Three-component solvent-free synthesis of highly substituted tetrahydroimidazo[1,2-*a*]pyridines

Fuchao Yu,¹ Shengjiao Yan,¹ Rong Huang, Yajuan Tang, Jun Lin* Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China

Supporting Information

Table of Contents

General Information	3
General Procedure for the Preparation of Tetrahydroimidazo[1,2-a]pyridine Derivatives	4 via
One-pot Three-component Reactions	3
Spectroscopic Data of Tetrahydroimidazo[1,2-a]pyridine Derivatives 4	4
X-ray Structure and Data of 4f	15
¹ H NMR and ¹³ C NMR Spectra for Tetrahydroimidazo[1,2- <i>a</i>]pyridine Derivatives 4	22
Figure 1. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 4a	23
Figure 2. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 4a	24
Figure 3. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 4b	25
Figure 4. ¹³ C NMR (125 MHz, DMSO- <i>d</i> ₆) spectra of compound 4b	26
Figure 5. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 4c	27
Figure 6. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 4c	28
Figure 7. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 4d	29
Figure 8. ¹³ C NMR (125 MHz, DMSO- <i>d</i> ₆) spectra of compound 4d	30
Figure 9. ¹ H NMR (500 MHz, CDCl3+DMSO- <i>d</i> ₆) spectra of compound 4e	31
Figure 10. ¹³ C NMR (125 MHz, CDCl3+DMSO- <i>d</i> ₆) spectra of compound 4e	32
Figure 11. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 4f	33
Figure 12. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 4f	34
Figure 13. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 4g	35
Figure 14. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 4g	36
Figure 15. ¹ H NMR (500 MHz, DMSO- <i>d</i> ₆) spectra of compound 4h	37
Figure 16. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 4h	38
Figure 17. ¹ H NMR (500 MHz, DMSO- <i>d</i> ₆) spectra of compound 4i	39
Figure 18. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 4i	40
Figure 19. ¹ H NMR (500 MHz, DMSO- <i>d</i> ₆) spectra of compound 4j	41
Figure 20. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 4j	42
Figure 21. ¹ H NMR (500 MHz, DMSO- <i>d</i> ₆) spectra of compound 4k	43

Figure 22. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 4k	44
Figure 23. ¹ H NMR (500 MHz, CDCl3) spectra of compound 41	45
Figure 24. ¹³ C NMR (125 MHz, CDCl3) spectra of compound 4l	46
Figure 25. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 4m	47
Figure 26. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 4m	48
Figure 27. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 4n	49
Figure 28. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 4n	50
Figure 29. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 40	51
Figure 30. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 40	52
Figure 31. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 4p	53
Figure 32. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 4p	54
Figure 33. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 4q	55
Figure 34. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 4q	56
Figure 35. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 4r	57
Figure 36. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 4r	58
Figure 37. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 4s	59
Figure 38. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 4s	60
Figure 39. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 4t	61
Figure 40. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 4t	62
Figure 41. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 4u	63
Figure 42. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 4u	64
Figure 43. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 4v	65
Figure 44. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 4v	66
Figure 45. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 4w	67
Figure 46. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 4w	68
Figure 47. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 4x	69
Figure 48. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 4x	70
Figure 49. ¹ H NMR (500 MHz, DMSO- d_{δ}) spectra of compound 4 y	71
Figure 50. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 4y	72
References and Notes	73

General Information

All compounds were fully characterized by spectroscopic data. The NMR spectra were recorded on a Bruker DRX500 (¹H: 500 MHz, ¹³C: 125 MHz), chemical shifts (δ) are expressed in ppm, and *J* values are given in Hz, and deuterated CDCl₃ and DMSO-*d*₆ were used as solvent. IR spectra were recorded on a FT-IR Thermo Nicolet Avatar 360 using KBr pellet. The reactions were monitored by thin layer chromatography (TLC) using silica gel GF₂₅₄. The melting points were determined on XT-4A melting point apparatus and are uncorrected. HRMs were performed on a Agllent LC/Msd TOF instrument.

All chemicals and solvents were used as received without further purification unless otherwise stated. Column chromatography was performed on silica gel (200–300 mesh).

The substrates $1a \sim 1d$ were synthesized accroding to the literature.¹ Compound 1e was prepared according to the literature.² The substrates $3a \sim 3h$ were synthesized accroding to the literature.³

<u>General Procedure for the Preparation of Tetrahydroimidazo[1,2-*a*]pyridine <u>Derivatives 4 via One-pot Three-component Reactions</u></u>

HKA derivatives 1 (2.5 mmol), triethoxy-methane 2 (3 mmol) and nitroalkene derivatives 3 (3 mmol) were charged into a 25 mL round-bottom flask and the mixture was heated to 110°C. The resulting solution was stirred for 20–38 min until the HKA derivatives 1 were completely consumed. The mixture was diluted with EtOAc (50 mL x 2) and quenched with water (50 mL). The organic layer was dried by Na₂SO₄, concentrated, and purified by flash column chromatography (Petro/AcOEt = 1/1) to afford product 4 with 73–93% yield. The products were further identified by FTIR, NMR and HRMS, being in good agreement with the assigned structures (See Supplementary Information).

Spectroscopic Data of Tetrahydroimidazo[1,2-a]pyridine Derivatives 4

(4-Chlorophenyl)(5-(furan-2-yl)-1,2,3,5-tetrahydro-6-nitroimidazo[1,2-*a*]pyridin-8-yl)methanone (4a)

Yellow solid; Mp 257–258 °C; IR (KBr): 3288, 2900, 1594, 1408, 1292, 1228, 1163, 1075, 769 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 3.18-3.23$ (m, 1H, NCH₂), 3.75–3.80 (m, 3H, NCH₂CH₂N), 6.02 (s, 1H, NCH), 6.48 (s, 1H, ArH), 6.54 (s, 1H, ArH), 7.55 (d, J = 8.1 Hz, 2H, ArH), 7.60 (d, J = 8.1 Hz, 2H, ArH), 7.67 (s,1H,ArH), 7.99 (s, 1H, CH=), 9.37 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 43.7$, 45.9, 51.6, 91.4, 109.7, 111.1, 123.1, 128.9, 130.2, 135.6, 137.3, 138.4, 143.8, 150.2, 159.4, 188.3; HRMS (TOF ES⁺): m/z calcd for C₁₈H₁₅ClN₃O₄ [(M+H)⁺], 372.0746; found, 372.0753.

(4-Chlorophenyl)(5-(4-fluorophenyl)-1,2,3,5-tetrahydro-6-nitroimidazo[1,2-*a*]pyr idin-8-yl)methanone (4b)

Yellow solid; Mp 267.0–269.5 °C; IR (KBr): 3312, 2889, 1588, 1408, 1224, 1072, 835 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 3.10-3.15$ (m, 1H, NCH₂), 3.69–3.77 (m, 3H, NCH₂CH₂N), 5.85 (s, 1H, NCH), 7.24 (t, *J* = 8.8 Hz, 2H, ArH), 7.47–7.50 (m, 2H ArH), 7.59–7.63 (m, 4H, ArH), 8.03 (s, 1H, CH=), 9.35 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 43.6, 45.5$, 57.6, 91.1, 116.0, 116.1, 125.9, 128.9, 130.1, 130.2, 134.9, 135.5, 137.1, 138.4, 158.7, 188.3; HRMS (TOF ES⁺): *m/z* calcd for C₂₀H₁₆ClFN₃O₃ [(M+H)⁺], 400.0859; found, 400.0867.

(4-Chlorophenyl)(5-(4-chlorophenyl)-1,2,3,5-tetrahydro-6-nitroimidazo[1,2-*a*]pyr idin-8-yl)methanone (4c)

Yellow solid; Mp 167-171 °C; IR (KBr): 3281, 3073, 1589, 1409, 1217, 1080, 830 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 3.10-3.17$ (m, 1H, NCH₂), 3.66–3.77 (m,3H, NCH₂CH₂N), 5.85 (s, 1H, NCH), 7.41–7.47 (m, 4H, ArH), 7.58–7.61 (m, 4H, ArH), 8.03 (s, 1H, CH=), 9.36 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta =$ 43.6, 45.6, 57.7, 91.1, 125.7, 128.9, 129.2, 129.9, 130.2, 133.6, 135.6, 137.2, 137.6, 138.4, 158.7, 188.3; HRMS (TOF ES⁺): m/z calcd for $C_{20}H_{16}Cl_2N_3O_3$ [(M+H)⁺], 416.0563; found, 416.0560.

(4-Chlorophenyl)(5-(2-chlorophenyl)-1,2,3,5-tetrahydro-6-nitroimidazo[1,2-a]pyr idin-8-vl)methanone (4d)

Yellow solid; Mp 279-281 °C; IR (KBr): 3298, 3052, 1588, 1409, 1293, 1221, 1076, 760 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 3.10-3.15$ (m, 1H, NCH₂), 3.69–3.77 (m, 3H, NCH₂CH₂N), 6.25 (s, 1H, NCH), 7.39–7.43 (m, 2H, ArH), 7.48–7.52 (m, 1H, ArH), 7.52–7.55 (m, 1H, ArH), 7.59–7.63 (m, 4H, ArH), 8.08 (s, 1H, CH=), 9.36 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 43.7, 45.6, 55.3, 91.2, 125.0, 128.9,$ 128.9, 129.8, 130.2, 130.2, 130.8, 130.8, 133.1, 135.6, 137.8, 138.4, 158.5, 188.3; HRMS (TOF ES⁺): m/z calcd for $C_{20}H_{16}Cl_2N_3O_3$ [(M+H)⁺], 416.0563; found, 416.0562.

