A	Ch1 210nm				
峰#	保留时间	面积	高度	面积 %	高度 %
1	35.490	2106845	49637	99.280	99.194
2	42.778	15283	403	0.720	0.806
总计		2122128	50040	100.000	100.000

峰表 @D:\DATA\ygq\addition B-2\ygq-phenol-pPhB-cat-adh-15%.lcd

检测器 A	Ch1 210nm				
峰#	保留时间	面积	高度	面积 %	高度 %
1	36.728	27158	741	0.622	1.000
2	47.605	4341598	73376	99.378	99.000
总计		4368757	74118	100.000	100.000

23.007

25.0

高度 % 98.954 1.046 100.000

<u>面积 %</u> 98.927 1.073 100.000

22.5

峰表 @D:\DATA\ygq\addition B-2\ygq-phenol-pFB-cat-adh-15%.lcd Ch1 230mm 保留时间 面积 高度 面积 % 高度 % 19.080 453741 19530 98.927 98.954 23.007 4921 206 1.073 1.046 458662 1073 1.046

19530 206 19736

27.5

30.0 min

10-

0-

15.0 1 检测器 A 通道1/230nm

<u>检测器 A</u> 峰#

______ 总计

17.5

20.0

4537414921458662

S51

1 检测器 A 通道1/210nm

17.5

0-

15.0

峰表 @D:\DATA\ygq\addition B-2\ygq-phenol-pClB-cat-adh-15%.lcd

22.5

24.381

25.0

27.5

30.0 min

	峰衣 @D:\	\DATA\ygq\add	lition B−2\yg	g_phenol_pCl	B-cat-adh-15
检测器 A	Ch1 210nm				
峰#	保留时间	面积	高度	面积 %	高度 %
1	20.930	5813886	227558	98.946	98.959
2	24.381	61906	2394	1.054	1.041
总计		5875792	229951	100.000	100.000

20.0

Detector A Chi 210nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	32.462	92522803	2100969	98.923	99.039			
2	37.218	1007612	20381	1.077	0.961			
Total		93530415	2121350	100.000	100.000			

THE PART HIP CO					
峰#	保留时间	面积	高度	面积 %	高度 %
1	38.764	1700597	34748	98.746	98.702
2	44.376	21593	457	1.254	1.298
总计		1722189	35205	100.000	100.000

峰#	保留时间	面积	高度	面积 %	高度 %
1	35.703	4738557	107127	99.257	99.377
2	50.251	35492	672	0.743	0.623
总计		4774049	107799	100.000	100.000

检测器 A	Ch1 210nm		** 1X		
峰#	保留时间	面积	高度	面积 %	高度 %
1	26.053	8131315	248936	98.060	98.302
2	30.492	160833	4300	1.940	1.698
总计		8292147	253237	100.000	100.000

Detector A Chi 210hili								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	28.627	3724016	116085	2.666	4.245			
2	31.570	135955777	2618303	97.334	95.755			
Total		139679792	2734388	100.000	100.000			

Detector A Ch1 210nm Height 2248796 29589 Peak# Ret. Time Area % Height % Area 31.485 50.456 98.701 1.299 97857532 98.271 1 2 1721831 1.729 Total 99579362 2278385 100.000 100.000

Detector A	Ch1 210nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	20.417	68737819	2371872	97.863	98.096
2	25.668	1501297	46045	2.137	1.904
Total		70239116	2417916	100.000	100.000

Detector A	Ch1 210nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	17.939	91168448	2769129	98.177	97.890
2	22.906	1692667	59698	1.823	2.110
Total		92861115	2828827	100.000	100.000

S61

1 Det.A Ch1/210nm 500-

	PeakTable						
Detector A Ch1 210nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	31.922	94520714	2209166	98.875	98.767		
2	37.742	1075528	27568	1.125	1.233		
Total		95596242	2236734	100.000	100.000		

min

1 Det.A Ch1/210nm

PeakTable

			1 current aore		
Detector A	Ch1 210nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	22.898	36239394	1081140	50.078	59.780
2	36.059	36126637	727380	49.922	40.220
Total		72366030	1808520	100.000	100.000

1 Det.A Ch1/210nm

-			
Pe	ıkТ	[ab	le
1.00		. uc	10

			Peak lable		
Detector A	Ch1 210nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	22.808	126726961	3294454	97.825	98.189
2	35.972	2817420	60758	2.175	1.811
Total		129544381	3355212	100.000	100.000

峰表

检测器 A	Ch1 210nm		-+ V	~	
峰#	保留时间	面积	高度	面积 %	高度 %
1	66.364	33099666	372266	99.043	99.374
2	119.970	319803	2343	0.957	0.626
总计		33419469	374610	100.000	100.000

	i cuit i doi	•
•a	Height	An

			Peak rabi	e	
Detector A	Ch1 210nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	23.209	138359432	3027200	96.193	94.872
2	25.222	5476404	163638	3.807	5.128
Total		143835836	3190838	100.000	100.000

	Detector A	Ch1 210nm				
[Peak#	Ret. Time	Area	Height	Area %	Height %
ĺ	1	38.746	148633153	2566717	97.879	97.798
ĺ	2	40.981	3221338	57781	2.121	2.202
[Total		151854491	2624498	100.000	100.000

位测希 A Ch1 210nm				
峰# 保留时间	面积	高度	面积 %	高度 %
1 40.089	9673	214	0.004	0.008
2 46.639	267555071	2637632	99.996	99.992
总计	267564744	2637846	100.000	100.000

8. Cartesian Coordinates

5:

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	-0. 744252	-2. 731416	0. 166995
2	6	0	-1.711970	-3.639588	0.542157
3	6	0	-3.023906	-3.186273	0.66716
4	6	0	-3.299629	-1.846791	0.423378
5	6	0	-2.262625	-0.989482	0.05531
6	7	0	-1.016092	-1.430488	-0.08110
7	1	0	-3.812461	-3.870647	0.95628
8	1	0	-1.447988	-4.673009	0.730729
9	1	0	-2.446834	0.062357	-0.12098
10	6	0	0.675416	-3.037886	0.000598
11	8	0	1.129317	-4.256215	0.17732
12	6	0	2.583094	-4.131583	0.13492
13	6	0	2.824140	-2.784618	-0.56684
14	1	0	2.922328	-4.145492	1.17349
15	1	0	2.973634	-4.988308	-0.40877
16	1	0	2.903003	-2.944143	-1.64888
17	7	0	1.511873	-2.115401	-0.33537
18	6	0	4.082025	-2.018827	-0.09810
19	6	0	4.487130	-1.025661	-1.19753
20	1	0	3.640666	-0.438064	-1.55667
21	1	0	5.254455	-0.335620	-0.83120
22	1	0	4.899789	-1.560302	-2.05985
23	6	0	3.831046	-1.310346	1.23708
24	1	0	3.057613	-0.539590	1.15648
25	1	0	3.512720	-2.017185	2.01154
26	1	0	4.751453	-0.829679	1.58294
27	6	0	5.234829	-3.025514	0.06504
28	1	0	5.368084	-3.625342	-0.84202
29	1	0	6.168873	-2.483757	0.24434
30	1	0	5.084417	-3.704662	0.91003
31	46	0	0.606879	-0.289814	-0.57381
32	8	0	-0.190524	1.580612	-0.80274
33	6	0	-1.128523	1.886296	-1.81161
34	1	0	-1.675183	0.989670	-2.11149
35	1	0	-0.645411	2.327393	-2.68559
36	6	0	-2.119989	2.882034	-1.24999
37	8	0	2.068987	1.079425	-1.00239
38	1	0	2.797430	1.050442	-0.36940

39	5	0	1.203137	2.328012	-0.779140
40	6	0	1.417127	2.960244	0.682587
41	6	0	0.882479	2.364261	1.835609
42	6	0	2.185292	4.119122	0.856620
43	6	0	1.097603	2.901037	3.102846
44	1	0	0.279230	1.462723	1.741200
45	6	0	2.405852	4.667607	2.119621
46	1	0	2.620266	4.607846	-0.012771
47	6	0	1.860909	4.058891	3.247655
48	1	0	0.666130	2. 421391	3.977321
49	1	0	2.999734	5.571540	2.223531
50	1	0	2.026626	4.485271	4.232969
51	8	0	1.371306	3.170560	-1.897993
52	1	0	1.097976	4.073027	-1.711176
53	9	0	-3.049621	3. 189843	-2.165531
54	9	0	-1.524971	4.025155	-0.867988
55	9	0	-2.758912	2.397394	-0.166675
56	6	0	-4.668138	-1.254736	0.536791
57	8	0	-4.902494	-0.084750	0.314403
58	8	0	-5.572020	-2.150672	0.900244
59	6	0	-6.921040	-1.672021	1.033754
60	1	0	-7.280548	-1.284782	0.078142
61	1	0	-7.506519	-2.538113	1.337154
62	1	0	-6.968327	-0.892061	1.796148

5-TS

Center	Atomic	Atomic	Coord	dinates (Angstroms)				
Number	Number	Туре	Х	Y	Z			
1	6	0	-0.738652	-2.196785	-0.551410			
2	6	0	-1.743862	-3.112376	-0.782444			
3	6	0	-3.062892	-2.660921	-0.751490			
4	6	0	-3.314507	-1.316742	-0.503104			
5	6	0	-2.244910	-0.448009	-0.291163			
6	7	0	-0.992591	-0.892578	-0.305193			
7	1	0	-3.878827	-3.354431	-0.917415			
8	1	0	-1.504161	-4.150888	-0.975378			
9	1	0	-2.395626	0.607369	-0. 103591			
10	6	0	0.695974	-2.483316	-0.548951			
11	8	0	1.148207	-3.691996	-0.793841			
12	6	0	2. 580956	-3.627172	-0.518897			
13	6	0	2.903396	-2.121688	-0.538712			

