Supporting Information
for

Synthesis of Bisarylethyne-Peptide Conjugates

by
M. Strack, S. Langklotz, J. E. Bandow, N. Metzler-Nolte, H. B. Albada*

Table of Content

General Information 2
Synthesis 2
Phenylacetylene-derivatized Peptides 2
Synthesis of Ac-[4-(2-phenylethynyl)-Phe]-Xaa-Rink, (Xaa = Ala (1), Ser (${ }^{\text {t Bu }}$)) 2
General Procedure A: reduction of the triple bond using hydrogen or deuterium containing cleavage reagents 3
Ac-[4-(2-phenylethyl)-Phe]-Ala-NH2 (4) 3
Ac-[4-(2-phenyl-($\left.\mathrm{CD}_{2}\right)_{2}$-Phe]-Ala- NH_{2} (8) 5
Mixed Deuteration Experiments 7
Ac-[4-(2-phenylethynyl)-Phe]-Ala- NH_{2} (5a) 8
Ac-[4-(pyridin-2-ylethynyl)-Phe]-Ala-NH2 (5b) 10
Bisarylethyne-bridged peptides 12
4-Ethynylbenzoic Acid 12
Conjugated 4-iodophenylalanine (10) 12
Conjugated Ac-[(4-I)-Phe]-Ser-NH2 (12) 14
Reference 16

General Information

All solution-phase modifications were performed using oven-dried glassware under a nitrogen atmosphere and standard Schlenk techniques. Peptide chain assembly was performed in plastic syringes with a porous polypropylene disc as filter. Chemicals were obtained from commercial suppliers and used without further purification; solvents were dried according to standard procedures and stored over molecular sieves (3 \AA).

Preparative HPLC was performed on an HPLC system with PDA detector. For this, a HIBAR Lichrospher $100 \mathrm{RP}-18 \mathrm{e}$ reversed phase column ($250 \times 25 \mathrm{~mm}$) was used at a flow rate of $20 \mathrm{~mL} / \mathrm{min}$. Linear gradients of $5 \% \mathrm{~B} / \mathrm{min}$ starting with 5 min of buffer A were used (A: $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeCN} /$ TFA 95:5:0.1 $\mathrm{v} / \mathrm{v} / \mathrm{v} ; \mathrm{B}: \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} /$ TFA 95:5:0.1 $\mathrm{v} / \mathrm{v} / \mathrm{v}$).

NMR spectroscopy was performed in deuterated solvents at $30^{\circ} \mathrm{C}$ on a Bruker DPX-200, DPX-250 or DPX-400 device. Chemical shifts (δ) are given in parts per million (ppm) relative to TMS and the solvent residual signal is used as a reference. Abbreviations for peak multiplicities are s (singlet), d (doublet), t (triplet), m (multiplet) and br (broad). Some ${ }^{13} \mathrm{C}$ chemical shifts were extracted from 2D-H,C-correlation spectra.

Mass spectrometry was performed on a Bruker Esquire 6000 mass spectrometer (ESI) or a VG Instruments Autospec mass spectrometer (EI). The m / z ratio is given as a dimensionless number.

High-resolution mass spectrometry data were acquired using a Synapt G2-S HDMS instrument (Waters) equipped with a lock spray source for electrospray ionization (ESI) and a time of flight (ToF) detector. For an analysis, samples were diluted $1: 10$ in 50% acetonitrile $/ 0.1 \%$ formic acid and were injected for direct infusion with a flow of $0.5 \mu \mathrm{~L} / \mathrm{min}$. Spectra were recorded in positive ionization mode over a mass range of 50 to $1200 \mathrm{~m} / \mathrm{z}$ with $1 \mathrm{~s} / \mathrm{scan}$. The following parameters were used for the NanoLockSpray source: capillary voltage, 3.0 kV ; sampling cone voltage, 30 V ; source temperature, $100^{\circ} \mathrm{C}$; desolvation temperature, $150^{\circ} \mathrm{C}$; cone gas flow; $50 \mathrm{~L} / \mathrm{h}$; desolvation gas flow, $500 \mathrm{~L} / \mathrm{h}$. Leucine enkephaline serving as lock mass analyte was fed through the lock spray channel (lock mass capillary voltage, 3.5 kV). Analysis of the spectra was performed using MassLynx V4.1 SCN883 (Waters).