(4-Chlorophenyl)(1,2,3,5-tetrahydro-6-nitro-5-phenylimidazo[1,2-a]pyridin-8-yl) methanone (4e)

Yellow solid; Mp 260.0-265 °C; IR (KBr): 3355, 2966, 1595, 1404, 1227, 1080, 756 cm⁻¹; ¹H NMR (500MHz, CDCl₃+DMSO- d_6): $\delta = 2.50-2.54$ (m, 1H, NCH₂), 2.94-2.98 (m, 1H, NCH₂), 3.04-3.11 (m, 2H, NCH₂), 5.04 (s, 1H, NCH), 6.63-6.71 (m, 5H, ArH), 6.75–6.78 (m, 2H, ArH), 6.80–6.84 (m, 2H, ArH), 7.38 (s, 1H, CH=),

8.59 (br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃+DMSO- d_6): δ = 43.2, 45.4, 58.6, 90.5, 126.2, 127.5, 128.4, 128.7, 128.7, 128.8, 129.6, 135.8, 136.3, 137.9, 159.2, 188.2; HRMS (TOF ES⁺): m/z calcd for C₂₀H₁₇ClN₃O₃ [(M+H)⁺], 382.0953; found, 382.0950.

(4-Chlorophenyl)(1,2,3,5-tetrahydro-5-(4-methoxyphenyl)-6-nitroimidazo[1,2-*a*]p yridin-8-yl)methanone (4f)

Yellow solid; Mp 233.5–235.5 °C; IR (KBr): 3332, 2964, 1590, 1506, 1404, 1233, 1077, 828 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 3.13-3.18$ (m, 1H, NCH₂), 3.64–3.70 (m, 3H, NCH₂CH₂N), 3.74 (s, 3H, OCH₃), 5.74 (s, 1H, NCH), 6.95 (d, J = 8.6 Hz, 2H, ArH), 7.33 (d, J = 8.6 Hz, 2H, ArH), 7.57–7.60 (m, 4H, ArH), 8.00 (s, 1H, CH=), 9.27 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 43.5$, 45.4, 55.5, 57.7, 91.1, 114.5, 126.4, 128.5, 128.9, 129.2, 130.2, 135.5, 136.8, 138.5, 158.8, 159.8, 188.3; HRMS (TOF ES⁺): m/z calcd for C₂₁H₁₉ClN₃O₄ [(M+H)⁺], 412.1059; found, 412.1063.

(4-Chlorophenyl)(1,2,3,5-tetrahydro-5-(3,4-dimethoxyphenyl)-6-nitroimidazo[1,2 -*a*]pyridin-8-yl)methanone (4g)

Yellow solid; Mp 178–179 °C; IR (KBr): 3372, 2971, 1597, 1514, 1399, 1213, 1168, 1079, 1025,765 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 3.16-3.21$ (m, 1H, NCH₂), 3.68–3.76 (m, 3H, NCH₂CH₂N), 3.73 (s, 3H, OCH₃), 3.77 (s, 3H, OCH₃), 5.75 (s, 1H, NCH), 6.91–6.99 (m, 3H, ArH), 7.58–7.60 (m, 4H, ArH), 8.02 (s, 1H, CH=), 9.27 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 43.6$, 45.5, 55.9, 55.9, 58.0, 91.0, 111.7, 112.4, 119.9, 126.3, 128.9, 130.2, 130.9, 135.5, 136.8, 138.5, 149.1, 149.4, 158.8, 188.1; HRMS (TOF ES⁺): m/z calcd for C₂₂H₂₁ClN₃O₅ [(M+H)⁺], 442.1164; found, 442.1167.

(5-(Furan-2-yl)-1,2,3,5-tetrahydro-6-nitroimidazo[1,2-*a*]pyridin-8-yl)(phenyl)met hanone (4h)

Orange-red solid; Mp 199–200 °C; IR (KBr): 3287, 3089, 1590, 1360, 1199, 1077, 1017, 745 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 3.22-3.26$ (m, 1H, NCH₂), 3.71–3.80 (m, 3H, NCH₂CH₂N), 6.02 (s, 1H, NCH), 6.46–6.48 (m, 1H, ArH), 6.52–6.55 (m, 1H, ArH), 7.51–7.55 (m, 5H, ArH), 7.67–7.69 (m, 1H, ArH), 8.03 (s, 1H, CH=), 9.40 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 44.2$, 46.4, 52.2, 92.1, 110.2, 111.6, 123.3, 128.7, 129.3, 131.3, 138.2, 140.2, 144.3, 150.8, 160.0, 190.3; HRMS (TOF ES⁺): m/z calcd for C₁₈H₁₆N₃O₄ [(M+H)⁺], 338.1135; found, 338.1140.

(5-(4-Fluorophenyl)-1,2,3,5-tetrahydro-6-nitroimidazo[1,2-*a*]pyridin-8-yl)(phenyl)methanone (4i)

Yellow solid; Mp 222–224 °C; IR (KBr): 3328, 3060, 1592, 1295, 1223, 1168, 1074, 836, 742 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 3.10-3.16$ (m, 1H, NCH₂), 3.69–3.75 (m, 3H, NCH₂CH₂N), 5.84 (s, 1H, NCH), 7.20–7.26 (m, 2H, ArH), 7.45–7.50 (m, 2H, ArH), 7.50–7.58 (m, 5H, ArH), 8.06 (s, 1H, CH=), 9.36 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 43.6$, 45.5, 57.6, 91.3, 116.0 (d, J = 21.3 Hz), 125.6, 128.3, 128.8, 130.1, 130.8, 134.9, 137.5, 139.7, 158.8, 162.4 (d, J = 243.8 Hz), 189.7; HRMS (TOF ES⁺): m/z calcd for C₂₀H₁₇FN₃O₃ [(M+H)⁺], 366.1248; found, 366.1252.

(5-(4-Chlorophenyl)-1,2,3,5-tetrahydro-6-nitroimidazo[1,2-*a*]pyridin-8-yl)(pheny l)methanone (4j)

Orange-red solid; Mp 253–256 °C; IR (KBr): 3376, 2890, 1588, 1393, 1209, 1077, 821, 741 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 3.07-3.15$ (m, 1H, NCH₂), 3.71–3.75 (m, 3H, NCH₂CH₂N), 5.85 (s, 1H, NCH), 7.45–7.57 (m, 9H, ArH), 8.06 (s, S7

1H, CH=), 9.37 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): δ = 43.6, 45.6, 57.7, 91.3, 125.4, 128.3, 128.8, 129.2, 129.9, 130.8, 133.6, 137.6, 139.7, 139.7, 158.8, 189.7; HRMS (TOF ES⁺): m/z calcd for C₂₀H₁₇ClN₃O₃ [(M+H)⁺], 382.0953; found, 382.0960.

(5-(2-Chlorophenyl)-1,2,3,5-tetrahydro-6-nitroimidazo[1,2-*a*]pyridin-8-yl)(pheny l)methanone (4k)

Orange-red solid; Mp 262–265 °C; IR (KBr): 3210, 2970, 1591, 1294, 1205, 1075, 748 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 3.10-3.15$ (m, 1H, NCH₂), 3.65–3.75 (m, 3H, NCH₂CH₂N), 6.26 (s, 1H, NCH), 7.37–7.43 (m, 2H, ArH), 7.47–7.60 (m, 7H, ArH), 8.14 (s, 1H, CH=), 9.38 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 43.7$, 45.6, 55.4, 91.4, 124.7, 128.3, 128.8, 129.8, 129.8, 130.8, 130.8, 130.8, 133.1, 135.7, 138.2, 139.7, 158.6, 189.8; HRMS (TOF ES⁺): m/z calcd for C₂₀H₁₇ClN₃O₃ [(M+H)⁺], 382.0953; found, 382.0955.

(1,2,3,5-Tetrahydro-6-nitro-5-phenylimidazo[1,2-*a*]pyridin-8-yl)(phenyl)methano ne (4l)

Orange-red solid; Mp 229–231 °C; IR (KBr): 3322, 3064, 1589, 1447, 1395, 1291, 1217, 1072, 743 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 3.30–3.35 (m, 1H, NCH₂), 3.54–3.3.59 (m, 1H, NCH₂), 3.75–3.81 (m, 2H, NCH₂), 5.74 (s, 1H, NCH), 7.33–7.41 (m, 5H, ArH), 7.41–7.50 (m, 3H, ArH), 7.56–7.58 (m, 2H, ArH), 8.29 (s, 1H, CH=), 9.24 (br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃): δ = 43.4, 46.1, 59.6, 90.8, 127.5, 128.0, 128.8, 128.9, 129.7, 131.2, 132.2, 137.0, 138.0, 139.4, 161.0, 191.51; HRMS (TOF ES⁺): *m/z* calcd for C₂₀H₁₈N₃O₃ [(M+H)⁺], 348.1343; found, 348.1344.

(1,2,3,5-Tetrahydro-5-(4-methoxyphenyl)-6-nitroimidazo[1,2-*a*]pyridin-8-yl)(phe nyl)methanone (4m)

Yellow solid; Mp 253–255 °C; IR (KBr): 3368, 2958, 1592, 1508, 1395, 1210, 1026, 829, 739 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 3.14-3.18$ (m, 1H, NCH₂), 3.72–3.76 (m, 3H, NCH₂CH₂N), 3.77 (s, 3H, OCH₃), 5.77 (s, 1H, NCH), 6.97 (d, J = 7.1 Hz, 2H, ArH), 7.34 (d, J = 7.1 Hz, 2H, ArH), 7.52–7.57 (m, 5H, ArH), 8.06 (s, 1H, CH=), 9.28 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 43.5$, 45.4, 55.5, 57.8, 91.2, 114.6, 126.1, 128.2, 128.8, 129.2, 130.6, 130.7, 137.1, 139.8, 158.9, 159.8, 189.7; HRMS (TOF ES⁺): m/z calcd for C₂₁H₂₀N₃O₄ [(M+H)⁺], 378.1448; found, 378.1456.