14	1	0	2.727157	-4.091563	0.459214	58	8	0	-5.630707	-1.642176	-0.610602
15	1	0	3.092280	-4.194731	-1.292811	59	6	0	-6.987818	-1.176882	-0.519735
16	1	0	3.212420	-1.825788	-1.548389	60	1	0	-7.179920	-0.424709	-1.287597
17	7	0	1.549663	-1.543480	-0.328319	61	1	0	-7.607444	-2.055970	-0.685942
18	6	0	3.995460	-1.668483	0.455744	62	1	0	-7.175207	-0.756614	0.470277
19	6	0	4.538892	-0.308159	-0.002490						
20	1	0	3.743662	0.419560	-0.170329	6:					
21	1	0	5.225981	0.100782	0.746028						
22	1	0	5.091166	-0.416717	-0.942518	Center	Atomic	Atomic	Coor	dinates (Ang	stroms)
23	6	0	3.444108	-1.591242	1.883205	Number	Number	Туре	Х	Y	Z
24	1	0	2.667193	-0.825822	1.979292						
25	1	0	3.009670	-2.545706	2.201346	1	6	0	2.327896	1.908512	-0.004012
26	1	0	4.249903	-1.342702	2.581147	2	6	0	3. 520467	2.567302	0.234085
27	6	0	5.153711	-2.679309	0.401338	3	6	0	4. 690087	1.820032	0.322543
28	1	0	5.493168	-2.841071	-0.627958	4	6	0	4.612304	0.442040	0.165353
29	1	0	6.002775	-2.291525	0.973056	5	6	0	3.370610	-0.150006	-0.058680
30	1	0	4.885353	-3.648669	0.833037	6	7	0	2.247521	0.564918	-0.138044
31	46	0	0.594226	0.259216	0.119741	7	1	0	5.640263	2.308397	0.503415
32	8	0	0.169331	2.657651	-0.372398	8	1	0	3.530658	3.644622	0.343197
33	6	0	0.759056	3.304676	-1.466533	9	1	0	3. 285239	-1.222094	-0.176443
34	1	0	1.804820	3.577300	-1.292632	10	6	0	1.054031	2.627636	-0.156817
35	1	0	0.201222	4.213387	-1.718607	11	8	0	1.071172	3.947946	-0.023928
36	6	0	0.717821	2.407594	-2.686777	12	6	0	-0.323596	4.351695	-0.041397
37	8	0	2.031913	1.621621	0.600395	13	6	0	-1.054411	3.129594	-0.624852
38	1	0	2.571728	1.390142	1.368130	14	1	0	-0.600482	4.571817	0.993138
39	5	0	0.903961	2.635188	0.925113	15	1	0	-0.406506	5.249833	-0.650180
40	6	0	-0.157578	1.899828	1.939531	16	1	0	-1.176497	3.259134	-1.707702
41	6	0	-1.542048	2.141048	1.824621	17	7	0	-0.053691	2.047033	-0.435836
42	6	0	0.252245	1.030961	2.973172	18	6	0	-2.449724	2.853558	-0.022087
43	6	0	-2.464832	1.539694	2.673189	19	6	0	-3.203423	1.900379	-0.956239
44	1	0	-1.897880	2.801573	1.038773	20	1	0	-2.604421	1.020790	-1.192968
45	6	0	-0.665973	0.424926	3.829950	21	1	0	-4.138598	1.562893	-0. 499467
46	1	0	1.310566	0.828868	3.122033	22	1	0	-3.449663	2.399045	-1.900288
47	6	0	-2.027375	0.671839	3.674738	23	6	0	-2.330517	2.251097	1.380785
48	1	0	-3.525726	1.734846	2.546316	24	1	0	-1.837520	1.275193	1.356394
49	1	0	-0.318205	-0.242093	4.613318	25	1	0	-1.756610	2.898406	2.053372
50	1	0	-2.746140	0.195348	4.335094	26	1	0	-3.325616	2.118107	1.818559
51	8	0	1.521326	3.848331	1.326700	27	6	0	-3.231231	4.175432	0.040593
52	1	0	0.919929	4.377046	1.858069	28	1	0	-3.239619	4.679148	-0.932572
53	9	0	1.024301	3.103376	-3.792506	29	1	0	-4.271249	3.974107	0. 317833
54	9	0	-0.498101	1.858927	-2.872834	30	1	0	-2.823355	4.869304	0.782973
55	9	0	1.593980	1.380859	-2.615069	31	46	0	0.325603	-0.175842	-0. 411228
56	6	0	-4.688456	-0.734219	-0. 414893	32	6	0	0.952638	-2.035148	-0. 293669
57	8	0	-4.894005	0.438476	-0.176591	33	6	0	1.161460	-2.631595	0.952426

34	6	0	1.195613	-2.763540	-1.460535	10	6	0	1.335569	-1.836271	-0.374882
35	6	0	1.620307	-3.947852	1.027398	11	8	0	1.981950	-2.989934	-0.379454
36	1	0	0.979404	-2.075499	1.868276	12	6	0	3. 396086	-2.657392	-0.509107
37	6	0	1.658238	-4.078485	-1.378794	13	6	0	3. 434447	-1.108275	-0.572618
38	1	0	1.035810	-2.310859	-2.436105	14	1	0	3.899840	-3.085259	0.357938
39	6	0	1.872005	-4.671876	-0.136441	15	1	0	3. 760383	-3.131960	-1.419767
40	1	0	1.782261	-4.405905	1.999384	16	1	0	3.809623	-0.779284	-1.547274
41	1	0	1.852308	-4.636524	-2.290754	17	7	0	2.009855	-0.755911	-0.490838
42	1	0	2.234483	-5.693732	-0.074887	18	6	0	4.278711	-0.405050	0.518483
43	8	0	-1.620669	-1.044504	-0.658959	19	6	0	4.248149	1.110518	0.274871
44	1	0	-1.979631	-1.068346	-1.554159	20	1	0	3. 250195	1.535581	0.440763
45	5	0	-2.547065	-1.247679	0.356533	21	1	0	4.931175	1.616694	0.964921
46	8	0	-2.043195	-1.304238	1.611280	22	1	0	4.557504	1.355520	-0.747377
47	1	0	-2.685752	-1.439239	2.315077	23	6	0	3. 740950	-0.710404	1.920870
48	8	0	-3.849847	-1.357339	-0.026043	24	1	0	2.713810	-0.347841	2.040434
49	6	0	-4.882009	-1.469794	0.925932	25	1	0	3. 752518	-1.783217	2.142547
50	1	0	-4.881669	-2.452344	1.406412	26	1	0	4.359828	-0.212756	2.674513
51	1	0	-4.820847	-0.689047	1.690991	27	6	0	5. 728699	-0.892993	0.386205
52	6	0	-6.193858	-1.297272	0.195805	28	1	0	6. 122242	-0.696803	-0.617529
53	9	0	-6.366999	-2.228969	-0.753287	29	1	0	6.366520	-0.369168	1.105435
54	9	0	-7.215512	-1.393223	1.059907	30	1	0	5.825912	-1.965677	0.584084
55	9	0	-6.278283	-0.098398	-0.405542	31	46	0	0.716903	0.971434	-0.294428
56	6	0	5.803009	-0.458279	0.217160	32	6	0	-0.517015	2.463023	-0.088473
57	8	0	5.739665	-1.657386	0.035859	33	6	0	-1.326248	2.667862	1.030009
58	8	0	6.921780	0.202816	0.478723	34	6	0	-0. 417870	3.443440	-1.079452
59	6	0	8.125796	-0.579933	0.518248	35	6	0	-2.019921	3.871636	1.165975
60	1	0	8.298086	-1.053216	-0.450643	36	1	0	-1.414217	1.902574	1.797642
61	1	0	8.922717	0.126433	0.743662	37	6	0	-1.115944	4.644010	-0.935367
62	1	0	8.059318	-1.340991	1.298469	38	1	0	0. 196899	3.279795	-1.963304
						39	6	0	-1.915484	4.857318	0.186139
7:						40	1	0	-2.640455	4.037691	2.041995
						41	1	0	-1.040205	5.407126	-1.704777
Center	Atomic	Atomic	Coord	dinates (Ang	stroms)	42	1	0	-2. 458617	5.791143	0.295668
Number	Number	Туре	Х	Y	Z	43	6	0	-4.299060	-1.356089	0.146554
						44	8	0	-4.786646	-0.248612	0.248504
1	6	0	-0.129381	-1.820604	-0.231204	45	8	0	-4.993543	-2.484564	0.136443
2	6	0	-0.886888	-2.975192	-0.184886	46	6	0	-6. 419163	-2.350744	0.256212
3	6	0	-2.268393	-2.861838	-0.059840	47	1	0	-6.810775	-3.365579	0.217517

____ 7:

4

5

6

7

8

9

6

6

7

1

1

1

0

0

0

0

0

0

-2.830441 -1.594228

-0.474352

-0.582848

-3.748758

-3.941976

0.523304

-1.999889

-0.678173

-2.889917

-0.403068

-2.416129

8:

0.014724

-0.035566

-0.154630

-0.023281

-0.249209

0.021109

Center

48

49

1

1

Atomic Atomic

0

0

Coordinates (Angstroms)

-6.675172 -1.878277

 $-6.\ 812763 \quad -1.\ 758908 \quad -0.\ 572585$

1.206695

Number	Number	Туре	Х	Y	Z	43	6	0	-2.569502	-0.747211	0. 381777
						44	6	0	-3.968742	-0.926494	0.063664
1	6	0	2.869004	1.640848	-0.288010	45	6	0	-4.395012	-0.737767	-1.258435
2	6	0	4.197831	2.005261	-0.397558	46	1	0	-4.626429	-1.466406	2.054295
3	6	0	5.166723	1.007254	-0.363605	47	6	0	-4.918336	-1.329994	1.018658
4	6	0	4.756726	-0.312521	-0.227586	48	6	0	-5.695937	-0.961302	-1.659211
5	6	0	3.395240	-0.599616	-0.135948	49	6	0	-6.615227	-1.360912	-0.693894
6	7	0	2.466116	0.353953	-0.159275	50	6	0	-6.233325	-1.533560	0.639059
7	1	0	6.217950	1.257945	-0.442254	51	1	0	-5.974545	-0.817001	-2.696436
8	1	0	4.464991	3.049423	-0.504214	52	1	0	-7.646347	-1.531080	-0.984726
9	1	0	3.056667	-1.623102	-0.039113	53	1	0	-6.966245	-1.834819	1.378297
10	6	0	1.778346	2.626063	-0.284986	54	8	0	-3.461747	-0.384398	-2.226060
11	8	0	2.064392	3.910631	-0. 426316	55	16	0	-2.319695	0.656345	-1.757711
12	6	0	0.773975	4.578757	-0.541005	56	8	0	-1.311305	0.599773	-2.779950
13	6	0	-0.237489	3.531778	-0.032877	57	8	0	-2.931899	1.903961	-1.374989
14	1	0	0.827851	5.495091	0.044324	58	7	0	-1.717021	-0.109450	-0.366303
15	1	0	0.630324	4.818140	-1.596552	59	6	0	-2.021977	-1.357339	1.664692
16	1	0	-1.090383	3.467115	-0.711822	60	8	0	-2.275292	-2.645713	1.695265
17	7	0	0.552177	2.286177	-0.132075	61	8	0	-1.469038	-0.703021	2.515825
18	6	0	-0.775019	3.771277	1.403411	62	6	0	-1.874365	-3.352648	2.888205
19	6	0	-1.690625	2.609227	1.804302	63	1	0	-2.044541	-4. 404109	2.668283
20	1	0	-1.142991	1.665434	1.853927	64	1	0	-0.820965	-3.167734	3.099027
21	1	0	-2.122216	2.796100	2.793690	65	1	0	-2.494995	-3.026643	3.724992
22	1	0	-2.515985	2.491504	1.094559	66	6	0	5.706570	-1.462886	-0.161964
23	6	0	0.370463	3.886193	2.417474	67	8	0	5.349205	-2.614193	-0.014039
24	1	0	0.957187	2.961929	2.466852	68	8	0	6.969527	-1.077047	-0.273657
25	1	0	1.049441	4.713285	2.183954	69	6	0	7.960046	-2.111539	-0.167217
26	1	0	-0.037925	4.069095	3. 416699	70	1	0	7.831149	-2.845406	-0.965576
27	6	0	-1.596700	5.067663	1.389084	71	1	0	8.919489	-1.607503	-0.268634
28	1	0	-2.397469	5.017904	0.642700	72	1	0	7.887517	-2.602790	0.805153
29	1	0	-2.058481	5.226754	2.369018						
30	1	0	-0.982649	5.947348	1.169604	8-TS ^{<i>R</i>}					
31	46	0	0.376811	0.108123	-0.138839						
32	6	0	0.038788	-2.605519	-1.267613	Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
33	6	0	0.476016	-1.870620	-0.161240	Number	Number	Туре	Х	Y	Z
34	6	0	0.098963	-3.999818	-1.254820						
35	6	0	0.971496	-2.550790	0.956381	1	6	0	2.844188	1.453391	-0.394794
36	6	0	0.590278	-4.672541	-0.138005	2	6	0	4.214377	1.565290	-0.530385
37	1	0	-0.241258	-4.559004	-2.122122	3	6	0	4.992256	0.422961	-0.356472
38	6	0	1.028094	-3.945505	0.966466	4	6	0	4.359524	-0.778537	-0.064769
39	1	0	1.314194	-1.998305	1.828088	5	6	0	2.970618	-0.806013	0. 057952
40	1	0	0.633332	-5.757619	-0.129296	6	7	0	2.228124	0.286405	-0.094214
41	1	0	1.412534	-4. 460155	1.842624	7	1	0	6.069824	0.474308	-0. 458974
42	1	0	-0.354835	-2.099721	-2.145664	8	1	0	4.662181	2. 521346	-0.772388

