Supporting Information

Flash Synthesis of TAC-101 and Its Analogues from 1,3,5-Tribromobenzene Using Integrated Flow Microreactor Systems

Aiichiro Nagaki, Keita Imai, Heejin Kim, and Jun-ichi Yoshida

Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510 (Japan), E-mail: yoshida@sbchem.kyoto-u.ac.jp

General

GC analysis was performed on a SHIMADZU GC-2014 gas chromatograph equipped with a flame ionization detector using a fused silica capillary column (column, CBPI; 0.25 mm x 25 m). ¹H and ¹³C spectra were recorded on Varian MERCURYplus-400 (¹H 400 MHz, ³C 100 MHz) spectrometer with Me₄Si or CDCl₃ as a standard in CDCl₃. EI mass spectra were recorded on JMS-SX102A spectrometer. ESI mass spectra were recorded on Exactive spectrometer. Gel permeation chromatography (GPC) was carried out on Japan Analytical Industry LC-9201. THF and Et₂O were purchased from Kanto Chemical Co., Inc. as a dry solvent and used without further purification. Hexane was purchased from Wako, distilled before use, and stored over molecular sieves 4A. 1,3,5-Tribromobenzene, n-BuLi, trimethylsilyl triflate. triethylsilyl triflate. chlorodimethylhydrosilane, chlorodimethylphenylsilane, methyl 4-isocyanatobenzoate, 1,3-dibromobenzene and 1,3dibromo-5-(trimethylsilyl)benzene were commercially available. All solutions used for reactions were prepared under the argon atmosphere using dry solvents.

Stainless steel (SUS304) T-shaped micromixers with inner diameter of 250 and 500 μ m were manufactured by Sanko Seiki Co., Inc. Stainless steel (SUS316) microtube reactors with inner diameter of 1000 μ m were purchased from GL Sciences. The micromixers and microtube reactors were connected with stainless steel fittings (GL Sciences, 1/16 OUW). The flow microreactor system was dipped in a cooling bath to control the temperature. Solutions were introduced to the flow microreactor system using syringe pumps, Harvard Model 11 plus and PHD2000, equipped with gastight syringes purchased from SGE.

Typical Procedure for the Br/Li Exchange Reaction of 1,3,5-Tribromobenzene Followed by the Reaction with Methanol in a Batch Reactor (Flask).

A solution of 1,3,5-tribromobenzene (0.100 M, 6.0 mL in THF) was stirred in a flask (20 mL round bottom glass flask with a magnetic stirrer). A solution of *n*-BuLi (0.50 M in hexane, 1.2 mL) was added dropwise for 1.0 min. After stirring for 10 min, methanol (neat, 3.0 mL) was added dropwise for 1.0 min. After stirring for 10 min, a cooling bath was removed. The mixture was analyzed by GC. The results are summarized in Table S-1.

Table S-1. Br/Li exchange of 1,3,5-tribromobenzene with *n*-BuLi followed by the reaction with methanol using a conventional macrobatch system.

	Br Br 1)	n-BuLi (1.0 eq) H 10 min, T °C <u>MeOH</u> THF Br Br	
temperature	conversion of	yield of	yield of
$(^{\circ}C)$	1,3,5-tribromobenzene	1,3-dibromobenzene	bromobenzene
	(%)	(%)	(%)
-78	89	76	6
-78	100	48^a	15
24	100	26	0

^{*a*} After a solution of *n*-BuLi was added to a solution of 1,3,5-tribromobenzene, the reaction mixture was stirred for 60 min.

Typical Procedure for the Br/Li Exchange Reaction of 1,3,5-Tribromobenzene Followed by the Reaction with Trimethylsilyl Triflate in a Flow Microreactor System.