(1,2,3,5-Tetrahydro-5-(3,4-dimethoxyphenyl)-6-nitroimidazo[1,2-*a*]pyridin-8-yl)(phenyl)methanone (4n)

Orange-red solid; Mp 219–220.5 °C; IR (KBr): 3324, 2958, 1596, 1510, 1405, 1290, 1223, 1072, 747 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 3.16-3.19$ (m, 1H, NCH₂), 3.65–3.71 (m, 3H, NCH₂CH₂N), 3.74 (s, 3H, OCH₃), 3.76 (s, 3H, OCH₃), 5.74 (s, 1H, NCH), 6.92–6.98 (m, 3H, ArH), 7.53–7.56 (m, 5H, ArH), 8.07 (s, 1H, CH=), 9.30 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 43.5$, 45.5, 55.8, 55.8, 58.0, 91.3, 111.6, 112.3, 119.8, 125.9, 128.2, 128.8, 130.8, 130.9, 137.3, 139.8, 149.0, 149.3, 158.9, 189.7; HRMS (TOF ES⁺): m/z calcd for C₂₂H₂₂N₃O₅ [(M+H)⁺], 408.1554; found, 408.1558.

(5-(Furan-2-yl)-1,2,3,5-tetrahydro-6-nitroimidazo[1,2-*a*]pyridin-8-yl)(*p*-tolyl)met hanone (40)

Orange-red solid; Mp 229–230 °C; IR (KBr): 3271, 2895, 1594, 1408, 1294, 1229, 1164, 1071, 747 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 2.40$ (s, 3H, CH₃), 3.25–3.27 (m, 1H, NCH₂), 3.76–3.80 (m, 3H, NCH₂CH₂N), 6.02 (s, 1H, NCH), S9

6.45–6.48 (m, 1H, ArH), 6.51–6.55 (m, 1H, ArH), 7.33–7.43 (m, 4H, ArH), 7.66–7.68 (m, 1H, ArH), 8.07 (s, 1H, CH=), 9.36 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 21.4$, 43.7, 45.9, 51.6, 91.7, 109.6, 111.1, 122.6, 128.4, 129.3, 136.9, 137.9, 140.8, 143.8, 150.3, 159.6, 189.7; HRMS (TOF ES⁺): m/z calcd for C₁₉H₁₈N₃O₄ [(M+H)⁺], 352.1292; found, 352.1299.

(5-(4-Fluorophenyl)-1,2,3,5-tetrahydro-6-nitroimidazo[1,2-*a*]pyridin-8-yl)(*p*-tolyl)methanone (4p)

Orange-red solid; Mp 242–245°C; IR (KBr): 3314, 3064, 2888, 1598, 1405, 1292, 1231, 1072, 838, 767 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 2.39$ (s, 3H, CH₃), 3.13–3.17 (m, 1H, NCH₂), 3.70–3.75 (m, 3H, NCH₂CH₂N), 5.84 (s, 1H, NCH), 7.24–7.26 (m, 2H, ArH), 7.33 (d, J = 7.8 Hz, 2H, ArH), 7.47–7.49 (d, J = 7.8 Hz, 4H, ArH), 8.10 (s, 1H, CH=), 9.35 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 21.4$, 43.6, 45.5, 57.6, 91.4, 116.0 (d, J = 21.3 Hz), 125.4, 128.4, 128.9, 129.3, 130.0 (d, J = 7.5 Hz), 134.9, 136.9, 137.6, 140.8, 158.9, 162.4 (d, J = 242.5 Hz), 189.7; HRMS (TOF ES⁺): m/z calcd for C₂₁H₁₉FN₃O₃ [(M+H)⁺], 380.1405; found, 380.1407.

(5-(4-Chlorophenyl)-1,2,3,5-tetrahydro-6-nitroimidazo[1,2-*a*]pyridin-8-yl)(*p*-tolyl)methanone (4q)

Orange-red solid; Mp 225–226 °C; IR (KBr): 3350, 2888, 1581, 1394, 1289, 1220, 1172, 1078, 828 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 2.39 (s, 3H, CH₃), 3.12–3.16 (m, 1H, NCH₂), 3.67–3.76 (m, 3H, NCH₂CH₂N), 5.84 (s, 1H, NCH), 7.30 (d, *J* = 7.8 Hz, 2H, ArH), 7.42–7.49 (m, 6H, ArH), 8.10 (s, 1H, CH=), 9.35 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO-d₆): δ = 21.4, 43.6, 45.6, 57.7, 91.4, 125.2, 128.4, 128.9, 129.3, 129.3, 129.8, 133.6, 136.9, 137.7, 140.8, 158.9, 189.6; HRMS (TOF ES⁺): *m/z* calcd for C₂₁H₁₉ClN₃O₃ [(M+H)⁺], 396.1109; found, 396.1117.

(5-(2-Chlorophenyl)-1,2,3,5-tetrahydro-6-nitroimidazo[1,2-*a*]pyridin-8-yl)(*p*-tolyl)methanone (4r)

Orange-red solid; Mp 219–220.5 °C; IR (KBr): 3309, 2897, 1596, 1404, 1293, 1228, 1076, 763 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 2.40$ (s, 3H, CH₃), 3.10–3.15 (m, 1H, NCH₂), 3.72–3.76 (m, 3H, NCH₂CH₂N), 6.25 (s, 1H, NCH), 7.33–7.43 (m, 4H, ArH), 7.47–7.52 (m, 4H, ArH), 8.17 (s, 1H, CH=), 9.37 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 21.4$, 43.6, 45.6, 55.4, 91.4, 124.5, 128.4, 128.9, 129.3, 129.8, 129.8, 130.7, 133.1, 135.7, 136.9, 138.3, 140.8, 158.7, 189.7; HRMS (TOF ES⁺): *m/z* calcd for C₂₁H₁₉ClN₃O₃ [(M+H)⁺], 396.1109; found, 396.1109.

(1,2,3,5-Tetrahydro-6-nitro-5-phenylimidazo[1,2-*a*]pyridin-8-yl)(*p*-tolyl)methano ne (4s)

Yellow solid; Mp 257–261 °C; IR (KBr): 3372, 2884, 1591, 1396, 1215, 1073, 762 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 2.39$ (s, 3H, CH₃), 3.09–3.15 (m, 1H, NCH₂), 3.69–3.73 (m, 3H, NCH₂CH₂N), 5.81 (s, 1H, NCH), 7.32–7.48 (m, 9H, ArH), 8.11 (s, 1H, CH=), 9.34 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 21.9$, 44.1, 46.1, 58.9, 91.9, 126.1, 128.4, 128.9, 129.5, 129.8, 129.8, 137.5, 138.0, 139.1, 141.2, 159.5, 190.1; HRMS (TOF ES⁺): m/z calcd for C₂₁H₂₀N₃O₃ [(M+H)⁺], 362.1499; found, 362.1506.

(1,2,3,5-Tetrahydro-5-(4-methoxyphenyl)-6-nitroimidazo[1,2-*a*]pyridin-8-yl)(*p*-to lyl)methanone (4t)

Yellow solid; Mp 246–247 °C; IR (KBr): 3328, 2889, 1591, 1506, 1395, 1209, 1168, 1028, 832, 768 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 2.40$ (s, 3H, CH₃),

3.12–3.16 (m, 1H, NCH₂), 3.70–3.74 (m, 3H, NCH₂CH₂N), 3.76 (s, 3H, OCH₃), 5.76 (s, 1H, NCH), 6.96 (d, J = 7.4 Hz, 2H, ArH), 7.30–7.36 (m, 4H, ArH), 7.47 (d, J = 7.4 Hz, 2H, ArH), 8.09 (s, 1H, CH=), 9.28 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 21.4, 43.5, 45.4, 55.5, 57.8, 91.3, 114.6, 125.9, 128.4, 129.1, 129.3, 130.6, 137.0, 137.2, 140.7, 159.0, 159.8, 189.6; HRMS (TOF ES⁺): <math>m/z$ calcd for C₂₂H₂₂N₃O₄ [(M+H)⁺], 392.1605; found, 392.1605.

(1,2,3,5-Tetrahydro-5-(3,4-dimethoxyphenyl)-6-nitroimidazo[1,2-a]pyridin-8-yl)(p-tolyl)methanone (4u)

Yellow solid; Mp 172–174.5 °C; IR (KBr): 3313, 2947, 1595, 1512, 1406, 1289, 1223, 1073, 1024, 833, 765 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 2.38$ (s, 3H, CH₃), 3.16–3.20 (m, 1H, NCH₂), 3.65–3.73 (m, 3H, NCH₂CH₂N), 3.75 (s, 3H, OCH₃), 3.76 (s, 3H, OCH₃), 5.74 (s, 1H, NCH), 6.92–7.00 (m, 3H, ArH), 7.33 (d, J = 7.8 Hz, 2H, ArH), 7.47 (d, J = 7.8 Hz, 2H, ArH), 8.12 (s, 1H, CH=), 9.29 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 21.3$, 43.5, 45.5, 55.9, 58.1, 91.3, 111.7, 112.4, 119.9, 125.8, 128.4, 129.3, 131.0, 137.0, 137.3, 140.8, 149.1, 149.4, 159.0, 159.3, 189.6; HRMS (TOF ES⁺): *m/z* calcd for C₂₃H₂₄N₃O₅ [(M+H)⁺], 422.1710; found, 422.1709.