9	1	0	2.458390	-1.733037	0.281215	53	1	0	-4.247284	-4.883654	0.543348
10	6	0	1.917642	2.579393	-0.578683	54	8	0	-2.910820	-0.640174	-2.203293
11	8	0	2.376604	3.767450	-0.923654	55	16	0	-2.757602	0.801513	-1.465941
12	6	0	1.190630	4.571805	-1.202719	56	8	0	-1.945483	1.588964	-2.360377
13	6	0	0.029093	3. 771181	-0.574447	57	8	0	-4.075418	1.254659	-1.082289
14	1	0	1.361669	5. 555778	-0.770629	58	7	0	-1.916856	0.457699	-0.091777
15	-	0	1. 106248	4. 649711	-2. 288205	59	6	0	-2.052814	-0. 523330	2.044613
16	-	0	-0.803848	3. 688443	-1.276235	60	8	0	-3. 164961	-0.919629	2. 623213
17	7	0	0.651537	2. 439484	-0. 422105	61	8	0	-1. 140234	0.046136	2, 598013
18	6	0	-0.509075	4. 336938	0. 767614	62	6	0	-3. 271831	-0.664554	4. 039261
19	6	0	-1 608614	3 419001	1 314089	63	1	0	-4 227593	-1 092378	4 333992
20	1	0	-1 219549	2 437287	1 592590	64	1	0	-2 450577	-1 152980	4. 566400
20	1	0	-2 056546	2. 451201	2 206860	65	1	0	-2 256641	0 411102	4. 222200
21	1	0	-2.030340	2 971709	2.200800	66	1	0	-5.250041	0.411102	4. 222399
22	1	0	-2.407190	3. 271702	1 906599	67	0	0	J. 004041	-2.072394	0.242522
23	0	0	0.012295	4. 402420	1.000000	07	0	0	4. 519016	-3. 123307	0.014575
24	1	0	1.065082	3. 489226	2. 026758	68	8	0	6.395403	-1.935195	-0.014575
25	1	0	1. 404333	5.144209	1. 478496	69	6	0	7. 173392	-3. 136116	0. 112951
26	1	0	0.207982	4.858424	2.743854	70	1	0	6.867962	-3.863850	-0.641391
27	6	0	-1.123932	5.715881	0.485943	71	1	0	8.206625	-2.833362	-0.047096
28	1	0	-1.906816	5.650313	-0.278141	72	1	0	7.050654	-3. 561528	1.111241
29	1	0	-1.578527	6.112275	1.399585						
30	1	0	-0.381967	6.447126	0.149314	8-TS ³					
31	46	0	0.124811	0.416411	-0.066776						
32	6	0	-0.158478	-2.257430	-1.094033	Center	Atomic	Atomic	Coor	dinates (Ang	stroms)
33	6	0	-0.168839	-1.619237	0.158437	Number	Number	Туре	Х	Y	Z
34	6	0	0.293744	-3.565227	-1.208193						
35	6	0	0.241197	-2.326365	1.299248	1	6	0	-2.770176	1.328777	0.350420
36	6	0	0.694234	-4.263227	-0.067350	2	6	0	-4.136841	1. 413533	0.533398
37	1	0	0.321021	-4.046455	-2.180529	3	6	0	-4.908215	0.281639	0.277649
38	6	0	0.663967	-3.647175	1.182754	4	6	0	-4.277151	-0.879191	-0.154189
39	1	0	0.238849	-1.848821	2.272259	5	6	0	-2.891696	-0.885392	-0.305326
40	1	0	1.024868	-5.293635	-0.154078	6	7	0	-2.155717	0. 191174	-0.044952
41	1	0	0.976051	-4. 192392	2.067884	7	1	0	-5.983119	0.312541	0.412548
42	1	0	-0.502906	-1.733972	-1.982065	8	1	0	-4.587263	2.342076	0.862255
43	6	0	-2.121684	-0.741852	0.524062	9	1	0	-2.376229	-1.775997	-0.641882
44	6	0	-2.966952	-1.792084	-0.064732	10	6	0	-1.838678	2.450667	0.542794
45	6	0	-3.336496	-1.705345	-1.412572	11	8	0	-2.227463	3. 534577	1.188353
46	1	0	-2.982786	-3.092595	1.655276	12	6	0	-1.007490	4. 303149	1.418450
47	6	0	-3.297129	-2.968250	0.626604	13	6	0	0.026457	3. 671339	0.462223
48	6	0	-4.045350	-2.703569	-2.055814	14	1	0	-1.238335	5. 348477	1.221531
49	6	0	-4.379484	-3.847186	-1.340884	15	1	0	-0.745682	4. 169443	2.469879
50	6	0	-4.000317	-3.980950	-0.004334	16	1	0	0.957678	3. 450282	0.991082
51	1	0	-4.308271	-2.580700	-3. 100359	17	7	0	-0.626984	2.391267	0. 120387
			4 000 410	4 640104	1 000454	10	C	0	0.266000	4 515500	0 701007
52	1	0	-4.929413	-4.042104	-1.833454	18	0	0	0.300900	4.010000	-0.791237
63	1	0	1.610222	2.541784	3. 593561						
------	---	---	-----------	-----------	-----------						
64	1	0	0.348179	1.283628	3. 790633						
65	1	0	2.007109	0.994782	4.401862						
66	6	0	-4.997009	-2.151543	-0.459114						
67	8	0	-4.424287	-3.174251	-0.778007						
68	8	0	-6.310646	-2.030781	-0.340634						
69	6	0	-7.079684	-3.208825	-0.634198						
70	1	0	-8.119428	-2.924444	-0.482885						
71	1	0	-6.914402	-3.516709	-1.668614						
72	1	0	-6.804677	-4.018534	0.044720						

9:

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	-3. 028256	1.016249	0. 726233
2	6	0	-4.322271	0.959112	1. 198272
3	6	0	-5.116983	-0.116301	0.804689
4	6	0	-4.572508	-1.081979	-0.031898
5	6	0	-3.247970	-0.957095	-0. 453744
6	7	0	-2.498168	0.079212	-0.095540
7	1	0	-6.141563	-0.193744	1.148545
8	1	0	-4.697795	1.735004	1.854500
9	1	0	-2.800908	-1.707364	-1.091756
10	6	0	-2.083784	2.099571	0.982896
11	8	0	-2.429030	3.204142	1.594209
12	6	0	-1.200372	4.004971	1.652895
13	6	0	-0.314132	3.397506	0. 555263
14	1	0	-1.483946	5.043462	1.498588
15	1	0	-0.780401	3.865398	2.650732
16	1	0	0.723887	3.364212	0.879390
17	7	0	-0.884122	2.028935	0. 508834
18	6	0	-0.398876	4.109902	-0.826471
19	6	0	0.335014	3.298740	-1.903236
20	1	0	-0.171674	2.350678	-2.114005
21	1	0	0.357927	3.871939	-2.836245
22	1	0	1.364837	3.079528	-1.611468
23	6	0	-1.852022	4.317136	-1.276089
24	1	0	-2.377490	3.363556	-1.405688
25	1	0	-2.425853	4.938401	-0.581134
26	1	0	-1.861509	4.822443	-2.246969
27	6	0	0.302534	5.467273	-0. 670752
28	1	0	1.351833	5.333952	-0.386083

19	6	0	1.316100	3.710894	-1.681280
20	1	0	0.830706	2.813660	-2.070022
21	1	0	1.638367	4.314236	-2.536628
22	1	0	2.213617	3.408894	-1.129247
23	6	0	-0.897233	4.872383	-1.583916
24	1	0	-1.427532	3.973852	-1.918661
25	1	0	-1.592676	5.485103	-1.000378
26	1	0	-0.626826	5.445923	-2.476543
27	6	0	1.079090	5.792642	-0.326517
28	1	0	1.986665	5.554110	0.239627
29	1	0	1.373021	6.391024	-1.195114
30	1	0	0.440864	6. 421359	0.303434
31	46	0	-0.079191	0.328336	-0.167311
32	6	0	-0.384236	-2.378314	1.097511
33	6	0	0.275557	-1.702161	0.056708
34	6	0	-0.885036	-3.656304	0.889555
35	6	0	0.427578	-2.331628	-1.193029
36	6	0	-0.742684	-4.266658	-0.357410
37	1	0	-1.394869	-4.173095	1.696223
38	6	0	-0.097478	-3.602172	-1.399827
39	1	0	0.932328	-1.833067	-2.013245
40	1	0	-1.139216	-5.264529	-0.517033
41	1	0	0.003657	-4.075382	-2.371072
42	1	0	-0.518179	-1.903820	2.061725
43	6	0	2.049496	-0.717036	0.703217
44	6	0	3.072501	-1.774727	0.526400
45	6	0	3.674666	-1.937470	-0.725890
46	1	0	3.021625	-2.556134	2.533189
47	6	0	3. 471182	-2.641493	1.553362
48	6	0	4.633917	-2.899977	-0.977085
49	6	0	5.009593	-3.748926	0.058238
50	6	0	4. 430107	-3.616587	1.318589
51	1	0	5.066472	-2.975957	-1.968293
52	1	0	5.760135	-4.511290	-0.121338
53	1	0	4.725507	-4.278340	2.125283
54	8	0	3.258404	-1.167418	-1.806572
55	16	0	2.885957	0.389647	-1.516266
56	8	0	4.109672	1.097631	-1.213319
57	8	0	2.082191	0.767518	-2.653703
58	7	0	1.966222	0.358075	-0.143573
59	6	0	1.700916	-0.326976	2.151839
60	8	0	1.791913	0.979314	2.326616
61	8	0	1.413661	-1.117963	3.021326
62	6	0	1.410808	1.472386	3. 622742

