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Debye’s expansion of the form factor 

For illustrative purposes Debye’s expansion of the form factor is presented first. Equation 3 is 
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The Taylor series expansion of the function sin(x)/x is 
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Substituting x in eq. S.1 by qrij and evaluating in eq. 3 gives eq. 6 
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Derivation of Equation 9 

The moment of rij are defined as 
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Equation S.2 can be expressed in terms of volume elements rather than scattering elements 
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where rhk is the distance from the center of the volume element h to the center of volume element 

k, N is the total number of volume elements h or k in a nanoparticle and Nh and Nk are the 

number of scattering elements that are found in each h or k. 

If all volume elements h and k have an equal volume Vh and Vk, and since N
2
 = 1, the 

moment rn can be expressed as: 
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According to Riemann’s definition, the integral of function f(x) can be expressed as 
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Then if the number of scatterers is large enough such that all volume elements are infinitely 

small, Riemann’s definition gives 
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The number of scatterers Ni in volume element i can be expressed as 

 iN N g ir           (S.7) 

where 〈N〉 is the average number of scattering elements in one volume element, and g(ri) is the 

one-body radial distribution function. Substitution of eq. S.7 into eq. S.6 gives eq. 9 from the 

article 
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Derivation of Equations 10a to 10c 

The difference rij is the magnitude of the vector ri - rj. Then if n is an even number  
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and 
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If the coordinates origin is chosen at the center of mass of the nanoparticle, then integration of 

eqs. S.9a, S.9b and S.9c according to eq. 9 cancel all the terms containing odd powers of (ri·rj). 

Thus the second, fourth and sixth moments of rij are 
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If the particle is large enough to consider that it has a uniform mass distribution such that g(r)=1, 

the volume integrals can be taken over the nanoparticle shape  and eqs. 10a, 10b and 10c from 

the article are obtained 
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Derivation of Schulz-Zimm distribution moments 

Derivation of the expression for the n-moment of the Schulz-Zimm distribution is done for 

illustrative purposes. The moments of the distribution should not be confused with rn, which are 

the moments of the difference of distances within a nanoparticle. The Shulz-Zimm distribution 

function is 
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where h = (k+1)/xx and k = 1/(PDIx - 1); x is the x-averaged x and PDIx is the polydispersity of x 

defined as xx/xn, where xn is the number average x. The n-moment of the distribution is 
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Equation S.12 can be solved using integration by parts and assigning 
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Integrating by parts n times gives 
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The integral in the last term corresponds to w(x)dx = 1, thus the moment of the Schulz-Zimm 

distribution is 
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Equation 12 of the article arises from eq. S.15 
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Form factor of rectangular parallelepipeds and triaxial ellipsoids 

The form factor of a rectangular parallelepiped with Axis A, B and C is
1
 

   
2

1

2

0

sin / 2
( , , ) 1 ,

/ 2
Q

c
P q a c a d

c

  
     

  
       (S.16) 

where 
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 = qB, a = A/B, c = C/B and q = (4nS/0)sin(/2) 
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The form factor of a triaxial ellipsoid with semiaxis a, b and c is
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where 
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and a < b < c  
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