(5-(Furan-2-yl)-1,2,3,5-tetrahydro-6-nitroimidazo[1,2-*a*]pyridin-8-yl)(4-methoxy phenyl)methanone (4v)

Orange-red solid; Mp 218–220.5 °C; IR (KBr): 3321, 2991, 1595, 1298, 1235, 1167, 1019, 770, 610 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): δ = 3.23–3.27 (m, 1H, NCH₂), 3.71–3.81 (m, 3H, NCH₂CH₂N), 3.84 (s, 3H, OCH₃), 6.02 (s, 1H, NCH), 6.47 (d, *J* = 2.6 Hz, 1H, ArH), 6.52–6.55 (m, 1H, ArH), 7.08 (d, *J* = 8.6 Hz, 2H, ArH), 7.53 (d, *J* = 8.6 Hz, 2H, ArH), 7.67–7.69 (m, 1H, ArH), 8.11 (s, 1H, CH=), 9.37 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): δ = 43.7, 45.9, 51.6, 55.7, 91.8, 109.6, 111.1, 114.1, 122.3, 130.4, 131.9, 143.8, 143.8, 150.3, 159.6, 161.6, 189.0. HRMS (TOF ES⁺): *m/z* calcd for C₁₉H₁₈N₃O₅ [(M+H)⁺], 368.1241; found, 368.1245.

(5-(4-Fluorophenyl)-1,2,3,5-tetrahydro-6-nitroimidazo[1,2-*a*]pyridin-8-yl)(4-met hoxyphenyl)methanone (4w)

Orange-red solid; Mp 201–204 °C; IR (KBr): 3316, 2897, 1593, 1507, 1403, 1222, 1165, 1076, 839 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 3.12-3.16$ (m, 1H, NCH₂), 3.70–3.75 (m, 3H, NCH₂CH₂N), 3.85 (s, 3H, OCH₃), 5.85 (s, 1H, NCH), 7.06–7.09 (m, 2H, ArH), 7.22–7.26 (m, 2H, ArH), 7.46–7.50 (m, 2H, ArH), 7.54–7.59 (m, 2H, ArH), 8.15 (s, 1H, CH=), 9.31 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 43.6, 45.5, 55.7, 57.6, 91.4, 114.0, 116.0$ (d, J = 21.3 Hz), 125.2, 130.0 (d, J = 7.5 Hz), 130.4, 131.9, 135.9, 137.6, 159.0, 161.6, 163.4, 188.9; HRMS (TOF ES⁺): m/z calcd for C₂₁H₁₉FN₃O₄ [(M+H)⁺], 396.1354; found, 396.1363.

(1,2,3,5-Tetrahydro-6-nitro-5-phenylimidazo[1,2-*a*]pyridin-8-yl)(4-methoxyphen yl)methanone (4x)

Orange-red solid; Mp 237–239 °C; IR (KBr): 3360, 2890, 1591, 1399, 1214, 1072, 836 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): δ = 3.10–3.14 (m, 1H, NCH₂), 3.69–3.73 (m, 3H, NCH₂CH₂N), 3.85 (s, 3H, OCH₃), 5.82 (s, 1H, NCH), 7.08 (d, *J* = 7.5 Hz, 2H, ArH), 7.36–7.43 (m, 5H, ArH), 7.56 (d, *J* = 7.5 Hz, 2H, ArH), 8.15 (s, 1H, CH=), 9.31 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): δ = 43.6, 45.6, 55.7, 58.4, 91.4, 114.1, 125.4, 127.9, 129.0, 129.2, 130.4, 132.0, 137.6, 138.6, 159.1, 161.5, 188.9; HRMS (TOF ES⁺): *m/z* calcd for C₂₁H₂₀N₃O₄ [(M+H)⁺], 378.1448; found, 378.1453.

Ethyl 1,2,3,5-tetrahydro-6-nitro-5-phenylimidazo[1,2-*a*]pyridine-8-carboxylate (4y)

Orange-red solid; Mp 182–185 °C; IR (KBr): 3360, 2897, 1668, 1564, 1404, 1334, 1215, 1147, 770 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 1.29$ (t, J = 6.6 Hz, CH₃), 3.05–3.09 (m, 1H, NCH₂), 3.63–3.67 (m, 3H, NCH₂CH₂N), 4.19 (t, J = 6.6 Hz, 2H, CH₂), 5.78 (s, 1H, NCH), 7.32–7.39 (m, 5H, ArH), 8.35 (s, 1H, CH=), 8.51 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 14.8$, 43.3, 45.9, 58.6, 59.7, 80.8, 125.0, 127.7, 128.9, 129.1, 135.7, 138.8, 158.4, 164.7; HRMS (TOF ES⁺): m/z calcd for C₁₆H₁₈N₃O₄ [(M+H)⁺], 316.1292; found, 316.1302.

X-ray Structure and Data⁴ of 4f

Figure S1 X-Ray crystal structure of 4f

j		
Identification code	100112a_0m	
Empirical formula	$C_{21}H_{18}ClN_3O_4$	
Formula weight	411.83	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system, space group	Monoclinic, P2(1)/c	
Unit cell dimensions	a = 8.587(5) A alpha = 90.000(5) deg.	
	b = 18.369(5) A beta = 92.329(5) deg.	
	c = 12.335(5) A gamma = 90.000(5) deg.	
Volume	1944.0(15) A^3	
Z, Calculated density	4, 1.407 Mg/m^3	
Absorption coefficient	0.230 mm^-1	
F(000)	856	
Crystal size	0.34 x 0.29 x 0.18 mm	
Theta range for data collection	1.99 to 28.40 deg.	
Limiting indices	-9<=h<=11, -23<=k<=23, -15<=l<=16	
Reflection collected/unique	13201 / 4601 [R(int) = 0.0509]	
Completeness to theta $= 28.40$	96.2 %	

Table S1 Crystal data and structure refinement for 4f

Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9785 and 0.9456
Refinement method	Full-matrix least-squares on F^2
Data/restraints/parameters	4601 / 0 / 264
Goodness-of-fit on F ²	0.937
Final R indices [I>2sigma(I)]	R1 = 0.0479, wR2 = 0.1085
R indices (all data)	R1 = 0.1427, wR2 = 0.1450
Extinction coefficient	0.0163(16)
Largest diff. peak and hole	0.153 and -0.188 e.A^-3

Table S2 Bond lengths [A] and angles [deg] for 4f		
C(1)-C(6)	1.372(3)	
C(1)-C(2)	1.374(4)	
C(1)-Cl(1)	1.740(3)	
N(1)-C(12)	1.325(3)	
N(1)-C(13)	1.460(3)	
N(1)-H(1)	0.8600	
O(1)-C(7)	1.245(3)	
C(2)-C(3)	1.382(3)	
C(2)-H(2)	0.9300	
N(2)-C(12)	1.337(3)	
N(2)-C(11)	1.468(3)	
N(2)-C(14)	1.471(3)	
O(2)-C(18)	1.372(3)	
O(2)-C(21)	1.424(3)	
C(3)-C(4)	1.389(3)	
C(3)-H(3)	0.9300	
N(3)-O(4)	1.239(3)	
N(3)-O(3)	1.248(3)	
N(3)-C(10)	1.425(3)	
C(4)-C(5)	1.387(3)	
C(4)-C(7)	1.495(3)	
C(5)-C(6)	1.372(3)	
C(5)-H(5)	0.9300	

C(6)-H(6) C(7)-C(8)	0.9300 1.432(3)
C(7)-C(8)	1.432(3)
	1.410(2)
C(8)-C(9)	1.410(3)
C(8)-C(12)	1.424(3)
C(9)-C(10)	1.355(3)
C(9)-H(9)	0.9300
C(10)-C(11)	1.509(3)
C(11)-C(15)	1.524(3)
C(11)-H(11)	0.9800
C(13)-C(14)	1.519(3)
C(13)-H(13A)	0.9700
C(13)-H(13B)	0.9700
C(14)-H(14A)	0.9700
C(14)-H(14B)	0.9700
C(15)-C(16)	1.375(3)
C(15)-C(20)	1.387(3)
C(16)-C(17)	1.382(3)
C(16)-H(16)	0.9300
C(17)-C(18)	1.377(3)
C(17)-H(17)	0.9300
C(18)-C(19)	1.376(3)
C(19)-C(20)	1.373(3)
C(19)-H(19)	0.9300
C(20)-H(20)	0.9300
C(21)-H(21A)	0.9600
C(21)-H(21B)	0.9600
C(21)-H(21C)	0.9600
C(6)-C(1)-C(2)	121.0(2)
C(6)-C(1)-Cl(1)	119.3(2)
C(2)-C(1)-Cl(1)	119.7(2)
C(12)-N(1)-C(13)	111.9(2)
C(12)-N(1)-H(1)	124.0
C(13)-N(1)-H(1)	124.0
C(1)-C(2)-C(3)	119.5(3)