29	1	0	0.276351	6.009063	-1.621410						
30	1	0	-0.177823	6.100924	0.082137	10:					
31	46	0	-0.437648	0.267847	-0.358100						
32	6	0	1.021622	-1.908932	1.874700	Center	Atomic	Atomic	Coor	dinates (Ang	stroms)
33	6	0	2.066830	-2.072952	0.963965	Number	Number	Туре	Х	Y	Z
34	6	0	0.924889	-2.738056	2.989301						
35	6	0	2.997921	-3.093101	1.169701	1	6	0	-2.791352	-2.067852	-0.588608
36	6	0	1.864599	-3.743333	3. 199771	2	6	0	-4.034762	-2.551390	-0.934130
37	1	0	0.113313	-2.591963	3.695541	3	6	0	-5.146046	-1.752274	-0.663355
38	6	0	2.899185	-3.919840	2.284597	4	6	0	-4.960957	-0.515090	-0.05874
39	1	0	3.805793	-3.245995	0.461858	5	6	0	-3.668288	-0.091475	0.25454
40	1	0	1.790327	-4.386098	4.071458	6	7	0	-2.615451	-0.856608	-0.00541
41	1	0	3.635695	-4.702794	2.436158	7	1	0	-6.140496	-2.096870	-0.92161
42	1	0	0.279010	-1.129343	1.729583	8	1	0	-4.133662	-3. 523127	-1.40258
43	6	0	2.154571	-1.201835	-0.317623	9	1	0	-3.482699	0.873480	0.71179
44	6	0	3.604076	-1.061488	-0.791234	10	6	0	-1.518587	-2.781475	-0.72670
45	6	0	4. 381830	-0.230945	0.012913	11	8	0	-1.424998	-4. 020098	-1.14848
46	1	0	3.646292	-2.286839	-2.562160	12	6	0	0.019416	-4.301879	-1.16388
47	6	0	4.209062	-1.636349	-1.905290	13	6	0	0.601501	-3.254541	-0.20231
48	6	0	5.716753	0.030818	-0.227863	14	1	0	0.148424	-5. 337767	-0.85875
49	6	0	6.310545	-0.571578	-1.334910	15	1	0	0.356352	-4.157966	-2. 19227
50	6	0	5. 556963	-1.391221	-2.169266	16	1	0	1.560611	-2.874280	-0.56022
51	1	0	6.268279	0.686576	0.436652	17	7	0	-0.431856	-2.210060	-0.32961
52	1	0	7.359096	-0.389833	-1.546160	18	6	0	0.735643	-3.730893	1.27608
53	1	0	6.018267	-1.851304	-3.036870	19	6	0	1.020100	-2.534328	2. 19193
54	8	0	3.769679	0.323448	1.137141	20	1	0	0.173547	-1.840628	2.22870
55	16	0	2.385900	1.142846	0.851465	21	1	0	1.206598	-2.885952	3. 21193
56	8	0	1.774284	1.246595	2. 167587	22	1	0	1.904816	-1.988868	1.86178
57	8	0	2.733642	2.399693	0.203546	23	6	0	-0.538466	-4. 425675	1.77864
58	7	0	1.610259	0.174130	-0.196181	24	1	0	-1.405419	-3.755118	1.75805
59	6	0	1.315308	-1.980674	-1.327632	25	1	0	-0.781980	-5.329140	1.21102
60	8	0	1.628966	-3.023960	-1.831901	26	1	0	-0.393181	-4.725846	2.82120
61	8	0	0.109405	-1.409695	-1.569945	27	6	0	1.916573	-4.708924	1.334490
62	6	0	-0.705444	-2.021531	-2.610650	28	1	0	2.842491	-4.227611	1.00369
63	1	0	-0.075574	-2.209400	-3.478500	29	1	0	2.063195	-5.056803	2.362048
64	1	0	-1.137682	-2.946943	-2.230628	30	1	0	1.748480	-5. 591934	0.70881
65	1	0	-1.467220	-1.282498	-2.847374	31	46	0	-0.650736	-0.260423	0.04068
66	6	0	-5, 334387	-2. 269878	-0. 526184	32	6	0	2, 481428	3, 152830	0.05871
67	8	0	-4. 843337	-3. 113500	-1.248358	33	6	0	3. 211148	1.961710	0. 03632
68	- 8	0	-6. 584790	-2.281552	-0.094027	34	- 6	0	3. 115598	4. 373057	-0.13708
69	6	0	-7. 397905	-3, 381267	-0, 537929	35	6	0	4, 589850	2. 011897	-0. 16419
70	1	ů 0	-8, 368658	-3. 232586	-0. 068680	36	6	0	4, 491953	4, 418671	-0. 35246
71	1	0	-7 493328	-3 361601	-1 625510	30	1	0	2 533007	5 289141	-0 19905
79	1	0	-6 050156	-4 228160	-0 217704	31 20	1	0	2.00007 5.004019	3 936479	-0 26241
14	1	U	-0. 202100	-4. 326108	-0.217704	აგ	o	U	ə. 224813	J. 2304/3	-0.30341

39	1	0	5.178631	1.101075	-0.167803	11:					
40	1	0	4.988978	5.371297	-0.507853						
41	1	0	6.297776	3.260506	-0.527288	Center	Atomic	Atomic	Coor	dinates (Ang	stroms)
42	1	0	1.411552	3. 131775	0.225412	Number	Number	Туре	Х	Y	Z
43	6	0	2.480275	0.618909	0.314664						
44	6	0	3.382670	-0.582606	-0.001629	1	6	0	2.797773	1.977995	-0.592929
45	6	0	3.495910	-0.884175	-1.363857	2	6	0	4.043313	2.486029	-0.896626
46	1	0	4.062165	-1.195018	1.945277	3	6	0	5.160798	1.709220	-0.592149
47	6	0	4.087377	-1.398021	0.883637	4	6	0	4.979689	0.465484	0.000331
48	6	0	4.219108	-1.962316	-1.845036	5	6	0	3.685679	0.013036	0.260743
49	6	0	4.897461	-2.770063	-0.937685	6	7	0	2.625981	0.755163	-0.035914
50	6	0	4.837400	-2.478441	0.420466	7	1	0	6.156403	2.077144	-0.810597
51	1	0	4.258178	-2.141900	-2.913996	8	1	0	4.138125	3. 464857	-1.351057
52	1	0	5.475123	-3.616124	-1.295003	9	1	0	3. 504970	-0.955503	0.711327
53	1	0	5.374620	-3.094321	1.134186	10	6	0	1.526993	2.695373	-0.735893
54	8	0	2.946751	-0.024048	-2.307561	11	8	0	1.438754	3. 882893	-1.294250
55	16	0	1.415998	0.518705	-2.068358	12	6	0	-0.001467	4.166099	-1.339095
56	8	0	1.463015	1.855038	-2.645249	13	6	0	-0.583738	3. 234123	-0.265418
57	8	0	0.494183	-0.413644	-2.708498	14	1	0	-0.131192	5. 229615	-1.150988
58	7	0	1.242957	0.455328	-0.477469	15	1	0	-0.340930	3. 912553	-2.345542
59	6	0	2.047673	0.787152	1.780253	16	1	0	-1.536510	2.803372	-0.584383
60	8	0	3.040950	0.613489	2.622536	17	7	0	0.451937	2.183202	-0.244108
61	8	0	0.934606	1.145247	2.126406	18	6	0	-0.745423	3. 892927	1.136395
62	8	0	-1.147221	1.705491	0.545590	19	6	0	-1.038873	2.814542	2.183427
63	6	0	-1.375697	2.639160	-0.503881	20	1	0	-0.193775	2.130972	2.304800
64	1	0	-2.147981	2.222774	-1.151231	21	1	0	-1.236270	3. 281007	3.154257
65	1	0	-0.468007	2.828466	-1.081841	22	1	0	-1.918061	2. 229798	1.908055
66	6	0	-1.875907	3.935307	0.093364	23	6	0	0.520676	4.650354	1.563277
67	6	0	2.751815	0.810138	4.018995	24	1	0	1.387004	3. 983453	1.639944
68	1	0	3.698439	0.648887	4.530763	25	1	0	0.772696	5. 470387	0.883935
69	1	0	2.392350	1.826607	4. 187210	26	1	0	0.362855	5.086895	2.554626
70	1	0	2.007227	0.083240	4.349113	27	6	0	-1.929863	4.864968	1.057676
71	1	0	-0.371979	1.938811	1.100420	28	1	0	-2.850970	4. 340398	0.783746
72	9	0	-3.003897	3.756602	0.796740	29	1	0	-2.087424	5.341347	2.030645
73	9	0	-2.124585	4.825522	-0.873923	30	1	0	-1.763015	5.660796	0.323643
74	9	0	-0.966749	4.472275	0.928244	31	46	0	0.665345	0.172181	0.084866
75	6	0	-6.081735	0.416219	0.274538	32	6	0	-2.632516	-3.227118	0.435964
76	8	0	-5.910691	1.478012	0.837863	33	6	0	-3. 335740	-2.032171	0.250019
77	8	0	-7. 256799	-0. 050107	-0.117292	34	6	0	-3. 288525	-4, 448021	0. 330641
78	6	0	-8.394570	0.780520	0. 168366	35	6	0	-4, 703552	-2.074174	-0.013376
79	1	ů 0	-9, 254799	0. 240367	-0. 222469	36	6	0	-4, 652798	-4, 487568	0. 050784
80	1	0	-8 493306	0 928931	1 245521	30	1	0	-2 739991	-5 369115	0 471765
81	1	0	-8 200075	1 7/5000	-0 222555	01 20	1	0	-5 357949	-3 200400	-0 115604
01	1	U	-0.290075	1. (40083	-0. 332999	აბ იი	0	U	-5.357243	-3. 299490	-0.120004
						39	1	0	-5.200858	-1.155880	-0.139294

40	1	0	-5.163471	-5.441571	-0.034266						
41	1	0	-6. 421701	-3.320183	-0. 326991	Center	Atomic	Atomic	Coor	linates (Ang	stroms)
42	1	0	-1.569431	-3.227240	0.669930	Number	Number	Туре	Х	Y	Z
43	6	0	-2.587142	-0.691890	0.399607						
44	6	0	-3. 412413	0.509535	-0.044768	1	6	0	-0.783214	-1.865030	-0.396568
45	6	0	-3.584604	0.670930	-1.417197	2	6	0	-1.812899	-2.775023	-0.508421
46	1	0	-3.976262	1.337780	1.862278	3	6	0	-3.114256	-2.326879	-0.28487
47	6	0	-4. 037898	1.436894	0.785846	4	6	0	-3.327677	-0.991412	0.03493
48	6	0	-4.283310	1.712669	-1.993016	5	6	0	-2.235197	-0.128024	0.13400
49	6	0	-4.880262	2.638954	-1.141664	6	7	0	-1.000462	-0.566374	-0.076788
50	6	0	-4. 766438	2.490693	0.236995	7	1	0	-3.946459	-3.016680	-0.36168
51	1	0	-4.368412	1.779187	-3.071570	8	1	0	-1.604306	-3.807321	-0.76208
52	1	0	-5. 441184	3. 467733	-1.559635	9	1	0	-2.348824	0.921432	0.38322
53	1	0	-5. 247215	3.201448	0.900367	10	6	0	0.638879	-2.161683	-0.60232
54	8	0	-3. 080735	-0.344103	-2.251391	11	8	0	1.066800	-3.366755	-0.90081
55	16	0	-1.510247	-0.617599	-2.125512	12	6	0	2.514375	-3.245769	-1.08340
56	8	0	-1.272808	-1.920583	-2.694556	13	6	0	2.852521	-1.789874	-0.669179
57	8	0	-0. 785356	0.537598	-2.597226	14	1	0	2.975237	-4.015196	-0.465509
58	7	0	-1.313603	-0.717193	-0. 411599	15	1	0	2.717068	-3. 440935	-2.13625
59	6	0	-2.138081	-0.590591	1.872866	16	1	0	3. 335524	-1.265325	-1.498678
60	8	0	-3.177231	-0.671444	2.677397	17	7	0	1.508089	-1.222770	-0.482722
61	8	0	-0.987610	-0.484776	2.234602	18	6	0	3. 739579	-1.624962	0.59017
62	8	0	1.028000	-1.767194	0.330072	19	6	0	3.977676	-0.129384	0.84654
63	6	0	1.641634	-2.472872	-0.705293	20	1	0	3.074888	0.379728	1.20674
64	1	0	2.484456	-1.943328	-1.171391	21	1	0	4.736919	0.001366	1.62450
65	1	0	0.946631	-2.759898	-1.507960	22	1	0	4.330054	0.381392	-0.05631
66	6	0	2.201581	-3.755434	-0.128182	23	6	0	3.081029	-2.258697	1.820669
67	6	0	-2.904700	-0.546000	4.086527	24	1	0	2.117523	-1.786334	2.04241
68	1	0	-3.874382	-0.623179	4.573674	25	1	0	2.912397	-3.333114	1.69096
69	1	0	-2.246851	-1.353433	4. 411818	26	1	0	3.724767	-2.129368	2.69638
70	1	0	-2. 446063	0.423574	4.291050	27	6	0	5.092799	-2.291319	0.30279
71	1	0	-0.845645	-1.626087	-0.248049	28	1	0	5. 566493	-1.856300	-0.58439
72	9	0	2.774023	-4.506177	-1.085064	29	1	0	5.769079	-2.144393	1.150740
73	9	0	3.139370	-3.520210	0.810600	30	1	0	4.997082	-3.370133	0.14312
74	9	0	1.246565	-4.503904	0.453539	31	46	0	0.684600	0.569597	0.05803
75	6	0	6.106420	-0.441012	0.377693	32	8	0	-0.315167	2.153902	0.61270
76	8	0	5.934450	-1.548310	0.844675	33	6	0	0.580471	3.178396	0.88338
77	8	0	7.290167	0.106106	0.148059	34	1	0	0.223915	3.799812	1.71522
78	6	0	8. 434487	-0.691229	0.495147	35	1	0	1.580806	2.800679	1.17049
79	1	0	9. 300586	-0.089557	0.225039	36	6	0	0.780161	4.083177	-0.31947
80	1	0	8. 434839	-0.899955	1.567066	37	9	0	-0.374323	4.623229	-0.74150
81	1	0	8. 429753	-1.626755	-0.067652	38	9	0	1.623474	5.089895	-0.034706
						39	9	0	1.302642	3. 414891	-1.373356
						40	6	0	-4.684866	-0 412752	0 276884