A flow microreactor system consisting of two T-shaped micromixers (**M1** and **M2**), two microtube reactors (**R1** and **R2**), and three tube pre-cooling units (**P1** (inner diameter $\phi = 1000 \ \mu\text{m}$, length L = 100 cm), **P2** ($\phi = 1000 \ \mu\text{m}$, L = 50 cm) and **P3** ($\phi = 1000 \ \mu\text{m}$, L = 50 cm)) was used. A solution of 1,3,5-tribromobenzene (0.100 M in THF) (flow rate: 6.00 mL min⁻¹) and a solution of *n*-BuLi (0.420 M in hexane) (flow rate: 1.50 mL min⁻¹) were introduced to **M1** ($\phi = 250 \ \mu\text{m}$) by syringe pumps. The resulting solution was passed through **R1** and was mixed with a solution of trimethylsilyl triflate (0.220 M in Et₂O) (flow rate: 3.00 mL min⁻¹) in **M2** ($\phi = 500 \ \mu\text{m}$). The resulting solution was passed through **R2** ($\phi = 1000 \ \mu\text{m}$, L = 50 cm). The flow microreactor system was dipped in a cooling bath of 0 °C. After a steady state was reached, an aliquot of the product solution was collected for 30 s and was treated with saturated aqueous solution of NH₄Cl. The reaction mixture was analyzed by GC. The results obtained with varying the residence time in **R1** are summarized in Table S-2.

Table S-2. Effects on the residence time in **R1** in the Br/Li exchange reaction of 1,3,5-tribromobenzene followed by the reaction with trimethylsilyl triflate in the flow microreactor system.

-					
	residence	inner diameter	length	conversion of	yield of 1,3-dibromo-5-
	time in R1	of R1	of Ř1	1,3,5-tribromobenzene	(trimethylsilyl)benzene
	(s)	(µm)	(cm)	(%)	(%)
	0.22	1000	3.5	94	88
	0.38		6.0	95	87
	0.75		12	94	88
	1.57		25	94	86
	3.14		50	93	76
	6.28		100	86	35
	12.57		200	88	22

1,3-Dibromo-5-(triethylsilyl)benzene. Obtained with triethylsilyl triflate: 83% yield, GC ^{*t*}*R* 23.5 min, ¹H NMR (400 MHz, CDCl₃) δ 0.78 (q, *J* = 7.8 Hz, 6H), 0.95 (t, *J* = 7.8 Hz, 9H), 7.47-7.49 (m, 2H), 7.63-7.65 ppm (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 3.1, 7.2, 123.2, 134.2, 135.1, 143.3 ppm; HRMS (EI) *m/z* calcd for C₁₂H₁₈Br₂Si: 347.9545, found: 347.9532.

1,3-Dibromo-5-(dimethylsilyl)benzene. Obtained with dimethylsilyl chloride: 84% yield, GC ${}^{t}R$ 18.7 min, The spectral data were identical to those reported in the literature.¹

1,3-Dibromo-5-(dimethylphenylsilyl)benzene. Obtained with dimethylphenylsilyl chloride: 79% yield, GC ^{*t*}R 26.0 min, ¹H NMR (400 MHz, CDCl₃) δ 0.55 (s, 6H), 7.35-7.42 (m, 3H), 7.47-7.52 (m, 4H), 7.64-7.66 ppm (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ -2.7, 123.3, 128.1, 129.6, 134.0, 134.5, 135.2, 136.3, 144.0 ppm; HRMS (EI) *m*/*z* calcd for C₁₄H₁₄Br₂Si: 367.9232, found: 367.9221.

Typical Procedure for Sequential Introduction of Two Silyl Groups to 1,3,5-Tribromobenzene.