C(1)-C(2)-H(2)	120.3
C(3)-C(2)-H(2)	120.3
C(12)-N(2)-C(11)	124.3(2)
C(12)-N(2)-C(14)	110.50(19)
C(11)-N(2)-C(14)	121.6(2)
C(18)-O(2)-C(21)	117.9(2)
C(2)-C(3)-C(4)	120.5(2)
C(2)-C(3)-H(3)	119.8
C(4)-C(3)-H(3)	119.8
O(4)-N(3)-O(3)	122.5(2)
O(4)-N(3)-C(10)	120.3(2)
O(3)-N(3)-C(10)	117.2(3)
C(5)-C(4)-C(3)	118.5(2)
C(5)-C(4)-C(7)	117.7(2)
C(3)-C(4)-C(7)	123.6(2)
C(6)-C(5)-C(4)	121.2(2)
C(6)-C(5)-H(5)	119.4
C(4)-C(5)-H(5)	119.4
C(1)-C(6)-C(5)	119.3(2)
C(1)-C(6)-H(6)	120.4
C(5)-C(6)-H(6)	120.4
O(1)-C(7)-C(8)	121.9(2)
O(1)-C(7)-C(4)	116.9(2)
C(8)-C(7)-C(4)	121.2(2)
C(9)-C(8)-C(12)	114.3(2)
C(9)-C(8)-C(7)	124.8(2)
C(12)-C(8)-C(7)	119.9(2)
C(10)-C(9)-C(8)	122.5(2)
C(10)-C(9)-H(9)	118.7
C(8)-C(9)-H(9)	118.7
C(9)-C(10)-N(3)	119.6(2)
C(9)-C(10)-C(11)	123.4(2)
N(3)-C(10)-C(11)	117.0(2)
N(2)-C(11)-C(10)	105.8(2)

