Electronic Supplementary Information

Magnetically Separable Carbon Capsules Loaded with Laccase and their Application to Dye Degradation

Patricia Valle-Vigón and Antonio B. Fuertes*

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

Table of contents	Pages
Figure S-1. Chemical structure and properties of the selected dyes.	S2
Figure S-2. TGA of the laccase-magnetic composite system.	S2
Figure S-3. UV-vis spectrum of Acid Green 25 before and after degradation by immobilized laccase.	S3
Figure S-4. Activity of immobilized laccase after long storage times.	S3
Table S-1. Textural properties of several magnetic supports and their corresponding amounts of immobilized laccase.	S4
Table S-2. Characteristic infrared band of proteins.	S4

^{*}Instituto Nacional del Carbón (CSIC), P.O. Box 73, 33080-Oviedo, Spain Fax: +34 985 297662; Tel: +34 985 119090; E-mail: abefu@incar.csic.es

Figure S-1. Chemical structure and properties of the selected dyes.

Figure S-2. Thermogravimetric measurements corresponding to a sample of OR loaded over MHC composite. Experimental conditions: 2 °C/min up to 500 °C in a nitrogen atmosphere. Amount of adsorbed OR as deduced from the loss in weight: 520 mg $OR \cdot g^{-1}$ of support. Value estimated by UV-vis measurements: 540 mg $OR \cdot g^{-1}$ support.

Figure S-3. UV-vis spectrum of Acid Green 25 (AG 25) solution (initial concentration of 0.65 mg·mL⁻¹) before (solid line) and after (dotted line) degradation by the laccase immobilized on magnetic carbon capsules. Inset: image of AG 25 solution before (t=0) and after the degradation process (t= 40 min).

Figure S-4. Activity of immobilized laccase after long storage times. The dye employed in these experiments was AG 25.

Immobilization support	$\begin{array}{c}S_{BET}\\(m^2\cdot g^{-1})\end{array}$	Pore volume (cm ³ ·g ⁻¹)	Pore size (nm)	Adsorption capacity (mg·g ⁻¹)	Reference
Magnetic mesoporous carbon capsules	780	0.94	3.4	100	This work
Magnetic mesoporous silica spheres	421	0.63	24.7	82	Zhu et al. (2007)
Magnetic mesoporous silica nanoparticles	580	2.14	14.5	73	Wang et al. (2010)

Table S-1. Textural properties of several magnetic supports and their corresponding amounts of immobilized laccase.

- Zhu, Y.; Kaskel, S.; Shi, J.; Wage, T.; van Pée, K. H., Immobilization of Trametes versicolor Laccase on Magnetically Separable Mesoporous Silica Spheres. *Chem. Mater.* **2007**, 19 (26), 6408-6413.
- Wang, F.; Guo, C.; Yang, L.-R.; Liu, C.-Z., Magnetic mesoporous silica nanoparticles: Fabrication and their laccase immobilization performance. *Bioresour. Technol.* 2010, 101 (23), 8931-8935.

Table S-2. Characteristic infrared bands of proteins (J. Kong and S. Yu, Acta Biochimica et Biophysica Sinica, 2007, 39, 549).

Designation	Approximate frequency (cm ⁻¹)	Description	
Amide A	3300	NH stretching	
Amide B	3100	NH stretching	
Amide I	1600-1690	C=O stretching	
Amide II	1480-1575	CN stretching, NH bending	
Amide III	1229-1301	CN stretching, NH bending	
Amide IV	625-767	OCN bending	
Amide V	640-800	Out-of-plane NH bending	
Amide VI	537-606	Out-of-plane C=O bending	