An integrated flow microreactor system consisting of four T-shaped micromixers (M1, M2, M3 and M4), four microtube reactors (R1, R2, R3 and R4), and five tube pre-cooling units (P1 (inner diameter $\phi = 1000 \ \mu m$, length L = 100 cm), P2 ($\phi = 1000 \ \mu m$, L = 50 cm), P3 $(\phi = 1000 \ \mu m, L = 50 \ cm), P4 \ (\phi = 1000 \ \mu m, L = 50 \ cm) and P5 \ (\phi = 1000 \ \mu m, L = 50 \ cm))$ was used. A solution of 1,3,5-tribromobenzene (0.100 M in THF) (flow rate: 6.00 mL min⁻¹) and a solution of *n*-BuLi (0.408 M in hexane) (flow rate: 1.50 mL min^{-1}) were introduced to M1 ($\phi = 250 \ \mu m$) by syringe pumps. The resulting solution was passed through R1 ($\phi = 1000$ μ m, L = 3.5 cm) and was mixed with a solution of trimethylsilyl triflate (0.208 M in Et₂O) (flow rate: 3.00 mL min⁻¹) in M2 ($\phi = 500 \ \mu$ m). The resulting solution was passed through R2 $(\phi = 1000 \ \mu m, L = 50 \ cm)$ and was mixed with a solution of *n*-BuLi (0.424 M in hexane) (flow rate: 1.50 mL min⁻¹) in M3 ($\phi = 500 \ \mu$ m). The resulting solution was passed through R3 and was mixed with a solution of trimethylsilyl triflate (0.312 M in Et₂O) (flow rate: 2.00 mL min⁻¹) in M4 ($\phi = 500 \ \mu$ m). The resulting solution was passed through R4 ($\phi = 1000 \ \mu$ m, L = 200 cm). The integrated flow microreactor system was dipped in a cooling bath of 0 $^{\circ}$ C. After a steady state was reached, an aliquot of the product solution was collected for 30 s and was treated with saturated aqueous solution of NH_4Cl . The reaction mixture was analyzed by GC. The results obtained with varying the residence time in **R3** are summarized in Table S-3.

Table S-3. Effects on the residence time in R3 in sequential introduction	of two	trimethylsilyl
groups in the integrated flow microreactor system.		

residence	inner	length	yield of 1-bromo-3,5-
time in R3	diameter of	of R3	bis(trimethylsilyl)benzene
(s)	R3 (µm)	(cm)	(%)
0.14	1000	3.5	83
0.24		6.0	82
0.47		12	83
0.98		25	82
1.96		50	78
3.93		100	75
7.85		200	71

1-Bromo-3,5-bis(trimethylsilyl)benzene. Obtained with trimethylsilyl triflate and trimethylsilyl triflate: 83% yield, GC ^{t}R 19.6 min. The spectral data were identical to those reported in the literature.²

1-Bromo-3-(triethylsilyl)-5-(trimethylsilyl)benzene. Obtained with trimethylsilyl triflate and triethylsilyl triflate: 70% yield, GC ^{*t*}R 23.2 min, ¹H NMR (400 MHz, CDCl₃) δ 0.26 (s, 9H), 0.79 (q, *J* = 7.9 Hz, 6H), 0.97 (t, *J* = 7.6 Hz, 9H), 7.48-7.52 (m, 1H), 7.54-7.56 (m, 1H),

7.57-7.60 ppm (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ -1.2, 3.3, 7.3, 123.3, 136.2, 136.9, 137.2, 140.0, 142.7 ppm; HRMS (EI) *m*/*z* calcd for C₁₅H₂₇BrSi₂: 342.0835, found: 342.0842.

1-Bromo-3-(dimethylsilyl)-5-(trimethylsilyl)benzene. Obtained with trimethylsilyl triflate and dimethylsilyl chloride: 75% yield, GC ^{*t*}*R* 19.1 min, ¹H NMR (400 MHz, CDCl₃) δ 0.27 (s, 9H), 0.35 (d, *J* = 4.0 Hz, 6H), 4.40 (sept, *J* = 3.7 Hz, 1H) 7.53-7.56 (m, 1H), 7.59-7.63 ppm (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ -3.8, -1.2, 123.4, 136.7, 136.9, 137.0, 139.9, 143.2 ppm; HRMS (EI) *m/z* calcd for C₁₁H₁₉BrSi₂: 286.0209, found: 286.0219.

1-Bromo-3-(dimethylphenylsilyl)-5-(trimethylsilyl)benzene. Obtained with trimethylsilyl triflate and dimethylphenylsilyl chloride: 89% yield, GC ^{*t*}R 25.5 min, ¹H NMR (400 MHz, CDCl₃) δ 0.24 (s, 9H), 0.55 (s, 6H), 7.33-7.40 (m, 3H), 7.48-7.54 (m, 3H), 7.57-7.58 (m, 1H), 7.59-7.61 ppm (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ -2.5, -1.2, 123.4, 127.9, 129.3, 134.1, 136.6, 137.0, 137.1, 137.4, 140.8, 143.0 ppm; HRMS (EI) *m/z* calcd for C₁₇H₂₃BrSi₂: 362.0522, found: 362.0529.