N(2)-C(11)-C(15) 111.8(2) C(10)-C(11)-H(11) 107.7 C(10)-C(11)-H(11) 107.7 C(15)-C(11)-H(11) 107.7 C(15)-C(11)-H(11) 107.7 N(1)-C(12)-N(2) 110.2(2) N(1)-C(12)-C(8) 122.3(2) N(1)-C(13)-C(14) 102.3(2) N(1)-C(13)-H(13A) 111.3 C(14)-C(13)-H(13A) 111.3 C(14)-C(13)-H(13B) 111.3 C(14)-C(13)-H(13B) 111.3 C(14)-C(13)-H(13B) 102.7(2) N(2)-C(14)-H(14B) 111.2 N(2)-C(14)-H(14A) 111.2 N(2)-C(14)-H(14B) 111.2 N(2)-C(14)-H(14B) 111.2 N(2)-C(14)-H(14B) 111.2 N(2)-C(14)-H(14B) 111.2 N(2)-C(14)-H(14B) 111.2 C(13)-C(14)-H(14B) 109.1 C(16)-C(15)-C(20) 117.3(2) C(16)-C(15)-C(11) 122.1(2) C(16)-C(15)-C(11) 120.5(2) C(15)-C(16)-H(16) 119.0 C(15)-C(16)-H(16) 119.0 C(15)-C(16)-H(16) 119.8(3) C(16)-C(17)-H(17)<		
C(10)-C(11)-H(11) 107.7 C(10)-C(11)-H(11) 107.7 C(15)-C(11)-H(11) 107.7 C(15)-C(11)-H(11) 107.7 N(1)-C(12)-N(2) 110.2(2) N(1)-C(12)-C(8) 127.4(2) N(2)-C(13)-C(14) 102.3(2) N(1)-C(13)-H(13A) 111.3 C(14)-C(13)-H(13A) 111.3 C(14)-C(13)-H(13B) 111.3 C(14)-C(13)-H(13B) 109.2 N(2)-C(14)-H(14B) 102.7(2) N(2)-C(14)-H(14B) 102.7(2) N(2)-C(14)-H(14B) 102.7(2) N(2)-C(14)-H(14B) 111.2 C(13)-C(14)-H(14B) 111.2 N(2)-C(14)-H(14A) 111.2 N(2)-C(14)-H(14B) 111.2 N(2)-C(14)-H(14B) 109.1 C(16)-C(15)-C(10) 121.02 C(16)-C(15)-C(11) 120.5(2) C(16)-C(15)-C(11) 120.5(2) C(15)-C(16)-H(16) 119.0 C(15)-C(16)-H(16) 119.0 C(15)-C(16)-H(16) 119.0 C(16)-C(17)-C(16) 119.8(3) C(18)-C(17)-H(17) 120.1 C(16)-C(17)-H(17)	N(2)-C(11)-C(15)	111.8(2)
N(2)-C(11)-H(11) 107.7 C(10)-C(11)-H(11) 107.7 C(15)-C(11)-H(11) 107.7 N(1)-C(12)-N(2) 110.2(2) N(1)-C(12)-C(8) 127.4(2) N(2)-C(12)-C(8) 122.3(2) N(1)-C(13)-H(13A) 111.3 C(14)-C(13)-H(13A) 111.3 C(14)-C(13)-H(13B) 111.3 N(1)-C(13)-H(13B) 111.3 C(14)-C(13)-H(13B) 109.2 N(2)-C(14)-C(13) 102.7(2) N(2)-C(14)-H(14B) 111.2 C(13)-C(14)-H(14B) 111.2 N(2)-C(14)-H(14A) 111.2 N(2)-C(14)-H(14B) 111.2 N(2)-C(14)-H(14B) 109.1 C(16)-C(15)-C(20) 117.3(2) C(16)-C(15)-C(11) 122.1(2) C(16)-C(15)-C(11) 120.5(2) C(15)-C(16)-H(16) 119.0 C(15)-C(16)-H(16) 119.0 C(15)-C(16)-H(16) 119.0 C(16)-C(17)-H(17) 120.1 C(16)-C(17)-H(17) 120.1 C(16)-C(17)-H(17) 120.1 C(16)-C(17)-H(17) 120.1 C(16)-C(17)-H(17)	C(10)-C(11)-C(15)	116.0(2)
C(10)-C(11)-H(11)107.7C(15)-C(11)-H(11)107.7N(1)-C(12)-N(2)110.2(2)N(1)-C(12)-C(8)127.4(2)N(2)-C(12)-C(8)122.3(2)N(1)-C(13)-C(14)102.3(2)N(1)-C(13)-H(13A)111.3C(14)-C(13)-H(13A)111.3C(14)-C(13)-H(13B)111.3N(1)-C(13)-H(13B)111.3C(14)-C(13)-H(13B)109.2N(2)-C(14)-H(14B)109.2N(2)-C(14)-H(14A)111.2C(13)-C(14)-H(14B)111.2C(13)-C(14)-H(14B)111.2C(13)-C(14)-H(14B)111.2C(16)-C(15)-C(20)117.3(2)C(16)-C(15)-C(11)122.1(2)C(20)-C(15)-C(11)120.5(2)C(15)-C(16)-H(16)119.0C(15)-C(16)-H(16)119.0C(17)-C(16)-H(16)119.0C(18)-C(17)-H(17)120.1C(18)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(18)-C(17)115.7(2)O(2)-C(18)-C(17)115.7(2)O(2)-C(18)-C(17)119.2(3)C(20)-C(19)-C(18)120.4(2)C(20)-C(19)-H(19)119.8	N(2)-C(11)-H(11)	107.7
C(15)-C(11)-H(11)107.7N(1)-C(12)-N(2)110.2(2)N(1)-C(12)-C(8)127.4(2)N(2)-C(12)-C(8)122.3(2)N(1)-C(13)-C(14)102.3(2)N(1)-C(13)-H(13A)111.3C(14)-C(13)-H(13B)111.3C(14)-C(13)-H(13B)111.3C(14)-C(13)-H(13B)111.3H(13A)-C(13)-H(13B)109.2N(2)-C(14)-H(14B)102.7(2)N(2)-C(14)-H(14A)111.2C(13)-C(14)-H(14B)111.2C(13)-C(14)-H(14B)111.2C(13)-C(14)-H(14B)111.2C(13)-C(14)-H(14B)111.2H(14A)-C(14)-H(14B)109.1C(16)-C(15)-C(20)117.3(2)C(16)-C(15)-C(11)122.1(2)C(20)-C(15)-C(11)120.5(2)C(15)-C(16)-H(16)119.0C(15)-C(16)-H(16)119.0C(17)-C(16)-H(16)119.0C(18)-C(17)-H(17)120.1C(18)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1O(2)-C(18)-C(17)115.7(2)O(2)-C(18)-C(17)115.7(2)O(2)-C(18)-C(17)125.1(3)C(19)-C(18)-C(17)120.3C(20)-C(19)-C(18)120.4(2)C(20)-C(19)-H(19)119.8	C(10)-C(11)-H(11)	107.7
N(1)-C(12)-N(2)110.2(2)N(1)-C(12)-C(8)127.4(2)N(2)-C(12)-C(8)122.3(2)N(1)-C(13)-C(14)102.3(2)N(1)-C(13)-H(13A)111.3C(14)-C(13)-H(13A)111.3C(14)-C(13)-H(13B)111.3C(14)-C(13)-H(13B)111.3H(13A)-C(13)-H(13B)109.2N(2)-C(14)-C(13)102.7(2)N(2)-C(14)-H(14A)111.2C(13)-C(14)-H(14A)111.2C(13)-C(14)-H(14B)111.2N(2)-C(14)-H(14B)111.2C(13)-C(14)-H(14B)111.2C(16)-C(15)-C(20)117.3(2)C(16)-C(15)-C(11)122.1(2)C(20)-C(15)-C(11)120.5(2)C(15)-C(16)-H(16)119.0C(17)-C(16)-H(16)119.0C(17)-C(16)-H(16)119.8(3)C(18)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(18)-C(17)115.7(2)O(2)-C(18)-C(17)119.2(3) </td <td>C(15)-C(11)-H(11)</td> <td>107.7</td>	C(15)-C(11)-H(11)	107.7
N(1)-C(12)-C(8)127.4(2)N(2)-C(12)-C(8)122.3(2)N(1)-C(13)-C(14)102.3(2)N(1)-C(13)-H(13A)111.3C(14)-C(13)-H(13B)111.3N(1)-C(13)-H(13B)111.3C(14)-C(13)-H(13B)109.2N(2)-C(14)-H(14B)102.7(2)N(2)-C(14)-H(14A)111.2C(13)-C(14)-H(14B)111.2C(13)-C(14)-H(14B)111.2N(2)-C(14)-H(14B)111.2C(13)-C(14)-H(14B)111.2C(16)-C(15)-C(20)117.3(2)C(16)-C(15)-C(11)122.1(2)C(20)-C(15)-C(11)120.5(2)C(15)-C(16)-C(17)121.9(2)C(15)-C(16)-H(16)119.0C(17)-C(16)-H(16)119.0C(18)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(18)-C(17)115.7(2)O(2)-C(18)-C(17)115.7(2)O(2)-C(18)-C(17)119.2(3)C(20)-C(19)-C(18)120.4(2)C(20)-C(19)-H(19)119.8	N(1)-C(12)-N(2)	110.2(2)
N(2)-C(12)-C(8)122.3(2)N(1)-C(13)-C(14)102.3(2)N(1)-C(13)-H(13A)111.3C(14)-C(13)-H(13B)111.3N(1)-C(13)-H(13B)111.3C(14)-C(13)-H(13B)109.2N(2)-C(14)-C(13)102.7(2)N(2)-C(14)-H(14A)111.2C(13)-C(14)-H(14B)111.2N(2)-C(14)-H(14B)111.2N(2)-C(14)-H(14B)111.2C(13)-C(14)-H(14B)109.1C(16)-C(15)-C(20)117.3(2)C(16)-C(15)-C(11)122.1(2)C(16)-C(15)-C(11)120.5(2)C(15)-C(16)-C(17)121.9(2)C(15)-C(16)-H(16)119.0C(17)-C(16)-H(16)119.0C(18)-C(17)-H(17)120.1C(18)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(18)-C(17)115.7(2)O(2)-C(18)-C(17)115.2C(20)-C(18)-C(17)119.2(3)C(20)-C(19)-C(18)120.4(2)C(20)-C(19)-H(19)119.8	N(1)-C(12)-C(8)	127.4(2)
N(1)-C(13)-C(14)102.3(2)N(1)-C(13)-H(13A)111.3C(14)-C(13)-H(13B)111.3N(1)-C(13)-H(13B)111.3C(14)-C(13)-H(13B)109.2N(2)-C(14)-C(13)102.7(2)N(2)-C(14)-H(14A)111.2C(13)-C(14)-H(14A)111.2C(13)-C(14)-H(14B)111.2N(2)-C(14)-H(14B)111.2C(13)-C(14)-H(14B)111.2C(13)-C(14)-H(14B)111.2C(16)-C(15)-C(20)117.3(2)C(16)-C(15)-C(11)122.1(2)C(20)-C(15)-C(11)120.5(2)C(15)-C(16)-C(17)121.9(2)C(15)-C(16)-H(16)119.0C(17)-C(16)-H(16)119.0C(18)-C(17)-C(16)119.8(3)C(18)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1O(2)-C(18)-C(17)125.1(3)C(19)-C(18)-C(17)115.7(2)O(2)-C(18)-C(17)119.2(3)C(20)-C(19)-C(18)120.4(2)C(20)-C(19)-H(19)119.8	N(2)-C(12)-C(8)	122.3(2)
N(1)-C(13)-H(13A)111.3C(14)-C(13)-H(13B)111.3N(1)-C(13)-H(13B)111.3C(14)-C(13)-H(13B)109.2N(2)-C(14)-C(13)102.7(2)N(2)-C(14)-H(14A)111.2C(13)-C(14)-H(14A)111.2C(13)-C(14)-H(14B)111.2N(2)-C(14)-H(14B)111.2C(13)-C(14)-H(14B)111.2C(16)-C(15)-C(20)117.3(2)C(16)-C(15)-C(11)122.1(2)C(20)-C(15)-C(11)120.5(2)C(15)-C(16)-C(17)121.9(2)C(15)-C(16)-H(16)119.0C(17)-C(16)-H(16)119.0C(18)-C(17)-H(17)120.1C(16)-C(18)-C(17)119.2(3)C(20)-C(18)-C(17)119.2(3)C(20)-C(19)-H(19)119.8 <td>N(1)-C(13)-C(14)</td> <td>102.3(2)</td>	N(1)-C(13)-C(14)	102.3(2)
C(14)-C(13)-H(13A)111.3N(1)-C(13)-H(13B)111.3C(14)-C(13)-H(13B)109.2N(2)-C(14)-C(13)102.7(2)N(2)-C(14)-H(14A)111.2C(13)-C(14)-H(14A)111.2N(2)-C(14)-H(14B)111.2N(2)-C(14)-H(14B)111.2C(13)-C(14)-H(14B)109.1C(16)-C(15)-C(20)117.3(2)C(16)-C(15)-C(11)122.1(2)C(20)-C(15)-C(11)120.5(2)C(15)-C(16)-C(17)121.9(2)C(15)-C(16)-H(16)119.0C(17)-C(16)-H(16)119.0C(18)-C(17)-H(17)120.1C(18)-C(17)-H(17)120.1O(2)-C(18)-C(17)115.7(2)O(2)-C(18)-C(17)125.1(3)C(19)-C(18)-C(17)119.2(3)C(20)-C(19)-C(18)120.4(2)C(20)-C(19)-H(19)119.8	N(1)-C(13)-H(13A)	111.3