Synthesis

Phenylacetylene-derivatized Peptides

Synthesis of Ac-[4-(2-phenylethynyl)-Phe]-Xaa-Rink, (Xaa = Ala (1), Ser(tBu))
Peptide synthesis was performed as follows: A solution of Fmoc-AA-OH (4 eq.), HOBt (4 eq.) and TBTU (3.8 eq.) in DMF (7 mL) was prepared, and DiPEA (8 eq .) was added shortly before addition to a Rink amide resin ($1 \mathrm{~g}, 0.71 \mathrm{mmol} / \mathrm{g}, 1 \mathrm{eq}$.). The suspension was agitated for 1 h at room temperature. The reaction mixture was removed by filtration, and the resin was washed with DMF ($4 \times 7 \mathrm{~mL} \times 2 \mathrm{~min}$) and DCM ($3 \times 7 \mathrm{~mL} \times 2 \mathrm{~min}$). Fmoc deprotection was accomplished by two consecutive treatments with 20% piperidine in NMP $(2 \times 7 \mathrm{~mL} \times$ $10 \mathrm{~min})$ and subsequent washing of the resin with DMF ($4 \times 7 \mathrm{~mL} \times 2 \mathrm{~min}$) and DCM (3×7 $\mathrm{mL} \times 2 \mathrm{~min}$). After final Fmoc deprotection, the N -terminus was acetylated with a solution of $\mathrm{Ac}_{2} \mathrm{O}(0.5 \mathrm{M})$ and DiPEA $(0.125 \mathrm{M})$ in NMP $(2 \times 7 \mathrm{~mL} \times 10 \mathrm{~min})$, and the solid support was
washed with DMF ($4 \times 7 \mathrm{~mL} \times 2 \mathrm{~min}$), $\mathrm{DCM}(3 \times 7 \mathrm{~mL} \times 2 \mathrm{~min}), \mathrm{Et}_{2} \mathrm{O}(3 \times 7 \mathrm{~mL} \times 2 \mathrm{~min})$ and was dried in vacuo. For the Sonogashira cross-coupling, dry peptide-bound resin was placed in an oven-dried Schlenk flask and DMF (7 mL), DiPEA ($482.1 \mu \mathrm{~L}, 2.84 \mathrm{mmol}$), and phenylacetylene ($156 \mu \mathrm{~L}, 1.42 \mathrm{mmol}$) were added. The mixture was degassed with N_{2} for 15 min , and $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PdCl}_{2}(249.2 \mathrm{mg}, 0.36 \mathrm{mmol})$ and $\mathrm{Cul}(135.2 \mathrm{mg}, 0.71 \mathrm{mmol})$ were added. The suspension was stirred at room temperature overnight. The resin was isolated by filtration and washed with DCM ($5 \times 10 \mathrm{~mL} \times 2 \mathrm{~min}$), DMF ($5 \times 10 \mathrm{~mL} \times 2 \mathrm{~min}$), DCM (4×10 $\mathrm{mL} \times 2 \mathrm{~min})$ and $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL} \times 2 \mathrm{~min})$ and was dried in vacuo.

General Procedure A: reduction of the triple bond using hydrogen or deuterium containing cleavage reagents

A solution of hydrogen or deuterium containing TFA/H $\mathrm{H}_{2} \mathrm{O} / \mathrm{TES}\left(80: 10: 10, \mathrm{v} / \mathrm{v} / \mathrm{v}, V_{\text {tot }}=1.5 \mathrm{~mL}\right)$ was added to dry Ac-[4-(2-phenylethynyl)-Phe]-Ala-Rink resin ($0.15 \mathrm{~g}, 81.1 \mu \mathrm{~mol}$). The mixture was agitated over night at room temperature, the solution was separated by filtration and the resin was washed with TFA ($2 \times 1 \mathrm{~mL} \times 1 \mathrm{~min}$). All TFA fractions were combined and concentrated in vacuo. Addition of ice-cold $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ followed by centrifugation and two washing cycles with $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ yielded the crude materials.

Ac-[4-(2-phenylethyl)-Phe]-Ala- NH_{2} (4)