1-Bromo-3-(dimethylsilyl)-5-(dimethylphenylsilyl)benzene. Obtained with dimethylsilyl chloride and dimethylphenylsilyl chloride: 68% yield, GC ^{*t*}R 25.1 min, ¹H NMR (400 MHz, CDCl₃) δ 0.32 (d, *J* = 4.0 Hz, 6H), 0.55 (s, 6H), 4.38 (sept, *J* = 3.7 Hz, 1H), 7.33-7.40 (m, 3H), 7.48-7.52 (m, 2H), 7.54-7.57 (m, 1H), 7.58-7.61 (m, 1H), 7.61-7.64 ppm (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ -3.9, -2.5, 123.4, 127.9, 129.4, 134.1, 137.2, 137.3, 137.4, 137.9, 140.0, 141.0 ppm; HRMS (EI) *m/z* calcd for C₁₆H₂₁BrSi₂: 348.0365, found: 348.0366.

Typical Procedure for Sequential Introduction of Two Silyl Groups and a Amide Functionality to 1,3,5-Tribromobenzene.

An integrated flow microreactor system consisting of six T-shaped micromixers (**M1**, **M2**, **M3**, **M4**, **M5** and **M6**), six microtube reactors (**R1**, **R2**, **R3**, **R4**, **R5** and **R6**), and seven tube pre-cooling units (**P1** (inner diameter $\phi = 1000 \ \mu$ m, length L = 100 cm), **P2** ($\phi = 1000 \ \mu$ m, L = 50 cm), **P3** ($\phi = 1000 \ \mu$ m, L = 50 cm), **P4** ($\phi = 1000 \ \mu$ m, L = 50 cm), **P5** ($\phi = 1000 \ \mu$ m, L = 50 cm), **P6** ($\phi = 1000 \ \mu$ m, L = 50 cm) and **P7** ($\phi = 1000 \ \mu$ m, L = 50 cm)) was used. A solution of 1,3,5-tribromobenzene (0.100 M in THF) (flow rate: 6.00 mL min⁻¹) and a solution of *n*-BuLi (0.408 M in hexane) (flow rate: 1.50 mL min⁻¹) were introduced to **M1** ($\phi = 250 \ \mu$ m) by syringe pumps. The resulting solution was passed through **R1** ($\phi = 1000 \ \mu$ m, L = 3.5 cm) and was mixed with a solution of *n*-BuLi (0.424 M in hexane) (flow rate: 1.50 mL min⁻¹) in **M2** ($\phi = 500 \ \mu$ m). The resulting solution was passed through **R2** ($\phi = 1000 \ \mu$ m, L = 50 cm) and was mixed with a solution of *n*-BuLi (0.424 M in hexane) (flow rate: 1.50 mL min⁻¹) in **M3** ($\phi = 500 \ \mu$ m). The resulting solution was passed through **R3** ($\phi = 1000 \ \mu$ m, L = 3.5 cm) and was mixed with a solution of *n*-BuLi (0.424 M in hexane) (flow rate: 1.50 mL min⁻¹) in **M3** ($\phi = 500 \ \mu$ m). The resulting solution was passed through **R3** ($\phi = 1000 \ \mu$ m, L = 3.5 cm) and was mixed with a solution of trimethylsilyl triflate (0.312 M in hexane) (flow rate: 1.50 mL min⁻¹) in **M3** ($\phi = 500 \ \mu$ m). The resulting solution was passed through **R3** ($\phi = 1000 \ \mu$ m, L = 3.5 cm) and was mixed with a solution of trimethylsilyl triflate (0.312 M in hexane) (flow rate: 1.50 mL min⁻¹) in **M3** ($\phi = 500 \ \mu$ m). The resulting solution was passed through **R3** ($\phi = 1000 \ \mu$ m, L = 3.5 cm) and was mixed with a solution of trimethylsilyl triflate (0.312 M in hexane) (flow rate: 1.50 mL min⁻¹) in **M3** ($\phi = 500 \ \mu$ m). The resulting solution was passed through **R3** ($\phi = 1000 \ \mu$ m, L = 3.5 cm) and was mixed with a solution of trimethylsil