N(1)-C(13)-H(13B)111.3C(14)-C(13)-H(13B)109.2H(13A)-C(13)-H(13B)109.2N(2)-C(14)-C(13)102.7(2)N(2)-C(14)-H(14A)111.2C(13)-C(14)-H(14B)111.2N(2)-C(14)-H(14B)111.2C(13)-C(14)-H(14B)111.2C(13)-C(14)-H(14B)109.1C(16)-C(15)-C(20)117.3(2)C(16)-C(15)-C(11)122.1(2)C(20)-C(15)-C(11)120.5(2)C(15)-C(16)-C(17)121.9(2)C(15)-C(16)-H(16)119.0C(17)-C(16)-H(16)119.0C(18)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1O(2)-C(18)-C(19)115.7(2)O(2)-C(18)-C(17)125.1(3)C(19)-C(18)-C(17)120.4(2)C(20)-C(19)-C(18)120.4(2)C(20)-C(19)-H(19)119.8	C(14)-C(13)-H(13A)	111.3
C(14)-C(13)-H(13B)111.3 $H(13A)-C(13)-H(13B)$ 109.2 $N(2)-C(14)-C(13)$ 102.7(2) $N(2)-C(14)-H(14A)$ 111.2 $C(13)-C(14)-H(14B)$ 111.2 $N(2)-C(14)-H(14B)$ 111.2 $C(13)-C(14)-H(14B)$ 109.1 $C(16)-C(15)-C(20)$ 117.3(2) $C(16)-C(15)-C(11)$ 122.1(2) $C(20)-C(15)-C(11)$ 120.5(2) $C(15)-C(16)-C(17)$ 121.9(2) $C(15)-C(16)-H(16)$ 119.0 $C(17)-C(16)-H(16)$ 119.0 $C(18)-C(17)-H(17)$ 120.1 $C(16)-C(17)-H(17)$ 120.1 $C(16)-C(18)-C(17)$ 115.7(2) $O(2)-C(18)-C(17)$ 115.2(3) $C(19)-C(18)-C(17)$ 119.2(3) $C(20)-C(19)-C(18)$ 120.4(2) $C(20)-C(19)-H(19)$ 119.8	N(1)-C(13)-H(13B)	111.3
H(13A)-C(13)-H(13B) 109.2 $N(2)-C(14)-C(13)$ $102.7(2)$ $N(2)-C(14)-H(14A)$ 111.2 $C(13)-C(14)-H(14B)$ 111.2 $N(2)-C(14)-H(14B)$ 111.2 $C(13)-C(14)-H(14B)$ 109.1 $C(16)-C(14)-H(14B)$ 109.1 $C(16)-C(15)-C(20)$ $117.3(2)$ $C(16)-C(15)-C(11)$ $122.1(2)$ $C(20)-C(15)-C(11)$ $120.5(2)$ $C(15)-C(16)-C(17)$ $121.9(2)$ $C(15)-C(16)-H(16)$ 119.0 $C(17)-C(16)-H(16)$ 119.0 $C(17)-C(16)-H(16)$ $119.8(3)$ $C(18)-C(17)-H(17)$ 120.1 $C(16)-C(17)-H(17)$ 120.1 $C(16)-C(17)-H(17)$ 120.1 $C(16)-C(17)$ $115.7(2)$ $O(2)-C(18)-C(17)$ $115.7(2)$ $O(2)-C(18)-C(17)$ $119.2(3)$ $C(12)-C(18)-C(17)$ $119.2(3)$ $C(20)-C(19)-C(18)$ $120.4(2)$ $C(20)-C(19)-H(19)$ 119.8	C(14)-C(13)-H(13B)	111.3
N(2)-C(14)-C(13) $102.7(2)$ N(2)-C(14)-H(14A) 111.2 C(13)-C(14)-H(14B) 111.2 N(2)-C(14)-H(14B) 111.2 C(13)-C(14)-H(14B) 109.1 C(16)-C(15)-C(20) $117.3(2)$ C(16)-C(15)-C(11) $122.1(2)$ C(20)-C(15)-C(11) $120.5(2)$ C(15)-C(16)-C(17) $121.9(2)$ C(15)-C(16)-H(16) 119.0 C(17)-C(16)-H(16) 119.0 C(18)-C(17)-H(17) 120.1 C(18)-C(17)-H(17) 120.1 C(16)-C(17)-H(17) 120.1 O(2)-C(18)-C(17) $115.7(2)$ O(2)-C(18)-C(17) $119.2(3)$ C(19)-C(18)-C(17) $119.2(3)$ C(20)-C(19)-H(19) 119.8	H(13A)-C(13)-H(13B)	109.2
N(2)-C(14)-H(14A)111.2C(13)-C(14)-H(14A)111.2N(2)-C(14)-H(14B)111.2C(13)-C(14)-H(14B)109.1C(16)-C(15)-C(20)117.3(2)C(16)-C(15)-C(11)122.1(2)C(20)-C(15)-C(11)120.5(2)C(15)-C(16)-C(17)121.9(2)C(15)-C(16)-H(16)119.0C(17)-C(16)-H(16)119.8(3)C(18)-C(17)-H(17)120.1C(18)-C(17)-H(17)120.1C(16)-C(17)-H(17)125.1(3)C(19)-C(18)-C(17)119.2(3)C(20)-C(18)-C(17)119.2(3)C(20)-C(19)-H(19)119.8	N(2)-C(14)-C(13)	102.7(2)
C(13)-C(14)-H(14A)111.2 $N(2)-C(14)-H(14B)$ 111.2 $C(13)-C(14)-H(14B)$ 111.2 $H(14A)-C(14)-H(14B)$ 109.1 $C(16)-C(15)-C(20)$ 117.3(2) $C(16)-C(15)-C(11)$ 122.1(2) $C(20)-C(15)-C(11)$ 120.5(2) $C(15)-C(16)-C(17)$ 121.9(2) $C(15)-C(16)-H(16)$ 119.0 $C(17)-C(16)-H(16)$ 119.0 $C(18)-C(17)-H(16)$ 119.8(3) $C(18)-C(17)-H(17)$ 120.1 $C(16)-C(17)-H(17)$ 120.1 $O(2)-C(18)-C(19)$ 115.7(2) $O(2)-C(18)-C(17)$ 125.1(3) $C(19)-C(18)-C(17)$ 119.2(3) $C(20)-C(19)-H(19)$ 119.8	N(2)-C(14)-H(14A)	111.2
N(2)-C(14)-H(14B)111.2C(13)-C(14)-H(14B)111.2H(14A)-C(14)-H(14B)109.1C(16)-C(15)-C(20)117.3(2)C(16)-C(15)-C(11)122.1(2)C(20)-C(15)-C(11)120.5(2)C(15)-C(16)-C(17)121.9(2)C(15)-C(16)-H(16)119.0C(17)-C(16)-H(16)119.8(3)C(18)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1C(20)-C(18)-C(17)119.2(3)C(19)-C(18)-C(17)119.2(3)C(20)-C(19)-C(18)120.4(2)C(20)-C(19)-H(19)119.8	C(13)-C(14)-H(14A)	111.2
C(13)-C(14)-H(14B) 111.2 $H(14A)-C(14)-H(14B)$ 109.1 $C(16)-C(15)-C(20)$ $117.3(2)$ $C(16)-C(15)-C(11)$ $122.1(2)$ $C(20)-C(15)-C(11)$ $120.5(2)$ $C(15)-C(16)-C(17)$ $121.9(2)$ $C(15)-C(16)-H(16)$ 119.0 $C(17)-C(16)-H(16)$ 119.0 $C(18)-C(17)-C(16)$ $119.8(3)$ $C(18)-C(17)-H(17)$ 120.1 $C(16)-C(17)-H(17)$ 120.1 $C(16)-C(17)-H(17)$ 120.1 $O(2)-C(18)-C(19)$ $115.7(2)$ $O(2)-C(18)-C(17)$ $125.1(3)$ $C(19)-C(18)-C(17)$ $119.2(3)$ $C(20)-C(19)-C(18)$ $120.4(2)$ $C(20)-C(19)-H(19)$ 119.8	N(2)-C(14)-H(14B)	111.2
H(14A)-C(14)-H(14B)109.1 $C(16)-C(15)-C(20)$ $117.3(2)$ $C(16)-C(15)-C(11)$ $122.1(2)$ $C(20)-C(15)-C(11)$ $120.5(2)$ $C(15)-C(16)-C(17)$ $121.9(2)$ $C(15)-C(16)-H(16)$ 119.0 $C(17)-C(16)-H(16)$ 119.0 $C(18)-C(17)-C(16)$ $119.8(3)$ $C(18)-C(17)-H(17)$ 120.1 $C(16)-C(17)-H(17)$ 120.1 $O(2)-C(18)-C(19)$ $115.7(2)$ $O(2)-C(18)-C(17)$ $125.1(3)$ $C(19)-C(18)-C(17)$ $119.2(3)$ $C(20)-C(19)-H(19)$ 119.8	C(13)-C(14)-H(14B)	111.2
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H(14A)-C(14)-H(14B)	109.1
C(16)-C(15)-C(11)122.1(2) $C(20)-C(15)-C(11)$ 120.5(2) $C(15)-C(16)-C(17)$ 121.9(2) $C(15)-C(16)-H(16)$ 119.0 $C(17)-C(16)-H(16)$ 119.0 $C(18)-C(17)-C(16)$ 119.8(3) $C(18)-C(17)-H(17)$ 120.1 $C(16)-C(17)-H(17)$ 120.1 $O(2)-C(18)-C(19)$ 115.7(2) $O(2)-C(18)-C(17)$ 125.1(3) $C(19)-C(18)-C(17)$ 119.2(3) $C(20)-C(19)-C(18)$ 120.4(2) $C(20)-C(19)-H(19)$ 119.8	C(16)-C(15)-C(20)	117.3(2)
C(20)-C(15)-C(11) $120.5(2)$ $C(15)-C(16)-C(17)$ $121.9(2)$ $C(15)-C(16)-H(16)$ 119.0 $C(17)-C(16)-H(16)$ 119.0 $C(18)-C(17)-C(16)$ $119.8(3)$ $C(18)-C(17)-H(17)$ 120.1 $C(16)-C(17)-H(17)$ 120.1 $O(2)-C(18)-C(19)$ $115.7(2)$ $O(2)-C(18)-C(17)$ $125.1(3)$ $C(19)-C(18)-C(17)$ $119.2(3)$ $C(20)-C(19)-C(18)$ $120.4(2)$ $C(20)-C(19)-H(19)$ 119.8	C(16)-C(15)-C(11)	122.1(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(20)-C(15)-C(11)	120.5(2)
C(15)-C(16)-H(16)119.0C(17)-C(16)-H(16)119.0C(18)-C(17)-C(16)119.8(3)C(18)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1O(2)-C(18)-C(19)115.7(2)O(2)-C(18)-C(17)125.1(3)C(19)-C(18)-C(17)119.2(3)C(20)-C(19)-C(18)120.4(2)C(20)-C(19)-H(19)119.8	C(15)-C(16)-C(17)	121.9(2)
C(17)-C(16)-H(16)119.0C(18)-C(17)-C(16)119.8(3)C(18)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1O(2)-C(18)-C(19)115.7(2)O(2)-C(18)-C(17)125.1(3)C(19)-C(18)-C(17)119.2(3)C(20)-C(19)-C(18)120.4(2)C(20)-C(19)-H(19)119.8	C(15)-C(16)-H(16)	119.0
C(18)-C(17)-C(16)119.8(3)C(18)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1O(2)-C(18)-C(19)115.7(2)O(2)-C(18)-C(17)125.1(3)C(19)-C(18)-C(17)119.2(3)C(20)-C(19)-C(18)120.4(2)C(20)-C(19)-H(19)119.8	C(17)-C(16)-H(16)	119.0
C(18)-C(17)-H(17)120.1C(16)-C(17)-H(17)120.1O(2)-C(18)-C(19)115.7(2)O(2)-C(18)-C(17)125.1(3)C(19)-C(18)-C(17)119.2(3)C(20)-C(19)-C(18)120.4(2)C(20)-C(19)-H(19)119.8	C(18)-C(17)-C(16)	119.8(3)
C(16)-C(17)-H(17)120.1O(2)-C(18)-C(19)115.7(2)O(2)-C(18)-C(17)125.1(3)C(19)-C(18)-C(17)119.2(3)C(20)-C(19)-C(18)120.4(2)C(20)-C(19)-H(19)119.8	C(18)-C(17)-H(17)	120.1
O(2)-C(18)-C(19)115.7(2)O(2)-C(18)-C(17)125.1(3)C(19)-C(18)-C(17)119.2(3)C(20)-C(19)-C(18)120.4(2)C(20)-C(19)-H(19)119.8	C(16)-C(17)-H(17)	120.1
O(2)-C(18)-C(17)125.1(3)C(19)-C(18)-C(17)119.2(3)C(20)-C(19)-C(18)120.4(2)C(20)-C(19)-H(19)119.8	O(2)-C(18)-C(19)	115.7(2)
C(19)-C(18)-C(17)119.2(3)C(20)-C(19)-C(18)120.4(2)C(20)-C(19)-H(19)119.8	O(2)-C(18)-C(17)	125.1(3)
C(20)-C(19)-C(18) 120.4(2) C(20)-C(19)-H(19) 119.8	C(19)-C(18)-C(17)	119.2(3)
C(20)-C(19)-H(19) 119.8	C(20)-C(19)-C(18)	120.4(2)
	C(20)-C(19)-H(19)	119.8