Purification by preparative HPLC provided the target material as a white amorphous solid. Yield: 28.2 mg (91%, crude, 71% purity), 12.1 mg (39%, purified). $r p-H P L C(C-8): t_{\mathrm{R}}=20.6$ min. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 8.04$ (d, J $=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$ Phe), 7.98 (d, J = 7.5 Hz , $1 \mathrm{H}, \mathrm{NH}_{\text {Ala }}$), $7.32-7.03\left(\mathrm{~m}, 10 \mathrm{H}, 9 \mathrm{H}_{\text {arom. }}, 1 H_{\mathrm{NH} 2}\right), 7.04\left(\mathrm{~d}, \mathrm{~J}=52 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NH} \mathrm{H}_{2}\right), 4.56-4.37(\mathrm{~m}$, $\left.1 \mathrm{H}, H_{\text {aPhe }}\right), 4.19\left(\mathrm{p}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, H_{\text {afla }}\right), 2.90-2.78\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 2.83$ (ddd, $J=23.8$, $13.9,7.2 \mathrm{~Hz}, 2 \mathrm{H}, H_{\text {BPhe }}$), $1.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.21\left(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, H_{\text {BAIa }}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(101$ MHz, DMSO- d_{6}): $\delta 174.0,170.9,169.2,141.6,139.3,135.4,128.9,128.3,128.2,128.0$, 125.7, 54.0, 48.0, 37.0, 37.0, 36.7, 22.4, 18.3. MS (ESI ${ }^{+}$): $m / z=381.9$ (calcd 382.2 for $[\mathrm{M}+\mathrm{H}]^{+}$). $\mathrm{HR}-\mathrm{MS}\left(\mathrm{ESI}{ }^{+}\right): m / z=382.2131$ (calcd 382.2131 for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{3}$).

HPLC chromatogram $\lambda=214 \mathrm{~nm}$ of peptide 4.

${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz , DMSO- d_{6}) of peptide 4.

$\begin{array}{lllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & { }_{\delta} 110 \\ \delta[\mathrm{ppm}]\end{array} 100$
${ }^{13} \mathrm{C}$ NMR spectrum (101 MHz , DMSO- d_{6}) of peptide 4.

Ac-[4-(2-phenyl- $\left(\mathrm{CD}_{2}\right)_{2}$-Phe]-Ala- NH_{2} (8)

Purification by preparative HPLC provided the target peptide as a white amorphous solid. Yield: 27.5 mg (88%, crude, 70% purity), 9.5 mg (30%, purified). rp-HPLC (C-8): $t_{\mathrm{R}}=20.7$ $\min .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6}\right): \delta 8.04\left(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, N H_{\text {Phe }}\right), 7.98(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{NH}_{\text {Ala }}$), $7.31-7.06\left(\mathrm{~m}, 10 \mathrm{H}, 9 H_{\text {arom. }}, 1 H_{\mathrm{NH} 2}\right), 7.04\left(\mathrm{~d}, \mathrm{~J}=52 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NH} \mathrm{H}_{2}\right), 4.54-4.39(\mathrm{~m}$, $\left.1 \mathrm{H}, H_{\text {aPhe }}\right), 4.18\left(\mathrm{p}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, H_{\text {aAla }}\right), 2.83$ (ddd, $\left.J=23.8,13.9,7.2 \mathrm{~Hz}, 2 \mathrm{H}, H_{\text {PPhe }}\right), 1.76$
 169.2, 141.5, 139.2, 135.4, 128.9, 128.1, 128.0, 125.7, 54.0, 48.0, 37.0, 36.0 (HSQC), 22.4, 18.3. $\mathrm{MS}\left(\mathrm{ESI}^{+}\right): m / z=385.9$ (calcd 386.2 for $\left.[\mathrm{M}+\mathrm{H}]^{+}\right) . \mathrm{HR}-\mathrm{MS}\left(\mathrm{ESI}^{+}\right): \mathrm{m} / \mathrm{z}=386.2377$ (calcd 386.2382 for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{D}_{4} \mathrm{~N}_{3} \mathrm{O}_{3}$).

HPLC chromatogram $\lambda=214 \mathrm{~nm}$ of deuterated peptide 8.

${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz , DMSO- d_{6}) of deuterated peptide 8.

- 0 N	
サ®o	
11	$\xrightarrow{-1}$

$$
\begin{array}{ll}
\circ & \circ \\
\dot{W} & 0 \\
\text { 〇o }
\end{array}
$$

O
$\sim m$
$\underset{\sim}{N} \stackrel{\infty}{\sim}$

$\begin{array}{lllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 \\ \delta[\mathrm{ppm}]\end{array}$
${ }^{13} \mathrm{C}$ NMR spectrum (101 MHz , DMSO- d_{6}) of deuterated peptide 8.

Mixed Deuteration Experiments

Partially deuterated peptide 7

According to General Procedure A using $d-T F A / D_{2} \mathrm{O} / T E S$. The crude material was lyophilized three times from $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(1: 1,15 \mathrm{~mL})$ and a small aliquot was purified by $r p-H P L C$ for MS analysis. Yield: 27.2 mg (87%, crude, 70% purity). $r p-\mathrm{HPLC}(\mathrm{C}-8): t_{\mathrm{R}}=20.7 \mathrm{~min}$.