Et₂O) (flow rate: 2.00 mL min⁻¹) in M4 ($\phi = 500 \ \mu$ m). The resulting solution was passed through R4 ($\phi = 1000 \ \mu$ m, L = 200 cm) and was mixed with a solution of *n*-BuLi (0.424 M in hexane) (flow rate: 1.50 mL min⁻¹) in M5 ($\phi = 500 \ \mu$ m). The resulting solution was passed through R5 and was mixed with a solution of methyl 4-isocyanatobenzoate (0.330 M in THF) (flow rate: 2.00 mL min⁻¹) in M6 ($\phi = 500 \ \mu$ m). The resulting solution was passed through R6 ($\phi = 1000 \ \mu$ m, L = 50 cm). The integrated flow microreactor system was dipped in a cooling bath of 0 °C. After a steady state was reached, an aliquot of the product solution was collected for 30 s and was treated with saturated aqueous solution of NH₄Cl. The reaction mixture was analyzed by GC unless otherwise noted. The results obtained with varying the residence time in R5 are summarized in Table S-4.

electrophiles	In the integ	stated nov	w inicioleaciól system.	
residence	inner	length	yield of 1-bromo-3,5-	yield of methyl 4-[3,5-
time in R5	diameter	of R5	bis(trimethylsilyl)benzene	bis(trimethylsilyl)benzamido]
(s)	of R5	(cm)	(%)	benzoate
	(µm)			(%)
0.11	1000	3.5	50	27
0.18		6.0	39	38
0.36		12	26	51
0.76		25	14	68
1.52		50	8	77
6.08		200	5	76

Table S-4. Effects on the residence time in **R5** in sequential introduction of three electrophiles in the integrated flow microreactor system.

Methyl 4-[3,5-bis(trimethylsilyl)benzamido]benzoate. Obtained with trimethylsilyl triflate, trimethylsilyl triflate, and methyl 4-isocyanatobenzoate: 77% yield, GC ${}^{t}R$ 33.7 min. The spectral data were identical to those reported in the literature.³

The reaction system was stable at least 5 min for continous operation.

Table S-5. Continuous operation of the synthesis of methyl 4-[3,5-bis(trimethylsilyl)-benzamido]benzoate

124	maojoenzoute										
	sample (every 30 s operation)	1	2	3	4	5	6	7	8	9	10
_	% yield	78	76	75	76	76	74	73	74	73	72

Methyl 4-[3-(triethylsilyl)-5-(trimethylsilyl)benzamido]benzoate. Obtained with trimethylsilyl triflate, triethylsilyl triflate, and methyl 4-isocyanatobenzoate: 62% yield, GC ^{*t*}R 38.6 min, ¹H NMR (400 MHz, CDCl₃) δ 0.32 (s, 9H), 0.85 (q, *J* = 7.9 Hz, 6H), 0.99 (t, *J* = 7.8 Hz, 9H), 3.92 (s, 3H), 7.73-7.78 (m, 2H), 7.81-7.83 (m, 1H), 7.86-7.95 (m, 3H), 8.05-8.10 ppm (m, 2H); ¹³C NMR (100 MHz, CDCl₃ some of the ¹³C NMR signals were the same places) δ -1.3, 3.2, 7.3, 51.9, 119.3, 125.5, 130.7, 132.1, 133.1, 137.6, 140.3, 142.4, 142.8, 166.6, 167.1 ppm; HRMS (ESI) *m*/*z* calcd for C₂₄H₃₆NO₃Si₂ ([M+H]⁺): 442.2228, found: 442.2219.

