A nanocomposite of SnO₂ and single-walled carbon nanohorns as a long life and high capacity anode material for lithium ion batteries

Yi Zhao, Jiaxin Li, Yunhai Ding, Lunhui Guan*

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, YangQiao West Road 155#, Fuzhou, Fujian 350002, P.R. China.

E-mail: guanlh@fjirsm.ac.cn

Fig. S1. Thermal gravimetric analysis (TGA) curve of the SnO₂/SWCNHs composite obtained at a heating rate of 10 °C/min between 30 and 900 °C.

Fig. S2. The energy dispersive spectroscopy (EDS) spectrum of the SnO₂/SWCNHs composite.

Fig. S3. The first discharge and charge curves of (a) SWCNHs, (b) bare SnO_2 and (c) $SnO_2/SWCNHs$ composite.

Fig. S4. Thermal gravimetric analysis (TGA) curve of the (60% SnO₂)/SWCNHs composite obtained at a heating rate of 10 $^{\circ}$ C/min between 30 and 900 $^{\circ}$ C.

Fig. S5. Cycling performance of (60% SnO₂)/SWCNHs electrode at a current density of 500 mA g^{-1} .

Fig. S6. Discharge and charge profiles of the $SnO_2/SWCNHs$ composite under various current densities from 100 to 1500 mA g⁻¹.