41	8	0	-4.866588	0.752532	0.563701
42	8	0	-5.644751	-1.314301	0.138064
43	6	0	-6.988633	-0.845830	0.337739
44	1	0	-7.624759	-1.715191	0.182582
45	1	0	-7.108424	-0.460950	1.352496
46	1	0	-7.226931	-0.065416	-0.387628

1a:

Center	Atomic	Atomic	Coordinates (Angstroms)				
Number	Number	Туре	Х	Y	Z		
1	6	0	-0. 745050	-0.029495	-0. 095124		
2	6	0	0.348268	0.928491	-0.007738		
3	6	0	1.655907	0.470602	-0.229219		
4	1	0	-0.833719	2.668533	0.470998		
5	6	0	0.163723	2.289175	0.290932		
6	6	0	2.749910	1.318211	-0.188691		
7	6	0	2.537642	2.659318	0.103346		
8	6	0	1.250823	3. 143381	0.350518		
9	1	0	3.739648	0.920342	-0.376290		
10	1	0	3.385661	3. 333765	0.145352		
11	1	0	1.100130	4.190452	0.584146		
12	8	0	1.885664	-0.845947	-0.574395		
13	16	0	0.886278	-1.972046	0.071244		
14	8	0	1.017062	-3.106258	-0.803286		
15	8	0	1.170925	-2.086911	1.482301		
16	7	0	-0.623776	-1.314678	-0.118583		
17	6	0	-2.171964	0. 479113	-0.251085		
18	8	0	-2.440849	1.461762	-0.901059		
19	8	0	-3.032863	-0.291656	0.383898		
20	6	0	-4.415030	0.088706	0.265503		
21	1	0	-4.562008	1.090643	0.671409		
22	1	0	-4.720913	0.064769	-0.781212		
23	1	0	-4.967695	-0.645951	0.845453		

2a:

Center	Atomic	Atomic	Coord	linates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	5	0	-1.765519	-0.000004	-0.000008
2	8	0	-2.510310	1.074232	-0. 403186
3	1	0	-1.979397	1.792792	-0.759475

4	8	0	-2.510292	-1.074239	0.403197
5	1	0	-1.979368	-1.792785	0.759493
6	6	0	-0. 187449	0.000002	-0.000011
7	6	0	0.538240	1.180918	0.217856
8	6	0	0. 538243	-1.180916	-0.217862
9	6	0	1.930478	1.184234	0.224255
10	1	0	0.010815	2.115222	0.397060
11	6	0	1.930481	-1.184230	-0.224254
12	1	0	0.010820	-2.115221	-0.397065
13	6	0	2.629172	0.000003	0.000003
14	1	0	2. 469587	2.109983	0. 402684
15	1	0	2.469592	-2.109979	-0. 402674
16	1	0	3. 715376	0.000003	0.000012

3aa:

Center	Atomic	Atomic	Coord	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z		
1	6	0	2. 343149	-1.012463	-0. 229162		
2	6	0	1.328406	-0.279526	0.391839		
3	6	0	3. 387702	-1.535164	0.523211		
4	6	0	1.372638	-0.070663	1.767978		
5	6	0	3. 428338	-1.329570	1.901430		
6	1	0	4.171417	-2. 103773	0.032564		
7	6	0	2. 420392	-0. 597739	2. 520136		
8	1	0	0.594754	0.502528	2. 261293		
9	1	0	4.243760	-1.739855	2. 488993		
10	1	0	2.444827	-0. 432788	3. 592725		
11	1	0	2.309893	-1.176840	-1. 301939		
12	6	0	0.221472	0.326744	-0. 472527		
13	6	0	-0.980015	0.832752	0.325415		
14	6	0	-1.900336	-0. 126749	0.745708		
15	1	0	-0.555877	2.943987	0.326050		
16	6	0	-1.249407	2.165652	0.625020		
17	6	0	-3.057887	0.189788	1.431969		
18	6	0	-3.305584	1.528164	1.724927		
19	6	0	-2.404428	2.509535	1.324079		
20	1	0	-3.738614	-0.598813	1.732145		
21	1	0	-4.206292	1.799436	2.265218		
22	1	0	-2.598674	3.552214	1.551214		
23	8	0	-1.606480	-1.479259	0.543422		
24	16	0	-1.109858	-1.955901	-0. 931688		
25	8	0	-0.253868	-3.081683	-0.641281		

26	8	0	-2.242515	-2.133328	-1.817020
27	7	0	-0.262755	-0.655471	-1.466775
28	6	0	0.780813	1.475648	-1.336308
29	8	0	1.608747	2.239535	-0.651293
30	8	0	0.458674	1.650897	-2. 490435
31	6	0	2.138236	3.386184	-1.342784
32	1	0	1.328041	4.059015	-1.629694
33	1	0	2.802539	3.869900	-0.629714
34	1	0	2.692718	3.065638	-2.226389
35	1	0	-0.748877	-0.202790	-2.240758

13:

B(OH)₂OCH₂CF₃:

Center	Atomic	Atomic	Coord	linates (Ang	stroms)
Number	Number	Туре	Х	Y	Ζ
1	5	0	-1.858820	0. 020981	0. 067905
2	8	0	-1.902448	1.383573	0.051166
3	1	0	-1.091864	1.835743	0.297460
4	8	0	-2.979220	-0.617672	-0.379531
5	1	0	-2.898415	-1.575248	-0.325504
6	8	0	-0.806070	-0.760222	0. 504431
7	6	0	0.384614	-0.247506	1.041366
8	1	0	0.246912	0.692975	1.585068
9	1	0	0.797833	-0.983879	1.734386
10	6	0	1.407092	-0.021730	-0.053787
11	9	0	0.997698	0.904424	-0.942961
12	9	0	2.566881	0.405550	0.469618
13	9	0	1.656677	-1.143810	-0.744983

TFE:

Center	Atomic	Atomic	Coord	linates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	0.415188	0.016676	0.000001
2	6	0	-0.907438	0.745080	-0.000013
3	1	0	-0.931228	1.384973	0.890405
4	1	0	-0.931206	1.384960	-0.890443
5	8	0	-1.925092	-0.225045	-0.000025
6	1	0	-2.769035	0.239170	0.000140
7	9	0	1.432537	0.896143	-0.000125
8	9	0	0.560756	-0.769038	1.080654
9	9	0	0.560675	-0.769247	-1.080509

Center	Atomic	Atomic	Coor	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	1.503811	1.075003	-0. 439251
2	6	0	2.639994	1.813132	-0.714460
3	6	0	3.877308	1.215081	-0. 490727
4	6	0	3.918416	-0.086151	-0.003372
5	6	0	2.718466	-0.758729	0.241818
6	7	0	1.536670	-0. 190630	0.028655
7	1	0	4.792740	1.758295	-0.693950
8	1	0	2.561612	2.824245	-1.095488
9	1	0	2.716559	-1.776614	0.615572
10	6	0	0.142020	1.601121	-0.619067
11	8	0	-0.043631	2.830909	-1.054564
12	6	0	-1.482096	2.947122	-1.284846
13	6	0	-2.086345	1.788345	-0.469822
14	1	0	-1.779509	3. 944944	-0.970107
15	1	0	-1.640868	2.828674	-2.358574
16	1	0	-2.858811	1.273779	-1.044165
17	7	0	-0.907170	0.903624	-0.347904
18	6	0	-2.681401	2.195962	0.906784
19	6	0	-3.132745	0.950685	1.679470
20	1	0	-2.286914	0.313210	1.953346
21	1	0	-3.635416	1.254983	2.603651
22	1	0	-3.835466	0.350674	1.092434
23	6	0	-1.664570	2.973837	1.751797
24	1	0	-0.776628	2.370294	1.971994
25	1	0	-1.340424	3.899806	1.265658
26	1	0	-2.117450	3. 249133	2.709689
27	6	0	-3.916108	3.067859	0.633189
28	1	0	-4.648811	2.530207	0.020906
29	1	0	-4.399161	3. 333151	1.579059
30	1	0	-3.665828	4.002728	0.121493
31	46	0	-0.506664	-1.064760	0.042012
32	6	0	-2.330312	-1.701274	-0.189586
33	6	0	-2.825095	-2.558519	0.795402
34	6	0	-3.079878	-1.440995	-1. 337642
35	6	0	-4.068337	-3.169144	0. 620027
36	1	0	-2.256696	-2.747394	1.704410
37	6	0	-4.322770	-2.053594	-1.504588
38	1	0	-2.704760	-0. 766166	-2.102848

-4.818097	-2.914630	-0.527023	28	1	0	-6.301884	-0.420280	0.518260
-4.451906	-3.837071	1.386214	29	1	0	-6.397007	0.208328	2.170898
-4.902917	-1.854739	-2. 401379	30	1	0	-6.544394	1.312371	0.805226
-5.787920	-3.385421	-0.657189	31	46	0	-0.842419	-0.198147	-0.340642
5.194155	-0.810563	0.273631	32	6	0	-1.653111	-2.945384	0.434680
5.236565	-1.924706	0.755523	33	6	0	-1.813057	-1.919982	-0.501693
6.259449	-0.098746	-0.066580	34	6	0	-2.372051	-4.133344	0.307292
7.536368	-0.715275	0.161006	35	6	0	-2.682612	-2.110222	-1.579247
8.272187	0.000000	-0.202442	36	6	0	-3.248344	-4.314613	-0.761518
7.681450	-0.901639	1.227175	37	1	0	-2.246743	-4.918572	1.048101
7.609240	-1.652371	-0.394745	38	6	0	-3.397480	-3.303058	-1.707181
			39	1	0	-2.816849	-1.328321	-2.322990
			40	1	0	-3.806100	-5.241276	-0.859890
			41	1	0	-4.074603	-3.436181	-2.546654
Coord	dinates (Ang	stroms)	42	1	0	-0.978125	-2.819545	1.276683
Х	Y	Z	43	6	0	1.706799	-1.407068	0.780576
			44	6	0	2.985225	-2.071141	0.802106
-0.942245	2.771029	-0.539481	45	6	0	3.640151	-2.317293	-0. 413977
-0.659476	4.117567	-0.676845	46	1	0	3. 141644	-2.255863	2.951680
0.674541	4.514026	-0.618769	47	6	0	3.633817	-2.421460	1.999020
1.657422	3.547097	-0.442061	48	6	0	4.901466	-2.873527	-0. 472761
1.280136	2.207963	-0.325641	49	6	0	5. 519758	-3.216308	0.726158
0.007629	1.830931	-0.359830	50	6	0	4.890251	-2.998714	1.954809
0.937426	5.560822	-0.715754	51	1	0	5.378513	-3.034383	-1.432411
-1.455591	4.837622	-0.822226	52	1	0	6.506454	-3.666076	0.699339
2.025153	1.431703	-0.200577	53	1	0	5.388031	-3.278521	2.875990
-2.306026	2.220402	-0.560348	54	8	0	3.048154	-1.912456	-1.603453
-3.337772	3.009961	-0.781513	55	16	0	1. 437281	-2.044882	-1.698856
-4.483810	2.113519	-0.916195	56	8	0	1.055320	-1.230252	-2.820002
-4.009593	0.805821	-0.257598	57	8	0	1.063293	-3.432592	-1.607101
-5.330979	2.600745	-0. 438636	58	7	0	0.963844	-1.254681	-0.277973
-4.671395	1.997913	-1.985849	59	6	0	1. 142545	-0.788437	2.048437
-4.309687	-0.060492	-0.850286	60	8	0	1.575071	0.442704	2.181826
-2.542139	0.970710	-0.352811	61	8	0	0.398858	-1.392023	2.784568
-4.497498	0.602727	1.204888	62	6	0	1.005502	1.218241	3.257827
-3.876121	-0.665132	1.800906	63	1	0	1.476736	2.195559	3. 181681
-2.789051	-0.582646	1.886621	64	1	0	-0.073932	1.297738	3.114784
-4.282018	-0.834691	2.804140	65	1	0	1.233568	0.750727	4.216629
-4. 103379	-1.545038	1.191013	66	6	0	3. 114761	3.862354	-0.369052
-4.136644	1.803811	2.088925	67	8	0	3.970199	3.015178	-0.205916
-3. 051978	1.943145	2.160061	68	8	0	3.358038	5.158522	-0.500396
-4.580707	2.736775	1.726270	69	6	0	4.737545	5.554976	-0.439464
-4.510716	1.638817	3.104471	70	1	0	4.735740	6.634353	-0.581050
-6.022642	0.419762	1.164174	71	1	0	5.161751	5.297533	0.533164