Methyl 4-[3-(dimethylsilyl)-5-(trimethylsilyl)benzamido]benzoate. Obtained with trimethylsilyl triflate, chlorodimethylhydrosilane, and methyl 4-isocyanatobenzoate: 61% yield, GC ^{*t*}R 33.4 min, ¹H NMR (400 MHz, CDCl₃) δ 0.33 (s, 9H), 0.40 (d, J = 4.0 Hz, 6H), 3.92 (s, 3H), 4.49 (sept, J = 3.7 Hz, 1H), 7.74-7.79 (m, 2H), 7.85-7.87 (m, 1H), 7.88-7.93 (s br, 1H), 7.95-8.00 (m, 2H), 8.05-8.10 ppm (m, 2H); ¹³C NMR (100 MHz, CDCl₃ some of the ¹³C NMR signals were the same places) δ -3.9, -1.3, 51.9, 119.3, 125.6, 130.7, 132.8, 133.2, 137.5, 140.8, 142.4, 142.5, 166.6, 166.9 ppm; HRMS (ESI) *m/z* calcd for C₂₀H₂₈NO₃Si₂ ([M+H]⁺): 386.1602, found: 386.1592.

Methyl 4-[3-(dimethylphenylsilyl)-5-(trimethylsilyl)benzamido]benzoate. Obtained with trimethylsilyl triflate, dimethylphenylsilyl chloride, and methyl 4-isocyanatobenzoate. After extraction, the crude product was purified by silica-gel flash chromatography (hexane/ethyl acetate=5/1): 70% isolated yield, ¹H NMR (400 MHz, CDCl₃) δ 0.30 (s, 9H), 0.61 (s, 6H), 3.91 (s, 3H), 7.34-7.43 (m, 3H), 7.50-7.55 (m, 2H), 7.70-7.74 (m, 2H), 7.82-7.87 (m, 2H), 7.89-7.92 (m, 1H), 7.96-7.98 (m, 1H), 8.04-8.08 ppm (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ -2.5, -1.3, 51.9, 119.3, 125.6, 127.9, 129.3, 130.7, 132.6, 132.9, 133.2, 134.0, 137.3, 138.4, 140.7, 142.3, 142.6, 166.6, 166.8 ppm; HRMS (ESI) *m/z* calcd for C₂₆H₃₂NO₃Si₂ ([M+H]⁺): 462.1915, found: 462.1905.

Methyl 4-[3-[dimethyl(phenyl)silyl]-5-(dimethylsilyl)benzamido]benzoate. Obtained with dimethylsilyl chloride, dimethylphenylsilyl chloride, and methyl 4-isocyanatobenzoate. After extraction, the crude product was filtered through a short column of silica gel and purified by GPC: 49% isolated yield, ¹H NMR (400 MHz, CDCl₃) δ 0.38 (d, J = 3.6 Hz, 6H), 0.61 (s, 6H), 3.91 (s, 3H), 4.47 (sept, J = 3.8 Hz, 1H) 7.34-7.42 (m, 3H), 7.50-7.55 (m, 2H), 7.70-7.75 (m, 2H), 7.84-7.89 (m, 2H), 7.94-7.97 (m, 1H), 7.98-8.01 (m, 1H), 8.03-8.08 ppm (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ -3.9, -2.5, 52.0, 119.3, 125.7, 127.9, 129.4, 130.8, 133.2, 133.3, 133.4, 134.1, 137.3, 137.8, 138.8, 142.2, 143.3, 166.6, ppm; HRMS (ESI) *m/z* calcd for C₂₅H₃₀NO₃Si₂ ([M+H]⁺): 448.1759, found: 448.1751.

Typical Procedure for Hydrolysis of Methyl Esters.

To a solution of methyl 4-[3,5-bis(trimethylsilyl)benzamido]benzoate (19.8 mg, 0.0495 mmol) in EtOH (0.85 mL) was added 1 M NaOH solution (0.102 mL) and the reaction was monitored by TLC. After 2 days the reaction was quenched with 0.1 M HCl to pH 3, as indicated by pH paper. The quenched reaction was extracted with CH_2Cl_2 five times and the combined extracts were dried over Na₂SO₄. The solvent was removed under reduced pressure to produce **4-[3,5-bis(trimethylsilyl)benzamido]benzoic acid** (17.4 mg, 91% yield). The spectral data were identical to those reported in the literature.⁴