HPLC chromatogram $\lambda=214 \mathrm{~nm}$ of partially deuterated peptide 7 .

Partially deuterated peptide 6

According to General Procedure A using TFA/ $\mathrm{H}_{2} \mathrm{O} / d$-TES. The crude material was lyophilized three times from $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(1: 1,15 \mathrm{~mL})$ and a small aliquot was purified by $r p-\mathrm{HPLC}$ for MS analysis. Yield: 29.5 mg (95%, crude 72% purity). $r p-H P L C(C-8): t_{R}=20.7 \mathrm{~min}$.

HPLC chromatogram $\lambda=214 \mathrm{~nm}$ of partially deuterated peptide 6 .

Ac-[4-(2-phenylethynyl)-Phe]-Ala-NH2 (5a)

A solution of TFA/phenol ($90: 10, \mathrm{v} / \mathrm{w}, V_{\text {tot }}=1 \mathrm{~mL}$) was added to dry Ac-[4-(2-phenylethynyl)-Phe]-Ala-Rink resin 3 a ($0.1 \mathrm{~g}, 54 \mu \mathrm{~mol}$) and the suspension was agitated at room temperature for 60 min . The solution was separated by filtration and the resin was washed with TFA ($2 \times 1 \mathrm{~mL} \times 1 \mathrm{~min}$). The TFA fractions were combined and concentrated in vacuo. Addition of ice-cold $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ followed by centrifugation and two washing cycles with $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ yielded the crude material that was purified by preparative HPLC to yield the target compound as a white amorphous solid.

Yield: 7.4 mg (36%, purified). $r p-\mathrm{HPLC}(\mathrm{C}-18): t_{\mathrm{R}}=18.3 \mathrm{~min} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$: $\delta 8.09$ ($\mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH} H_{\text {Phe }}$), 8.05 ($\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH} \mathrm{Ala}$), $7.60-7.34$ ($\mathrm{m}, 7 \mathrm{H}, H_{\text {arom. }}$), 7.31 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, H_{\text {arom. }}$), $\left.7.10(\mathrm{~d}, J=87.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NH})_{2}\right), 4.59-4.47\left(\mathrm{~m}, 1 \mathrm{H}, H_{\text {aPhe }}\right)$, $4.20\left(\mathrm{p}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, H_{\text {aAla }}\right), 2.91$ (ddd, $\left.J=23.8,13.8,7.2 \mathrm{~Hz}, 2 \mathrm{H}, H_{\beta \text { Phe }}\right), 1.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.22 (d, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, H_{\text {BAIa }}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO-d d_{6}): $\delta 173.9,170.7,169.2,139.1$, 131.2, 131.0, 129.5, 128.7, 128.6, 122.4, 120.1, 89.4, 89.0, 53.6, 48.0, 37.4, 22.4, 18.3. MS $\left(E S I^{+}\right): m / z=377.9$ (calcd 378.2 for $\left.[M+]^{+}\right)$. HR-MS (ESI ${ }^{+}$): $m / z=378.1819$ (calcd 378.1818 for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}$).

HPLC chromatogram $\lambda=214 \mathrm{~nm}$ of peptide 5 a.

${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz , DMSO- d_{6}) of peptide $\mathbf{5 a}$.

$\begin{array}{lllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \frac{110}{\delta}[\mathrm{ppm}]\end{array}$
${ }^{13} \mathrm{C}$ NMR spectrum (101 MHz , DMSO- d_{6}) of peptide 5 .

Ac-[4-(pyridin-2-ylethynyl)-Phe]-Ala-NH2 (5b)