39	6	0	-4.818097	-2.914630	-0. 527023
40	1	0	-4.451906	-3.837071	1.386214
41	1	0	-4.902917	-1.854739	-2.401379
42	1	0	-5.787920	-3.385421	-0.657189
43	6	0	5.194155	-0.810563	0.273631
44	8	0	5.236565	-1.924706	0.755523
45	8	0	6.259449	-0.098746	-0.066580
46	6	0	7. 536368	-0.715275	0.161006
47	1	0	8.272187	0.000000	-0.202442
48	1	0	7.681450	-0.901639	1.227175
49	1	0	7.609240	-1.652371	-0.394745

14:

Center	Atomic	Atomic	Coor	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	-0. 942245	2. 771029	-0. 539481
2	6	0	-0.659476	4.117567	-0.676845
3	6	0	0.674541	4.514026	-0.618769
4	6	0	1.657422	3.547097	-0.442061
5	6	0	1.280136	2.207963	-0.325641
6	7	0	0.007629	1.830931	-0.359830
7	1	0	0.937426	5.560822	-0.715754
8	1	0	-1.455591	4.837622	-0.822226
9	1	0	2.025153	1.431703	-0.200577
10	6	0	-2.306026	2.220402	-0.560348
11	8	0	-3. 337772	3.009961	-0.781513
12	6	0	-4.483810	2.113519	-0.916195
13	6	0	-4.009593	0.805821	-0.257598
14	1	0	-5. 330979	2.600745	-0. 438636
15	1	0	-4.671395	1.997913	-1.985849
16	1	0	-4.309687	-0.060492	-0.850286
17	7	0	-2.542139	0.970710	-0.352811
18	6	0	-4. 497498	0.602727	1.204888
19	6	0	-3.876121	-0.665132	1.800906
20	1	0	-2.789051	-0.582646	1.886621
21	1	0	-4.282018	-0.834691	2.804140
22	1	0	-4.103379	-1.545038	1.191013
23	6	0	-4.136644	1.803811	2.088925
24	1	0	-3. 051978	1.943145	2.160061
25	1	0	-4.580707	2.736775	1.726270
26	1	0	-4.510716	1.638817	3.104471
27	6	0	-6.022642	0.419762	1.164174

72	1	0	5.305036	5.067886	-1.235063	38	6	0	-3.364867	1.123172	-2.230299
						39	1	0	-1.717166	-0.246466	-2. 255257
14-TS ^k	ſ					40	1	0	-4.994644	2.490374	-1.898642
						41	1	0	-3.603626	0.963956	-3.277080
Center	Atomic	Atomic _	Coord	linates (Ang	stroms)	42	1	0	-2.545286	1.684427	1. 516165
Number	Number	Туре	Х	Y	Z	43	6	0	-1.863029	-1.245774	0.737155
						44	6	0	-2. 973969	-2. 022283	0. 151792
1	6	0	2.786024	1.119164	-0.750936	45	6	0	-2.705393	-3. 272399	-0. 408985
2	6	0	4. 122991	1.110831	-1.096230	46	1	0	-4. 530872	-0.589002	0. 540253
3	6	0	4.889672	0.009331	-0.720006	47	6	0	-4. 300372	-1.569980	0.141365
4	6	0	4.285046	-1.022525	-0.012998	48	6	0	-3.694601	-4.079224	-0.944221
5	6	0	2.925308	-0.935016	0.293510	49	6	0	-5.003141	-3. 613189	-0.932256
6	7	0	2. 193115	0.109874	-0.074639	50	6	0	-5.303329	-2. 358937	-0.396412
7	1	0	5.942122	-0.036657	-0.974190	51	1	0	-3. 430659	-5.044455	-1.360888
8	1	0	4. 555257	1.942075	-1.639885	52	1	0	-5.791305	-4.228142	-1.353529
9	1	0	2. 425313	-1.725160	0.840315	53	1	0	-6.324665	-1.994770	-0.404426
10	6	0	1.875436	2.241724	-1.017321	54	8	0	-1.406595	-3.782015	-0.381640
11	8	0	2.277581	3.295271	-1.698257	55	16	0	-0.237243	-2.706661	-0. 680992
12	6	0	1.077513	4.116370	-1.867662	56	8	0	0.991944	-3.368936	-0. 323339
13	6	0	0.133133	3.611415	-0.763482	57	8	0	-0.400986	-2.185110	-2.023389
14	1	0	1.383338	5.156676	-1.782234	58	7	0	-0.563997	-1.560681	0. 486277
15	1	0	0.695419	3.915860	-2.870874	59	6	0	-2.096861	-0.701535	2.155617
16	1	0	-0.896135	3.539032	-1.122798	60	8	0	-1.041661	-0.073477	2.635648
17	7	0	0.674645	2.252732	-0.550690	61	8	0	-3.132920	-0.882572	2.749295
18	6	0	0.170194	4.458192	0.543160	62	6	0	-1.169740	0.481239	3.958111
19	6	0	-0.684897	3.795084	1.627831	63	1	0	-0.200356	0.923594	4.177245
20	1	0	-0.370686	2.764734	1.823833	64	1	0	-1.950812	1.244318	3.964016
21	1	0	-0.596426	4.356518	2.563934	65	1	0	-1.404432	-0.307379	4.674519
22	1	0	-1.740033	3.788675	1.342323	66	6	0	5.011153	-2.249333	0.431852
23	6	0	1.603664	4.618526	1.069441	67	8	0	4.466435	-3.165668	1.013344
24	1	0	2.046533	3.653874	1.341748	68	8	0	6.297909	-2.217625	0.116653
25	1	0	2.262946	5.109022	0.346293	69	6	0	7.069981	-3.368645	0.495144
26	1	0	1.594083	5.236261	1.973125	70	1	0	8.088463	-3.154376	0.176333
27	6	0	-0.428247	5.837995	0.231462	71	1	0	7.031708	-3.510844	1.577014
28	1	0	-1.426255	5.743821	-0.211357	72	1	0	6.690938	-4.259110	-0.010533
29	1	0	-0.524680	6.414928	1.156967						
30	1	0	0.195320	6.422621	-0.452248	14-TS ^s					
31	46	0	0.058638	0.353970	0.009727						
32	6	0	-2.759539	1.524476	0.465709	Center	Atomic	Atomic	Coor	dinates (Ang	stroms)
33	6	0	-1.964474	0.664880	-0.305546	Number	Number	Туре	Х	Y	Z
34	6	0	-3.842515	2.183009	-0.108379						
35	6	0	-2.293836	0.451483	-1.657037	1	6	0	2.928304	-1.223494	0. 380979
36	6	0	-4.143121	1.984309	-1.454325	2	6	0	4.287871	-1.256581	0.624526
37	1	0	-4.453940	2.842962	0.498808	3	6	0	5.010395	-0.075924	0.468186

4	6	0	4.337698	1.078167	0.085695	48	6	0	-4.083957	3. 165062	-1.588818
5	6	0	2.960285	1.022499	-0.135632	49	6	0	-5.235288	3. 237142	-0.812924
6	7	0	2.272799	-0.105216	0.001914	50	6	0	-5.239653	2.710378	0.475916
7	1	0	6.078668	-0.060028	0.649585	51	1	0	-4. 039939	3. 572690	-2.592379
8	1	0	4.768654	-2.177767	0.930616	52	1	0	-6.123816	3.711017	-1.216205
9	1	0	2.413293	1.909617	-0.428687	53	1	0	-6.134564	2.769955	1.085492
10	6	0	2.049077	-2.393644	0.500668	54	8	0	-1.863921	2.446382	-1.910954
11	8	0	2.522169	-3.543414	0.938416	55	16	0	-0.420524	2.606472	-1.181095
12	6	0	1.346014	-4. 390257	1.127614	56	8	0	0.544435	2.140247	-2.148561
13	6	0	0.268147	-3.714722	0.263900	57	8	0	-0.333239	3.950307	-0.654053
14	1	0	1.618146	-5. 400118	0.827700	58	7	0	-0.497713	1.545475	0.067214
15	1	0	1.108233	-4.366063	2.193346	59	6	0	-1.466894	1.077344	2.201982
16	1	0	-0.693457	-3.696447	0.780638	60	8	0	-2.517065	0.595254	2.830034
17	7	0	0.801633	-2.337230	0.185374	61	8	0	-0.410753	1.342334	2.728668
18	6	0	0.074838	-4.349786	-1.140608	62	6	0	-2.365461	0.362392	4.243066
19	6	0	-0.873479	-3.481257	-1.970708	63	1	0	-3.312953	-0.064221	4.565414
20	1	0	-0.450433	-2.491049	-2.163492	64	1	0	-1.548214	-0.338873	4. 420475
21	1	0	-1.067583	-3.958530	-2.937106	65	1	0	-2.174440	1.306317	4.756315
22	1	0	-1.831423	-3.351321	-1.460182	66	6	0	5.012129	2.399394	-0.089629
23	6	0	1.410003	-4.492861	-1.883630	67	8	0	4. 417806	3. 413641	-0.393593
24	1	0	1.888207	-3.520313	-2.046750	68	8	0	6.317022	2.330593	0.131373
25	1	0	2.115943	-5.139689	-1.352647	69	6	0	7.044675	3. 563734	0.015303
26	1	0	1.236437	-4.938770	-2.868220	70	1	0	6.673695	4.289307	0.742400
27	6	0	-0.568009	-5.729785	-0.940680	71	1	0	8.082385	3. 311783	0.226868
28	1	0	-1.535995	-5.641262	-0.434487	72	1	0	6.949104	3.966674	-0.995050
29	1	0	-0.737326	-6.206567	-1.911540						
30	1	0	0.063609	-6.402654	-0.351266						
31	46	0	0.133254	-0.380339	-0.053268						
32	6	0	-2.551641	-0.591466	-1.232201						
33	6	0	-1.913309	-0.685115	0.019009						
34	6	0	-3.685474	-1.343013	-1.503855						
35	6	0	-2.425698	-1.572273	0.984528						
36	6	0	-4.194216	-2.200319	-0.528350						
37	1	0	-4.175374	-1.256427	-2.467970						
38	6	0	-3.553739	-2.331364	0.705990						
39	1	0	-1.939948	-1.671786	1.949514						
40	1	0	-5.094148	-2.773118	-0.730643						
41	1	0	-3.941304	-3. 018008	1.451752						
42	1	0	-2.172092	0.084507	-1.991677						
43	6	0	-1.696567	1.313608	0.694291						
44	6	0	-2.929882	2.002122	0.231604						
45	6	0	-2.964336	2.553540	-1.060184						
46	1	0	-4.135789	1.689598	1.990771						
47	6	0	-4.104755	2.101419	0.992809						

9. X-Ray Crystal Structure Data

The crystal data of compound **3aa** have been deposited in CCDC with number 1047798. Empirical Formula: $C_{15}H_{13}NO_5S$; Formula Weight: 319.32; Crystal Color, Habit: colorless; Crystal Dimensions: 0.38 x 0.30 x 0.25 mm; Crystal System: Trigonal; Lattice Parameters: a = 10.3879(15) Å, b = 10.3879(15) Å, c = 24.218(5) Å, $\alpha = 90$ °C, $\beta = 90$ °C, $\gamma = 120$ °C, V = 2263.2(6) Å³; Space group: P 32; Z = 6; $D_{calc} = 1.406$ g/cm3; $F_{000} = 996$; Final R indices [I>2sigma(I)]: R1 = 0.0326; wR2 = 0.0873.