C(18)-C(19)-H(19)	119.8
C(19)-C(20)-C(15)	121.4(3)
C(19)-C(20)-H(20)	119.3
C(15)-C(20)-H(20)	119.3
O(2)-C(21)-H(21A)	109.5
O(2)-C(21)-H(21B)	109.5
H(21A)-C(21)-H(21B)	109.5
O(2)-C(21)-H(21C)	109.5
H(21A)-C(21)-H(21C)	109.5
H(21B)-C(21)-H(21C)	109.5

S	ymmetry	transformations	used to	generate	equivalent	atoms:
	J J			0	1	

C(6)-C(1)-C(2)-C(3)	1.0(4)
Cl(1)-C(1)-C(2)-C(3)	-177.73(18)
C(1)-C(2)-C(3)-C(4)	-1.0(4)
C(2)-C(3)-C(4)-C(5)	-0.7(3)
C(2)-C(3)-C(4)-C(7)	-176.3(2)
C(3)-C(4)-C(5)-C(6)	2.4(3)
C(7)-C(4)-C(5)-C(6)	178.3(2)
C(2)-C(1)-C(6)-C(5)	0.7(4)
Cl(1)-C(1)-C(6)-C(5)	179.42(19)
C(4)-C(5)-C(6)-C(1)	-2.4(4)
C(5)-C(4)-C(7)-O(1)	-39.3(3)
C(3)-C(4)-C(7)-O(1)	136.4(2)
C(5)-C(4)-C(7)-C(8)	138.8(2)
C(3)-C(4)-C(7)-C(8)	-45.5(3)
O(1)-C(7)-C(8)-C(9)	165.5(2)
C(4)-C(7)-C(8)-C(9)	-12.6(4)
O(1)-C(7)-C(8)-C(12)	-2.1(4)
C(4)-C(7)-C(8)-C(12)	179.8(2)
C(12)-C(8)-C(9)-C(10)	-9.8(3)
C(7)-C(8)-C(9)-C(10)	-178.0(2)
C(8)-C(9)-C(10)-N(3)	170.2(2)
C(8)-C(9)-C(10)-C(11)	-7.4(4)
O(4)-N(3)-C(10)-C(9)	-6.9(4)
O(3)-N(3)-C(10)-C(9)	173.1(2)

Table S3Torsion angles [deg] for 4f

O(4)-N(3)-C(10)-C(11)	170.8(2)
O(3)-N(3)-C(10)-C(11)	-9.2(3)
C(12)-N(2)-C(11)-C(10)	-30.6(3)
C(14)-N(2)-C(11)-C(10)	172.9(2)
C(12)-N(2)-C(11)-C(15)	96.5(3)
C(14)-N(2)-C(11)-C(15)	-60.0(3)
C(9)-C(10)-C(11)-N(2)	25.5(3)
N(3)-C(10)-C(11)-N(2)	-152.1(2)
C(9)-C(10)-C(11)-C(15)	-99.1(3)
N(3)-C(10)-C(11)-C(15)	83.3(3)
C(13)-N(1)-C(12)-N(2)	-3.6(3)
C(13)-N(1)-C(12)-C(8)	172.9(2)
C(11)-N(2)-C(12)-N(1)	-165.7(2)
C(14)-N(2)-C(12)-N(1)	-7.0(3)
C(11)-N(2)-C(12)-C(8)	17.5(4)
C(14)-N(2)-C(12)-C(8)	176.3(2)
C(9)-C(8)-C(12)-N(1)	-171.0(2)
C(7)-C(8)-C(12)-N(1)	-2.1(4)
C(9)-C(8)-C(12)-N(2)	5.2(3)
C(7)-C(8)-C(12)-N(2)	174.0(2)
C(12)-N(1)-C(13)-C(14)	11.9(3)
C(12)-N(2)-C(14)-C(13)	13.8(3)
C(11)-N(2)-C(14)-C(13)	173.3(2)
N(1)-C(13)-C(14)-N(2)	-14.6(3)
N(2)-C(11)-C(15)-C(16)	-47.5(3)
C(10)-C(11)-C(15)-C(16)	73.9(3)
N(2)-C(11)-C(15)-C(20)	129.9(2)
C(10)-C(11)-C(15)-C(20)	-108.8(3)
C(20)-C(15)-C(16)-C(17)	-0.7(4)
C(11)-C(15)-C(16)-C(17)	176.7(2)
C(15)-C(16)-C(17)-C(18)	1.0(4)
C(21)-O(2)-C(18)-C(19)	-173.5(2)
C(21)-O(2)-C(18)-C(17)	7.3(4)
C(16)-C(17)-C(18)-O(2)	179.4(2)
C(16)-C(17)-C(18)-C(19)	0.2(4)
O(2)-C(18)-C(19)-C(20)	179.1(2)
C(17)-C(18)-C(19)-C(20)	-1.6(4)
C(18)-C(19)-C(20)-C(15)	2.0(4)

C(16)-C(15)-C(20)-C(19)	-0.8(4)
C(11)-C(15)-C(20)-C(19)	-178.2(2)

Table S4	Hydrogen bonds for 4f [A and deg.]			
D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(11)-H(11)O(3)	0.98	2.45	3.342(3)	151.2
N(1)-H(1)O(1) ⁱ	0.86	2.13	2.841(3)	140.2
N(1)-H(1)O(1) ⁱⁱ	0.86	2.15	2.683(3)	120.0

¹H NMR and ¹³C NMR Spectra for Tetrahydroimidazo[1,2-*a*]pyridine

Derivatives 4

Figure 1. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound **4a**

S23

Figure 2. ¹³C NMR (125 MHz, DMSO- d_6) spectra of compound 4a

Figure 3. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound **4b**

Figure 4. ¹³C NMR (125 MHz, DMSO-*d*₆) spectra of compound 4b

Figure 5. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound **4c**

Figure 6. ¹³C NMR (125 MHz, DMSO- d_6) spectra of compound **4c**

Figure 8. ¹³C NMR (125 MHz, DMSO-*d*₆) spectra of compound 4d

Figure 9. ¹H NMR (500 MHz, CDCl₃+DMSO-*d*₆) spectra of compound **4e**

S31

Figure 12. ¹³C NMR (125 MHz, DMSO- d_6) spectra of compound **4f**

Figure 13. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound **4g**

Figure 14. ¹³C NMR (125 MHz, DMSO- d_6) spectra of compound 4g

Figure 15. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound **4h**

Figure 16. ¹³C NMR (125 MHz, DMSO- d_6) spectra of compound 4h

Figure 17. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound **4i**

Figure 18. ¹³C NMR (125 MHz, DMSO-*d*₆) spectra of compound **4i**

S41

Figure 20. ¹³C NMR (125 MHz, DMSO- d_6) spectra of compound 4j

Figure 21. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound **4k**

Figure 22. ¹³C NMR (125 MHz, DMSO-*d*₆) spectra of compound 4k

Figure 23. ¹H NMR (500 MHz, CDCl₃) spectra of compound 4l

Figure 24. ¹³C NMR (125 MHz, CDCl₃) spectra of compound 4l

Figure 25. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound **4m**

Figure 26. ¹³C NMR (125 MHz, DMSO- d_6) spectra of compound 4m

Figure 27. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound **4n**

Figure 28. ¹³C NMR (125 MHz, DMSO- d_6) spectra of compound 4n

S51

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2011

Figure 31. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound **4p**

Figure 32. ¹³C NMR (125 MHz, DMSO-*d*₆) spectra of compound 4p

Figure 33. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound **4**q

Figure 34. ¹³C NMR (125 MHz, DMSO-*d*₆) spectra of compound 4q

Figure 35. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound **4r**

Figure 36. ¹³C NMR (125 MHz, DMSO- d_6) spectra of compound **4r**

Figure 37. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound **4s**

Figure 38. ¹³C NMR (125 MHz, DMSO-*d*₆) spectra of compound 4s

Figure 40. ¹³C NMR (125 MHz, DMSO- d_6) spectra of compound 4t

Figure 41. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound **4u**

Figure 42. ¹³C NMR (125 MHz, DMSO-*d*₆) spectra of compound **4u**

Figure 43. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound **4v**

Figure 44. ¹³C NMR (125 MHz, DMSO- d_6) spectra of compound 4v

Figure 46. ¹³C NMR (125 MHz, DMSO- d_6) spectra of compound 4w

Figure 48. ¹³C NMR (125 MHz, DMSO- d_6) spectra of compound **4**x

Figure 49. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound 4y

Figure 50. ¹³C NMR (125 MHz, DMSO- d_6) spectra of compound 4y
References and Notes

- 1. (a) Z.-T. Huang and M.-X. Wang, Synthesis 1992, 12, 1273; (b) Z.-J. Li, and D. Charles, Synth. Commun., 2001, 31, 527.
- 2. M.-X. Zhao, M.-X. Wang and Z.-T. Huang, *Tetrahedron* 2002, 58, 1309.
- (a) J.-T. Liu and C.-F. Yao, *Tetrahedron Lett.*, 2001, 42, 6147; (b) G. Demicheli, R. Maggi, A. Mazzacani, P. Righi, G. Sartori and F. Bigi, *Tetrahedron Lett.*, 2001, 42. 2401; (c) Y.-. Jang, W.-W. Lin, Y.-K. Shih, J.-T. Liu, M.-H. Hwang and C.-F. Yao, *Tetrahedron* 2003, 59, 4979.
- 4. CCDC 818211 contain the supplementary crystallographic data for compound **4f**. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.