In a one-neck Schlenk flask, a suspension of Ac-[(4-I)-Phe]-Ala-Rink solid support 3b (0.2 g, $0.108 \mathrm{mmol})$, 2-ethynylpyridine ($16.4 \mu \mathrm{~L}, 0.162 \mathrm{mmol}$) and DiPEA ($73.3 \mu \mathrm{~L}, 0.432 \mathrm{mmol}$) was prepared and degassed. Then, $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PdCl}_{2}(22.7 \mathrm{mg}, 0.032 \mathrm{mmol})$ and $\mathrm{Cul}(12.3 \mathrm{mg}, 0.065$ $\mathrm{mmol})$ were added. The suspension was stirred at room temperature overnight. The resin was isolated by filtration and washed with DCM ($5 \times 10 \mathrm{~mL} \times 2 \mathrm{~min}$), DMF ($5 \times 10 \mathrm{~mL} \times 2$ $\mathrm{min})$, $\mathrm{DCM}(4 \times 10 \mathrm{~mL} \times 2 \mathrm{~min})$ and $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL} \times 2 \mathrm{~min})$ and was dried in vacuo. Ac-[4-(pyridine-2-ylethynyl)-Phe]-Ala-Rink solid support ($0.1 \mathrm{~g}, 54 \mu \mathrm{~mol}$) was treated with a mixture of TFA/phenol ($9: 1, \mathrm{v} / \mathrm{w}, V_{\text {tot }}=1 \mathrm{~mL}$) for 60 min . The resin was isolated by filtration and was washed with TFA ($2 \times 0.5 \mathrm{~mL} \times 1 \mathrm{~min}$). Combined TFA solutions were concentrated in vacuo and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added to the residual material. The formed precipitate was isolated by centrifugation and was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$. Preparative HPLC yielded the target compound as a white amorphous solid.

Yield: $9.4 \mathrm{mg}(35 \%) . r p-H P L C(C-18): t_{R}=12.8 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO) $\delta 8.61$ (d, J $=4.7 \mathrm{~Hz}, 1 \mathrm{H}, H_{\text {arom. }}$), 8.10 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH} H_{\text {Phe }}$), 8.05 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH} H_{\text {Ala }}$), 7.87 (td, $J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}, H_{\text {arom. }}$), 7.64 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, H_{\text {arom. }}$), 7.51 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, H_{\text {arom. }}$), 7.42 (ddd, $J=7.6,4.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}, H_{\text {arom }}$), $7.34\left(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, H_{\text {arom. }}\right.$), 7.10 (d, $J=89.6$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{NH}$) , 4.59-4.48 (m, 1H, $H_{\text {aPhe }}$), $4.20\left(\mathrm{p}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}, H_{\mathrm{aAla}}\right), 2.92$ (ddd, $J=23.8$, $13.8,7.2 \mathrm{~Hz}, 2 \mathrm{H}, H_{\text {BPhe }}$), $1.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.22\left(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{\text {BAIa }}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(101$ MHz , DMSO- d_{6}): δ 173.9, 170.6, 169.2, 149.9, 142.1, 139.9, 137.0, 131.1, 129.7, 127.3, $123.5,119.1,88.8,88.5,53.6,48.0,37.4,22.4,18.3 . \mathrm{MS}\left(\mathrm{ESI}^{+}\right): \mathrm{m} / \mathrm{z}=378.9(\operatorname{calcd} 379.2$ for $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$. HR-MS $\left(E S I^{+}\right): m / z=379.1771\left(\right.$ calcd 379.1770 for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{3}$).

HPLC chromatogram $\lambda=214 \mathrm{~nm}$ of peptide 5 b.

${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$ of peptide $\mathbf{5 b}$.

σ
$\stackrel{\sigma}{\sigma}$
$\stackrel{\rightharpoonup}{\top}$

$\begin{array}{ll}\infty & 1 \\ 8 & 8 \\ 8\end{array}$
$\begin{array}{ll}\bullet & \circ \\ \sim \\ \sim & 0 \\ 1 & 0\end{array}$
$\stackrel{\sim}{\sim} \underset{\sim}{\infty}$

${ }^{13} \mathrm{C}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) of peptide $\mathbf{5 b}$.

Bisarylethyne-bridged peptides

4-Ethynylbenzoic Acid

Prepared according to a literature procedure. ${ }^{1}$

Yield: $181.0 \mathrm{mg}(62 \%, 2$ steps $) . R_{f}\left(\mathrm{SiO}_{2}, \mathrm{PE}: E t O A c-1: 1, \mathrm{v} / \mathrm{v}\right)=0.1 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right.$, 200 MHz): $\delta 7.93$ (d, J = $8.2 \mathrm{~Hz}, 2 \mathrm{H}, H_{\text {arom. }}$), 7.59 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, H_{\text {arom. }}$), 4.43 (s, 1 H , $\mathrm{C} \equiv \mathrm{CH}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}, 53 \mathrm{MHz}\right.$): $\delta 166.7,131.9,130.9,129.5,126.0,83.6,82.2 . \mathrm{MS}$ $\left(E I^{+}\right): m / z=146.0\left(\right.$ calcd 146.0 for $\left.[M]^{+}\right)$.