The crystal was obtained from a petroleum ether/dichloromethane solution at room temperature under air.

Table 1.	1. Crystal data and structure refinement for 3aa .					
	Identification code	271				
	Empirical formula	C15 H13 N O5 S				
	Formula weight	319.32				
	Temperature	296(2) K				
	Wavelength	1.54178 A				
	Crystal system, space group	Trigonal, P 32				
	Unit cell dimensions	a = 10.3879(15) A alpha = 90 deg.				
		b = 10.3879(15) A beta = 90 deg.				
		c = 24.218(5) A gamma = 120 deg.				
	Volume	2263.2(6) A^3				
	Z, Calculated density	6, 1.406 Mg/m^3				
	Absorption coefficient	2.126 mm^-1				
	F(000)	996				
	Crystal size	0.38 x 0.30 x 0.25 mm				
	Theta range for data collection	4.92 to 67.23 deg.				
	Limiting indices	-12<=h<=12, -12<=k<=11, -28<=l<=27				
	Reflections collected / unique	13604 / 5193 [R(int) = 0.0283]				
	Completeness to theta = 67.23	98.6 %				

Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7529 and 0.5198
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5193 / 1 / 398
Goodness-of-fit on F^2	1.094
Final R indices [I>2sigma(I)]	R1 = 0.0326, $wR2 = 0.0873$
R indices (all data)	R1 = 0.0328, $wR2 = 0.0875$
Absolute structure parameter	0.069(13)
Extinction coefficient	0.0056(3)
Largest diff. peak and hole	0.218 and -0.241 e.A^-3

	Х	У	Z	U(eq)
S(1)	4840(1)	9495(1)	2075(1)	55(1)
S(2)	2829(1)	1507(1)	634(1)	55(1)
O(1)	4941(2)	10759(2)	2333(1)	74(1)
O(2)	5690(2)	9650(2)	1601(1)	75(1)
O(3)	5275(2)	8687(2)	2532(1)	66(1)
O(4)	2767(2)	7784(2)	854(1)	67(1)
O(5)	3708(3)	6294(2)	944(1)	66(1)
O(6)	2981(2)	2361(2)	1107(1)	76(1)
O(7)	4092(2)	1607(2)	375(1)	75(1)
O(8)	2018(2)	1941(2)	177(1)	65(1)
O(9)	1118(2)	-566(2)	1855(1)	67(1)
O(10)	-372(2)	378(3)	1765(1)	66(1)
N(1)	3112(2)	8271(2)	1997(1)	52(1)
N(2)	1606(2)	-222(2)	713(1)	51(1)
C(1)	2792(2)	6842(2)	1761(1)	44(1)
C(2)	3716(2)	6297(3)	2068(1)	46(1)
C(3)	3414(3)	4839(3)	2013(1)	56(1)
C(4)	4199(4)	4303(3)	2292(1)	67(1)
C(5)	5330(4)	5235(4)	2643(1)	72(1)
C(6)	5671(3)	6677(4)	2712(1)	70(1)
C(7)	4876(3)	7202(3)	2422(1)	54(1)
C(8)	1131(2)	5757(2)	1856(1)	46(1)
C(9)	472(3)	5858(3)	2339(1)	59(1)
C(10)	-999(4)	4854(4)	2450(1)	79(1)
C(11)	-1821(4)	3738(4)	2088(2)	88(1)
C(12)	-1197(4)	3611(3)	1616(2)	87(1)
C(13)	278(3)	4616(3)	1491(1)	67(1)
C(14)	3098(3)	7045(2)	1130(1)	49(1)
C(15)	4022(5)	6401(5)	356(1)	91(1)
C(16)	173(2)	-540(2)	947(1)	44(1)
C(17)	-370(3)	384(2)	639(1)	46(1)
C(18)	-1827(3)	80(3)	697(1)	56(1)
C(19)	-2364(3)	866(4)	417(1)	67(1)
C(20)	-1436(4)	1994(4)	67(1)	71(1)
C(21)	10(4)	2339(3)	-3(1)	70(1)
C(22)	539(3)	1543(3)	287(1)	55(1)
C(23)	-911(2)	-2203(2)	852(1)	46(1)
C(24)	-811(3)	-2861(3)	369(1)	60(1)
C(25)	-1812(4)	-4334(4)	261(1)	79(1)

Table 2.Atomic coordinates (x 10^4) and equivalent isotropicdisplacement parameters (A^2 x 10^3) for 3aa.

C(26)	-2925(4)	-5153(4)	623(2)	89(1)
C(27)	-3056(3)	-4532(4)	1095(2)	87(1)
C(28)	-2049(3)	-3059(3)	1217(1)	67(1)
C(29)	376(2)	-236(3)	1578(1)	49(1)
C(30)	-264(5)	692(5)	2353(1)	90(1)
H(1B)	2415	8447	2088	62
H(2B)	1783	-920	623	61
H(3A)	2653	4203	1777	67
H(4A)	3971	3323	2245	80
H(5A)	5864	4879	2834	86
H(6B)	6429	7300	2951	84
H(9A)	1028	6610	2591	71
H(10A)	-1431	4940	2773	95
H(11A)	-2812	3063	2165	106
H(12A)	-1762	2841	1371	104
H(13A)	693	4524	1164	80
H(15A)	4467	5810	266	136
H(15B)	4693	7419	260	136
H(15C)	3112	6044	153	136
H(18A)	-2461	-681	932	67
H(19A)	-3344	637	464	81
H(20A)	-1794	2528	-124	86
H(21A)	632	3099	-241	84
H(24A)	-62	-2305	116	71
H(25A)	-1725	-4769	-62	95
H(26A)	-3599	-6144	546	106
H(27A)	-3828	-5096	1338	104
H(28A)	-2138	-2645	1546	80
H(30A)	-856	1136	2443	135
H(30B)	754	1364	2449	135
H(30C)	-619	-217	2556	135

S(1)-O(2)	1.4082(19)	C(10)-C(11)	1.360(5)
S(1)-O(1)	1.4098(19)	C(10)-H(10A)	0.9300
S(1)-O(3)	1.585(2)	C(11)-C(12)	1.354(6)
S(1)-N(1)	1.6101(18)	C(11)-H(11A)	0.9300
S(2)-O(6)	1.4094(19)	C(12)-C(13)	1.389(5)
S(2)-O(7)	1.4106(19)	C(12)-H(12A)	0.9300
S(2)-O(8)	1.587(2)	C(13)-H(13A)	0.9300
S(2)-N(2)	1.6109(18)	C(15)-H(15A)	0.9600
O(3)-C(7)	1.407(3)	C(15)-H(15B)	0.9600
O(4)-C(14)	1.190(3)	C(15)-H(15C)	0.9600
O(5)-C(14)	1.308(3)	C(16)-C(17)	1.528(3)
O(5)-C(15)	1.453(3)	C(16)-C(23)	1.536(3)
O(8)-C(22)	1.403(3)	C(16)-C(29)	1.555(3)
O(9)-C(29)	1.193(3)	C(17)-C(18)	1.389(3)
O(10)-C(29)	1.308(3)	C(17)-C(22)	1.390(3)
O(10)-C(30)	1.454(3)	C(18)-C(19)	1.376(4)
N(1)-C(1)	1.465(3)	C(18)-H(18A)	0.9300
N(1)-H(1B)	0.8600	C(19)-C(20)	1.375(4)
N(2)-C(16)	1.468(3)	C(19)-H(19A)	0.9300
N(2)-H(2B)	0.8600	C(20)-C(21)	1.369(5)
C(1)-C(2)	1.528(3)	C(20)-H(20A)	0.9300
C(1)-C(8)	1.535(3)	C(21)-C(22)	1.390(4)
C(1)-C(14)	1.553(3)	C(21)-H(21A)	0.9300
C(2)-C(3)	1.391(3)	C(23)-C(28)	1.385(3)
C(2)-C(7)	1.394(3)	C(23)-C(24)	1.385(4)
C(3)-C(4)	1.374(4)	C(24)-C(25)	1.379(4)
C(3)-H(3A)	0.9300	C(24)-H(24A)	0.9300
C(4)-C(5)	1.379(4)	C(25)-C(26)	1.359(5)
C(4)-H(4A)	0.9300	C(25)-H(25A)	0.9300
C(5)-C(6)	1.366(5)	C(26)-C(27)	1.352(6)
C(5)-H(5A)	0.9300	C(26)-H(26A)	0.9300
C(6)-C(7)	1.386(4)	C(27)-C(28)	1.387(5)
C(6)-H(6B)	0.9300	C(27)-H(27A)	0.9300
C(8)-C(9)	1.385(4)	C(28)-H(28A)	0.9300
C(8)-C(13)	1.386(3)	C(30)-H(30A)	0.9600
C(9)-C(10)	1.379(4)	C(30)-H(30B)	0.9600
C(9)-H(9A)	0.9300	C(30)-H(30C)	0.9600
O(2) - S(1) - O(1)	120 32(12)	O(1)-S(1)-N(1)	108 78(11)
O(2) - S(1) - O(1)	107 55(13)	O(3)-S(1)-N(1)	99.45(10)
O(1)- $S(1)$ - $O(3)$	107.33(13)	O(6) - S(2) - O(7)	120 57(12)
$O(2)_{S(1)} = O(3)$	112 46(12)	$O(6) \cdot O(2) = O(7)$	107 28(12)
$O(2)^{-}O(1)^{-}IN(1)$	112.40(12)	0(0)-0(2)-0(0)	107.20(13)

