## **Supplementary Information**

## Highly Flexible and Stable Aptamer-Caged Nanoparticles for Control of Thrombin Activity

Chia-Lun Hsu,<sup>*a*</sup> Shih-Chun Wei,<sup>*a*</sup> Jyun-Wei Jian,<sup>*a*</sup> Huan-Tsung Chang,<sup>*b*</sup> Wei-Hsi Chen,<sup>*c*</sup> and Chih-Ching Huang<sup>\**a*</sup>

<sup>a</sup> Institute of Bioscience and Biotechnology and Center of Excellence for Marine Bioenvironment and Biotechnology (CMBB), National Taiwan Ocean University, 2, Pei-Ning Road, Keelung, 20224, Taiwan. E-mail: huanging@ntou.edu.tw; Fax: +011-886-2-24622034; Tel: +011-886-2-24622192#5517

<sup>b</sup> Department of Chemistry, National Taiwan University, Taipei, Taiwan

<sup>c</sup> Chemical Analysis Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan



**Fig. S1** The UV-Vis absorption spectrum of  $TBA_{15}/TBA_{29}-P_8T_{15}$ -Au NPs (1.0 nM) in the presence of thrombin (0–100 nM) with the physiological buffer containing 100  $\mu$ M BSA. Other conditions were the same as those described in Figure 1.



**Fig. S2** Dissociation constant  $K_d$  for thrombin–TBA<sub>15</sub>/TBA<sub>29</sub>-P<sub>8</sub>T<sub>15</sub>–Au NPs complexes, determined from a plot of  $N_{\text{Thr}}$ /[Free-Thr] versus  $N_{\text{Thr}}$ .



Fig. S3 Scattering intensity as a function of time, validating the use of TBA<sub>15</sub>/TBA<sub>29</sub>-P<sub>8</sub>T<sub>15</sub>-Au NPs as a stable anticoagulant agent in a representative human-plasma sample. TBA<sub>15</sub>/TBA<sub>29</sub>-h<sub>8</sub>T<sub>15</sub>-Au NPs (1 nM, 990  $\mu$ L) were incubated in two-fold-diluted human-plasma samples for 0 and 48 h, followed by the addition of thrombin (500 nM, 10  $\mu$ L). Other conditions were the same as those described in Figure 1.