Conjugated 4-iodophenylalanine (10)

H-Gly-Tyr ${ }^{\text {t }} \mathrm{Bu}$)-Val-Ser(${ }^{\mathrm{t}} \mathrm{Bu}$)-Rink-PS 9 ($0.1 \mathrm{~g}, 0.053 \mathrm{mmol}$) was prepared as described above. A solution of 4-ethynylbenzoic acid ($15.5 \mathrm{mg}, 0.106 \mathrm{mmol}$), PyBOP ($53.8 \mathrm{mg}, 0.103$ $\mathrm{mmol})$ and DiPEA ($18.0 \mu \mathrm{~L}, 0.106 \mathrm{mmol}$) in DMF (0.5 mL) was prepared and added to the resin-bound peptide. The suspension was agitated for 4 h , the resin was isolated by filtration and was washed with DMF ($4 \times 2 \mathrm{~mL} \times 2 \mathrm{~min}$), $\mathrm{DCM}(3 \times 2 \mathrm{~mL} \times 2 \mathrm{~min})$ and $\mathrm{Et}_{2} \mathrm{O}(3 \times 2 \mathrm{~mL}$ $\times 2 \mathrm{~min}$) and was dried in vacuo. The acetylene derivatized peptide resin was placed in a one-neck Schlenk flask and a solution of Fmoc-[(4-I)-Phe]-OH ($31.6 \mathrm{mg}, 0.06 \mathrm{mmol}$) and DiPEA ($37.2 \mu \mathrm{~L}, 0.22 \mathrm{mmol}$) in DMF $(0.5 \mathrm{~mL})$ was added and the mixture was degassed thoroughly. Then, $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PdCl}_{2}(11.6 \mathrm{mg}, 0.017 \mathrm{mmol})$ and Cul ($6.3 \mathrm{mg}, 0.033 \mathrm{mmol}$) were added and the reaction mixture was stirred at room temperature overnight. The resin was isolated by filtration and washed with DCM ($5 \times 3 \mathrm{~mL} \times 2 \mathrm{~min}$), DMF ($5 \times 3 \mathrm{~mL} \times 2 \mathrm{~min}$), DCM ($4 \times 3 \mathrm{~mL} \times 2 \mathrm{~min}$) and was treated with 20% piperidine in NMP ($2 \times 2 \mathrm{~mL} \times 10 \mathrm{~min}$) for Fmoc deprotection of the phenylalanine moiety. Subsequently, the solid support was washed with DMF ($5 \times 3 \mathrm{~mL} \times 2 \mathrm{~min}$), DCM ($4 \times 3 \mathrm{~mL} \times 2 \mathrm{~min}$) and $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL} \times 2 \mathrm{~min})$ and was dried in vacuo. The material was treated with a mixture of TFA/phenol (9:1, v/w, $V_{\text {tot }}=1 \mathrm{~mL}$) for 60 min . The resin was isolated by filtration and was washed with TFA ($2 \times 0.5 \mathrm{~mL} \times 1$ $\mathrm{min})$. Combined TFA solutions were concentrated in vacuo and $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ was added to the residual material. The formed precipitate was isolated by centrifugation and was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 25 \mathrm{~mL})$. Preparative HPLC yielded the target compound as a white amorphous solid.

Yield: $10.8 \mathrm{mg}\left(25 \%, 13\right.$ steps). rp-HPLC (C-18): $t_{\mathrm{R}}=16.7 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSOd_{6}): $\delta 8.77\left(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}_{\text {Gly }}\right.$), $8.05-7.93\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NH} H_{\text {Tyr }}, N H_{\text {Val }}\right), 7.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}$,
$2 H, H_{\text {arom. }}$), 7.76 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}_{\text {Ser }}$), 7.63 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, H_{\text {arom. }}$), 7.55 (d, $J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}, H_{\text {arom. }}$), 7.33 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, H_{\text {arom. }}$), $7.13\left(\mathrm{~d}, J=53.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NH} \mathrm{N}_{2}\right), 7.00(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}, H_{\text {arom.Tyr }}$), 6.59 (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}, H_{\text {arom. }}$), $4.58-4.45\left(\mathrm{~m}, 1 \mathrm{H}, H_{\text {aTyr }}\right), 4.28-4.10$ (m, $\left.3 \mathrm{H}, H_{\text {aSer }}, H_{\text {aVal }}, H_{\text {aPhe }}\right), 3.96-3.73\left(\mathrm{~m}, 2 \mathrm{H}, H_{\text {aGly }}\right), 3.65-3.50\left(\mathrm{~m}, H_{\beta S e r}\right), 3.21-3.05(\mathrm{~m}$, $H_{\beta \text { Phe }}$), 2.92 (dd, $J=13.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}, H_{\beta \text { Tyr }}$), 2.68 (dd, $\left.J=13.9,9.4 \mathrm{~Hz}, 1 \mathrm{H}, H_{\beta T y r}\right), 2.07-1.95$ $\left(\mathrm{m}, 1 \mathrm{H}, H_{\beta \mathrm{Val}}\right), 0.85\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}, H_{\text {yVal }}\right) .{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 172.1,171.6$, $170.9,170.4,169.0,166.0,136.2,133.8,131.9,131.5,130.4,130.1,127.9,125.3,121.0$, $115.5,115.1,91.3,89.1,61.8,58.2,54.3,53.2,42.7$ (HSQC), 36.8 (HSQC), 35.9 (HSQC), 30.5; 19.4, 18.5 (rotamers, $\mathrm{C}_{\text {VVal }}$). MS (ESI ${ }^{+}$): $m / z=715.1$ (calcd 715.3 for $[\mathrm{M}+\mathrm{H}]^{+}$). HR-MS $(E S I+): m / z=715.3087$ (calcd 715.3091 for $\mathrm{C}_{37} \mathrm{H}_{43} \mathrm{~N}_{6} \mathrm{O}_{9}$).