O(7)-S(2)-O(8)	105.97(13)	C(11)-C(10)-C(9)	120.4(3)
O(6)-S(2)-N(2)	112.51(12)	C(11)-C(10)-H(10A)	119.8
O(7)-S(2)-N(2)	108.69(11)	C(9)-C(10)-H(10A)	119.8
O(8)-S(2)-N(2)	99.48(10)	C(12)-C(11)-C(10)	120.0(3)
C(7)-O(3)-S(1)	116.34(15)	C(12)-C(11)-H(11A)	120.0
C(14)-O(5)-C(15)	116.7(2)	C(10)-C(11)-H(11A)	120.0
C(22)-O(8)-S(2)	116.32(15)	C(11)-C(12)-C(13)	120.8(3)
C(29)-O(10)-C(30)	116.7(2)	C(11)-C(12)-H(12A)	119.6
C(1)-N(1)-S(1)	116.40(14)	C(13)-C(12)-H(12A)	119.6
C(1)-N(1)-H(1B)	121.8	C(8)-C(13)-C(12)	119.8(3)
S(1)-N(1)-H(1B)	121.8	C(8)-C(13)-H(13A)	120.1
C(16)-N(2)-S(2)	116.24(14)	C(12)-C(13)-H(13A)	120.1
C(16)-N(2)-H(2B)	121.9	O(4)-C(14)-O(5)	125.0(2)
S(2)-N(2)-H(2B)	121.9	O(4)-C(14)-C(1)	122.3(2)
N(1)-C(1)-C(2)	108.63(17)	O(5)-C(14)-C(1)	112.68(19)
N(1)-C(1)-C(8)	106.73(17)	O(5)-C(15)-H(15A)	109.5
C(2)-C(1)-C(8)	109.79(18)	O(5)-C(15)-H(15B)	109.5
N(1)-C(1)-C(14)	108.56(18)	H(15A)-C(15)-H(15B)	109.5
C(2)-C(1)-C(14)	113.87(17)	O(5)-C(15)-H(15C)	109.5
C(8)-C(1)-C(14)	109.01(17)	H(15A)-C(15)-H(15C)	109.5
C(3)-C(2)-C(7)	116.2(2)	H(15B)-C(15)-H(15C)	109.5
C(3)-C(2)-C(1)	121.03(19)	N(2)-C(16)-C(17)	108.81(17)
C(7)-C(2)-C(1)	122.8(2)	N(2)-C(16)-C(23)	106.66(17)
C(4)-C(3)-C(2)	122.5(2)	C(17)-C(16)-C(23)	109.94(18)
C(4)-C(3)-H(3A)	118.7	N(2)-C(16)-C(29)	108.31(18)
C(2)-C(3)-H(3A)	118.7	C(17)-C(16)-C(29)	114.01(17)
C(3)-C(4)-C(5)	119.3(3)	C(23)-C(16)-C(29)	108.84(17)
C(3)-C(4)-H(4A)	120.3	C(18)-C(17)-C(22)	116.7(2)
C(5)-C(4)-H(4A)	120.3	C(18)-C(17)-C(16)	120.72(19)
C(6)-C(5)-C(4)	120.5(3)	C(22)-C(17)-C(16)	122.6(2)
C(6)-C(5)-H(5A)	119.8	C(19)-C(18)-C(17)	122.3(2)
C(4)-C(5)-H(5A)	119.8	C(19)-C(18)-H(18A)	118.8
C(5)-C(6)-C(7)	119.4(3)	C(17)-C(18)-H(18A)	118.8
C(5)-C(6)-H(6B)	120.3	C(20)-C(19)-C(18)	119.4(3)
C(7)-C(6)-H(6B)	120.3	C(20)-C(19)-H(19A)	120.3
C(6)-C(7)-C(2)	122.0(2)	C(18)-C(19)-H(19A)	120.3
C(6)-C(7)-O(3)	115.4(2)	C(21)-C(20)-C(19)	120.5(3)
C(2)-C(7)-O(3)	122.4(2)	C(21)-C(20)-H(20A)	119.7
C(9)-C(8)-C(13)	118.3(2)	C(19)-C(20)-H(20A)	119.7
C(9)-C(8)-C(1)	119.20(19)	C(20)-C(21)-C(22)	119.4(3)
C(13)-C(8)-C(1)	122.4(2)	C(20)-C(21)-H(21A)	120.3
C(10)-C(9)-C(8)	120.6(2)	C(22)-C(21)-H(21A)	120.3
C(10)-C(9)-H(9A)	119.7	C(21)-C(22)-C(17)	121.7(2)
C(8)-C(9)-H(9A)	119.7	C(21)-C(22)-O(8)	115.5(2)

C(17)-C(22)-O(8)	122.8(2)	C(26)-C(27)-H(27A)	119.8
C(28)-C(23)-C(24)	118.2(2)	C(28)-C(27)-H(27A)	119.8
C(28)-C(23)-C(16)	122.5(2)	C(23)-C(28)-C(27)	120.2(3)
C(24)-C(23)-C(16)	119.13(19)	C(23)-C(28)-H(28A)	119.9
C(25)-C(24)-C(23)	120.5(3)	C(27)-C(28)-H(28A)	119.9
C(25)-C(24)-H(24A)	119.7	O(9)-C(29)-O(10)	125.0(2)
C(23)-C(24)-H(24A)	119.7	O(9)-C(29)-C(16)	122.4(2)
C(26)-C(25)-C(24)	120.3(3)	O(10)-C(29)-C(16)	112.62(19)
C(26)-C(25)-H(25A)	119.8	O(10)-C(30)-H(30A)	109.5
C(24)-C(25)-H(25A)	119.8	O(10)-C(30)-H(30B)	109.5
C(27)-C(26)-C(25)	120.3(3)	H(30A)-C(30)-H(30B)	109.5
C(27)-C(26)-H(26A)	119.9	O(10)-C(30)-H(30C)	109.5
C(25)-C(26)-H(26A)	119.8	H(30A)-C(30)-H(30C)	109.5
C(26)-C(27)-C(28)	120.5(3)	H(30B)-C(30)-H(30C)	109.5

O(2)-S(1)-O(3)-C(7)	-66.71(19)
O(1)-S(1)-O(3)-C(7)	163.38(17)
N(1)-S(1)-O(3)-C(7)	50.60(18)
O(6)-S(2)-O(8)-C(22)	-66.66(19)
O(7)-S(2)-O(8)-C(22)	163.32(17)
N(2)-S(2)-O(8)-C(22)	50.63(18)
O(2)-S(1)-N(1)-C(1)	47.4(2)
O(1)-S(1)-N(1)-C(1)	-176.72(18)
O(3)-S(1)-N(1)-C(1)	-66.14(19)
O(6)-S(2)-N(2)-C(16)	47.5(2)
O(7)-S(2)-N(2)-C(16)	-176.32(18)
O(8)-S(2)-N(2)-C(16)	-65.77(18)
S(1)-N(1)-C(1)-C(2)	48.2(2)
S(1)-N(1)-C(1)-C(8)	166.57(15)
S(1)-N(1)-C(1)-C(14)	-76.1(2)
N(1)-C(1)-C(2)-C(3)	166.4(2)
C(8)-C(1)-C(2)-C(3)	50.1(3)
C(14)-C(1)-C(2)-C(3)	-72.5(3)
N(1)-C(1)-C(2)-C(7)	-12.4(3)
C(8)-C(1)-C(2)-C(7)	-128.8(2)
C(14)-C(1)-C(2)-C(7)	108.7(2)
C(7)-C(2)-C(3)-C(4)	0.5(4)
C(1)-C(2)-C(3)-C(4)	-178.4(2)
C(2)-C(3)-C(4)-C(5)	0.1(4)
C(3)-C(4)-C(5)-C(6)	-0.1(5)
C(4)-C(5)-C(6)-C(7)	-0.4(4)
C(5)-C(6)-C(7)-C(2)	1.1(4)
C(5)-C(6)-C(7)-O(3)	178.2(3)
C(3)-C(2)-C(7)-C(6)	-1.1(3)
C(1)-C(2)-C(7)-C(6)	177.8(2)
C(3)-C(2)-C(7)-O(3)	-178.0(2)
C(1)-C(2)-C(7)-O(3)	0.9(3)
S(1)-O(3)-C(7)-C(6)	158.81(19)
S(1)-O(3)-C(7)-C(2)	-24.1(3)
N(1)-C(1)-C(8)-C(9)	-36.1(3)
C(2)-C(1)-C(8)-C(9)	81.5(2)
C(14)-C(1)-C(8)-C(9)	-153.2(2)
N(1)-C(1)-C(8)-C(13)	147.9(2)
C(2)-C(1)-C(8)-C(13)	-94.6(3)
C(14)-C(1)-C(8)-C(13)	30.8(3)
C(13)-C(8)-C(9)-C(10)	-0.6(4)
C(1)-C(8)-C(9)-C(10)	-176.7(3)

Table 4. Torsion angles [deg] for **3aa**.

C(8)-C(9)-C(10)-C(11)	0.7(5)
C(9)-C(10)-C(11)-C(12)	-0.1(6)
C(10)-C(11)-C(12)-C(13)	-0.5(6)
C(9)-C(8)-C(13)-C(12)	-0.1(4)
C(1)-C(8)-C(13)-C(12)	175.9(3)
C(11)-C(12)-C(13)-C(8)	0.7(5)
C(15)-O(5)-C(14)-O(4)	1.0(4)
C(15)-O(5)-C(14)-C(1)	179.3(3)
N(1)-C(1)-C(14)-O(4)	-40.2(3)
C(2)-C(1)-C(14)-O(4)	-161.3(2)
C(8)-C(1)-C(14)-O(4)	75.7(3)
N(1)-C(1)-C(14)-O(5)	141.5(2)
C(2)-C(1)-C(14)-O(5)	20.3(3)
C(8)-C(1)-C(14)-O(5)	-102.6(2)
S(2)-N(2)-C(16)-C(17)	48.0(2)
S(2)-N(2)-C(16)-C(23)	166.56(15)
S(2)-N(2)-C(16)-C(29)	-76.4(2)
N(2)-C(16)-C(17)-C(18)	166.6(2)
C(23)-C(16)-C(17)-C(18)	50.2(3)
C(29)-C(16)-C(17)-C(18)	-72.4(3)
N(2)-C(16)-C(17)-C(22)	-12.4(3)
C(23)-C(16)-C(17)-C(22)	-128.9(2)
C(29)-C(16)-C(17)-C(22)	108.6(2)
C(22)-C(17)-C(18)-C(19)	0.7(4)
C(16)-C(17)-C(18)-C(19)	-178.5(2)
C(17)-C(18)-C(19)-C(20)	0.0(4)
C(18)-C(19)-C(20)-C(21)	-0.2(5)
C(19)-C(20)-C(21)-C(22)	-0.4(4)
C(20)-C(21)-C(22)-C(17)	1.1(4)
C(20)-C(21)-C(22)-O(8)	178.1(3)
C(18)-C(17)-C(22)-C(21)	-1.2(3)
C(16)-C(17)-C(22)-C(21)	177.9(2)
C(18)-C(17)-C(22)-O(8)	-178.0(2)
C(16)-C(17)-C(22)-O(8)	1.1(3)
S(2)-O(8)-C(22)-C(21)	158.75(19)
S(2)-O(8)-C(22)-C(17)	-24.3(3)
N(2)-C(16)-C(23)-C(28)	147.4(2)
C(17)-C(16)-C(23)-C(28)	-94.8(3)
C(29)-C(16)-C(23)-C(28)	30.7(3)
N(2)-C(16)-C(23)-C(24)	-36.5(3)
C(17)-C(16)-C(23)-C(24)	81.3(2)
C(29)-C(16)-C(23)-C(24)	-153.2(2)
C(28)-C(23)-C(24)-C(25)	-0.7(4)
C(16)-C(23)-C(24)-C(25)	-176.9(3)

C(23)-C(24)-C(25)-C(26)	1.0(5)
C(24)-C(25)-C(26)-C(27)	-0.3(6)
C(25)-C(26)-C(27)-C(28)	-0.7(6)
C(24)-C(23)-C(28)-C(27)	-0.4(4)
C(16)-C(23)-C(28)-C(27)	175.8(3)
C(26)-C(27)-C(28)-C(23)	1.1(5)
C(30)-O(10)-C(29)-O(9)	0.8(4)
C(30)-O(10)-C(29)-C(16)	179.4(3)
N(2)-C(16)-C(29)-O(9)	-39.8(3)
C(17)-C(16)-C(29)-O(9)	-161.1(2)
C(23)-C(16)-C(29)-O(9)	75.8(3)
N(2)-C(16)-C(29)-O(10)	141.5(2)
C(17)-C(16)-C(29)-O(10)	20.2(3)
C(23)-C(16)-C(29)-O(10)	-102.9(2)

Table 5. Hydrogen bonds for **3aa** [A and deg.].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1B)O(9)#1	0.86	2.14	2.893(3)	146.4
N(2)-H(2B)O(4)#2	0.86	2.13	2.892(3)	146.9

Symmetry transformations used to generate equivalent atoms:

#1 x,y+1,z #2 x,y-1,z