4-[3-(Triethylsilyl)-5-(trimethylsilyl)benzamido]benzoic acid: room temperature, 4 days, 99% yield, ¹H NMR (400 MHz, CDCl₃) δ 0.33 (s, 9H), 0.85 (q, *J* = 8.0 Hz, 6H), 0.99 (t, *J* = 7.8 Hz, 9H), 7.78-7.83 (m, 3H), 7.90-7.95 (m, 3H), 8.12-8.17 ppm (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ -1.2, 3.3, 7.4, 119.2, 124.9, 131.6, 132.0, 133.0, 133.1, 137.9, 140.5, 142.9, 143.0, 167.0, 171.2 ppm; HRMS (ESI) *m*/*z* calcd for C₂₃H₃₄NO₃Si₂ ([M+H]⁺): 428.2072, found: 428.2066.

4-[3-[Dimethyl(phenyl)silyl]-5-(trimethylsilyl)benzamido]benzoic acid: room temperature, 4 days, 97% yield, ¹H NMR (400 MHz, CDCl₃) δ 0.30 (s, 9H), 0.61 (s, 6H), 7.34-7.42 (m, 3H), 7.51-7.56 (m, 2H), 7.76 (d, J = 8.4 Hz, 2H), 7.84-7.89 (m, 2H), 7.90-7.94 (m, 1H), 7.96-8.00 (m, 1H), 8.12 ppm (d, J = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ - 2.4, -1.2, 119.3, 124.9, 128.0, 129.4, 131.6, 132.6, 132.8, 133.2, 134.1, 137.3, 138.6, 140.9, 142.7, 142.9, 166.8, 171.3 ppm; HRMS (ESI) m/z calcd for C₂₅H₃₀NO₃Si₂ ([M+H]⁺): 448.1759, found: 448.1752.

Reference

- 1) G. Cheng, N. R. Vautravers, R. E. Morris and D. J. Cole-Hamilton, *Org. Biomol. Chem.*, 2008, **6**, 4662.
- 2) M. Beinhoff, B. Karakaya and A. D. Schluter, *Synthesis*, 2003, 1, 79.
- 3) K. Shudo, Eur. Pat. Appl., 1989, 21 pp.

4) T. Yamakawa, H. Kagechika, E. Kawachi, Y. Hashimoto and K. Shudo, J. Med. Chem., 1990, **33**, 1430.

¹H NMR spectrum of 1,3-dibromo-5-(triethylsilyl)benzene.

¹³C NMR spectrum of 1,3-dibromo-5-(triethylsilyl)benzene.

Electronic Supplementary Material (ESI) for RSC Advances This journal is The Royal Society of Chemistry 2011

¹H NMR spectrum of 1,3-dibromo-5-(dimethylphenylsilyl)benzene.

¹³C NMR spectrum of 1,3-dibromo-5-(dimethylphenylsilyl)benzene.

¹H NMR spectrum of 1-bromo-3-(triethylsilyl)-5-(trimethylsilyl)benzene.

¹³C NMR spectrum of 1-bromo-3-(triethylsilyl)-5-(trimethylsilyl)benzene.

¹H NMR spectrum of 1-bromo-3-(dimethylsilyl)-5-(trimethylsilyl)benzene.

¹³C NMR spectrum of 1-bromo-3-(dimethylsilyl)-5-(trimethylsilyl)benzene.

¹H NMR spectrum of methyl 4-[3-(dimethylphenylsilyl)-5-(trimethylsilyl)benzamido]benzoate.

¹³C NMR spectrum of methyl 4-[3-(dimethylphenylsilyl)-5-(trimethylsilyl)benzamido]benzoate.

¹H NMR spectrum of methyl 4-[3-(dimethylphenylsilyl)-5-(dimethylsilyl)benzamido]benzoate.

¹³C NMR spectrum of methyl 4-[3-(dimethylphenylsilyl)-5-(dimethylsilyl)benzamido]benzoate.

¹H NMR spectrum of 4-[3-(dimethylphenylsilyl)-5-(trimethylsilyl)benzamido]benzoic acid.

¹³C NMR spectrum of 4-[3-(dimethylphenylsilyl)-5-(trimethylsilyl)benzamido]benzoic acid.