HPLC chromatogram $\lambda=214 \mathrm{~nm}$ of bisarylethyne-bridged peptide 10.

${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz , WATERGATE DMSO- d_{6}) of bisarylethyne-bridged peptide 10.

${ }^{13} \mathrm{C}$ NMR spectrum (400 MHz , DMSO- d_{6}) of bisarylethyne-bridged peptide 10.

Conjugated Ac-[(4-I)-Phe]-Ser- NH_{2} (12)

Dry Ac-[(4-I)-Phe]-Ser('Bu)-Rink-PS ($0.2 \mathrm{~g}, 0.11 \mathrm{mmol}$) was prepared via the method that was described for the preparation of peptide 1. Cleavage was performed with a mixture of TFA/phenol (9:1, v/w, $V_{\text {tot }}=2 \mathrm{~mL}$) at room temperature for 1 h . The resin was isolated by filtration and was washed with TFA ($2 \times 1 \mathrm{~mL} \times 1 \mathrm{~min}$). After concentration of the combined TFA solutions and subsequent precipitation and washing with $\mathrm{Et}_{2} \mathrm{O}(3 \times 25 \mathrm{~mL})$, the peptide material 11 ($25.9 \mathrm{mg}, 58 \%$) was obtained as a white amorphous solid with high purity; rp-$\operatorname{HPLC}(\mathrm{C}-18): t_{\mathrm{R}}=17.4 \mathrm{~min} . \mathrm{MS}\left(E S I^{+}\right): m / z=419.7$ (calcd 420.2 for $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$.

HPLC chromatogram $\lambda=214 \mathrm{~nm}$ of Ac-(4-I)Phe-Ser- $\mathrm{NH}_{2} 11$.
H-Gly-Tyr('Bu)-Val-Ser('Bu)-Rink-PS 9 ($0.1 \mathrm{~g}, 0.053 \mathrm{mmol}$) was prepared as described above. A solution of 4-ethynylbenzoic acid ($15.5 \mathrm{mg}, 0.106 \mathrm{mmol}$), PyBOP ($53.8 \mathrm{mg}, 0.103$ mmol) and DiPEA ($18.0 \mu \mathrm{~L}, 0.106 \mathrm{mmol}$) in DMF (0.5 mL) was prepared and added to the
resin-bound peptide. The suspension was agitated for 4 h , the resin was isolated by filtration and was washed with DMF ($4 \times 2 \mathrm{~mL} \times 2 \mathrm{~min}$), DCM $(3 \times 2 \mathrm{~mL} \times 2 \mathrm{~min})$ and $\mathrm{Et}_{2} \mathrm{O}(3 \times 2 \mathrm{~mL}$ $\times 2 \mathrm{~min}$) and was dried in vacuo. In a one-neck Schlenk flask, the obtained resin was combined with Ac-[(4-I)-Phe]-Ser-NH $\mathrm{N}_{2}(24.5 \mathrm{mg}, 0.058 \mathrm{mmol})$, DiPEA ($0.1 \mathrm{~mL}, 0.58 \mathrm{mmol}$) and DMF (1.5 mL) and the mixture was degassed. Subsequently, $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PdCl}_{2}(11.2 \mathrm{mg}$, 0.016 mmol) and $\mathrm{Cul}(6.1 \mathrm{mg}, 0.032 \mathrm{mmol})$ were added and the mixture was stirred at room temperature overnight. The resin was isolated by filtration and washed with DCM $(5 \times 3 \mathrm{~mL} \times$ $2 \mathrm{~min}), \operatorname{DMF}(5 \times 3 \mathrm{~mL} \times 2 \mathrm{~min}), \mathrm{DCM}(4 \times 3 \mathrm{~mL} \times 2 \mathrm{~min})$ and $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL} \times 2 \mathrm{~min})$ and was dried in vacuo. The material was treated with a mixture of TFA/phenol ($9: 1, \mathrm{v} / \mathrm{w}, V_{\text {tot }}=1$ $\mathrm{mL})$ for 60 min . The resin was isolated by filtration and was washed with TFA $(2 \times 0.5 \mathrm{~mL} \times 1$ $\mathrm{min})$. Combined TFA solutions were concentrated in vacuo and $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ was added to the residual material. The formed precipitate was isolated by centrifugation and was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 25 \mathrm{~mL})$. Preparative HPLC yielded the target compound as a white amorphous solid.

Yield: $10.0 \mathrm{mg}\left(22 \%, 12\right.$ steps). rp -HPLC (C-18): $t_{\mathrm{R}}=17.1 \mathrm{~min}{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right) \delta 8.78\left(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH} \mathrm{G}_{\mathrm{GIy}}\right), 8.12\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH} H_{\text {TyrIPhe }}\right), 8.04-7.94(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{NH}_{\text {TyrIPhe }}, N H_{\text {val, }}, N H_{\text {Ser1 }}$), 7.89 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, H_{\text {arom }}$), 7.76 (d, $\left.J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH} H_{\text {ser2 }}\right), 7.63$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, H_{\text {arom }}$), 7.48 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, H_{\text {arom }}$), 7.33 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, H_{\text {arom }}$), 7.19 $-7.04\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{NH}_{2}\right), 7.01$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, H_{\text {arom. Tyr }}$), $6.59\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, H_{\text {arom. }}\right.$), 4.67 - 4.47 (m, 2H, $\left.H_{\text {aTyr, }} H_{\text {aPhe }}\right), 4.28-4.13\left(\mathrm{~m}, 3 \mathrm{H}, 2 \times H_{\text {aSer }}, H_{\text {aVal }}\right), 3.98-3.75\left(\mathrm{~m}, 2 \mathrm{H}, H_{\text {aGIy }}\right)$, $3.71-3.45\left(\mathrm{~m}, H_{\beta \text { Ser }}\right), 3.08\left(\mathrm{dd}, J=13.9,4.2 \mathrm{~Hz}, 1 \mathrm{H}, H_{\beta \text { TyrlPhe }}\right), 2.92(\mathrm{dd}, J=13.9,3.7 \mathrm{~Hz}, 1 \mathrm{H}$, $H_{\text {BTyrIPhe }}$), $2.83-2.64\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {BTyrPhe }}\right), 2.08-1.95\left(\mathrm{~m}, 1 \mathrm{H}, H_{\text {BVal }}\right), 1.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.86(\mathrm{t}, \mathrm{J}$ $\left.=7.0 \mathrm{~Hz}, 6 \mathrm{H}, H_{\mathrm{yVal}}\right) .{ }^{13} \mathrm{C}$ NMR (extracted from HMBC experiment, DMSO- d_{6}): $\delta 171.8,171.6$, 171.1, 170.6, 169.1, 168.4, 165.6, 165.4, 155.7, 139.4, 133.5, 131.0, 130.3, 130.2, 129.4, 127.6, 127.3, 125.1, 119.7, 114.7, 91.4, 88.4, 61.6, 57.9, 55.1, 54.9, 54.3, 53.8, 53.3, 37.1, $36.5,30.3,30.2,22.5,18.5 . \mathrm{MS}\left(\mathrm{ESI}^{+}\right): m / z=843.1$ (calcd 843.4 for $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$. HR-MS (ESI $)$: $m / z=843.3676$ (calcd 843.3677 for $\mathrm{C}_{42} \mathrm{H}_{51} \mathrm{~N}_{8} \mathrm{O}_{11}$).

HPLC chromatogram $\lambda=214 \mathrm{~nm}$ of bisarylethyne-bridged peptide 12.

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) of bisarylethyne-bridged peptide 12.

Reference

(1) Jones, L. F.; Cochrane, M. E.; Koivisto, B. D.; Leigh, D. A.; Perlepes, S. P.; Wernsdorfer, W.; Brechin, E. K. Inorganica Chimica Acta 2008, 361, 3420.

