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Debye’s expansion of the form factor

For illustrative purposes Debye’s expansion of the form factor is presented first. Equation 3 is

p(0) = z ZZJ:sm(q 3)
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The Taylor series expansion of the function sin(x)/x is
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Substituting x in eq. S.1 by gr;j; and evaluating in eq. 3 gives eq. 6
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Derivation of Equation 9

The moment of 7;; are defined as

M)
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Equation S.2 can be expressed in terms of volume elements rather than scattering elements

1 NN i Ny Ng )
Ar, ZZNzZZﬁj 2ZZNhNkrhk (S:3)
v i j v h k
where ry 18 the distance from the center of the volume element h to the center of volume element
k, Np is the total number of volume elements h or k in a nanoparticle and N, and Ny are the

number of scattering elements that are found in each h or k.

If all volume elements h and k have an equal volume AV}, and AV, and since NV2 = >>1, the

moment Ar, can be expressed as:
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According to Riemann’s definition, the integral of function f{x) can be expressed as
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Then if the number of scatterers is large enough such that all volume elements are infinitely

small, Riemann’s definition gives
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The number of scatterers N; in volume element 1 can be expressed as

N; =(N)g(r) (8.7)

where (N) is the average number of scattering elements in one volume element, and g(r;) is the
one-body radial distribution function. Substitution of eq. S.7 into eq. S.6 gives eq. 9 from the

article
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Derivation of Equations 10a to 10c
The difference r;; is the magnitude of the vector r; - ;. Then if n is an even number
n 2n n
i =y(r-r)" =(r-r) (S.8)
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and
i =(n-n) = -2(n ) (5.9a)
r=(r-n) =6t erf e 2ei? —a(e2 ) (ron) +4(nn ) (S.9b)
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If the coordinates origin is chosen at the center of mass of the nanoparticle, then integration of
egs. S.9a, S.9b and S.9c according to eq. 9 cancel all the terms containing odd powers of (r;-r;).

Thus the second, fourth and sixth moments of r;; are

Ig(r)rzdv
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If the particle is large enough to consider that it has a uniform mass distribution such that g(r)=1,

the volume integrals can be taken over the nanoparticle shape and egs. 10a, 10b and 10c from

the article are obtained
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Derivation of Schulz-Zimm distribution moments
Derivation of the expression for the n-moment of the Schulz-Zimm distribution is done for
illustrative purposes. The moments of the distribution should not be confused with Ar,, which are

the moments of the difference of distances within a nanoparticle. The Shulz-Zimm distribution

function is

k+1

h k 4—hx
w(X) = F(k+l) x'e (S.11)

where h = (k+1)/xx and k = 1/(PDI - 1); x is the x-averaged x and PDI is the polydispersity of x

defined as x,/xn, where X, is the number average x. The n-moment of the distribution is

<x” >X = Tw(x)x”dx = x“e"™x"dx (S.12)
0

Equation S.12 can be solved using integration by parts and assigning

u=x<" du = (k+n)x“"
k+1 k+1
dv = h e ™dx V= Le‘“x
I'(k+1) hr'(k+1)
thus
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Integrating by parts n times gives
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The integral in the last term corresponds to jw(x)dx = 1, thus the moment of the Schulz-Zimm

distribution is

o o k+1,—hx | n 1
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Equation 12 of the article arises from eg. S.15

TW(A)W(B)W(C)A"BmCPdAdBdC: AR(kAf“)! Bé"(ks:”)! Cé’(kc:”)! 1)
0 (kA+1) K,y! (kB+l) kg ! (kc +1) k!

O3
Oy 8

Form factor of rectangular parallelepipeds and triaxial ellipsoids

The form factor of a rectangular parallelepiped with Axis A, B and C is'

h > sin(pco/2) i
P(q,a,0)=£¢Q(u l1-oc a){w} do (S.16)
where
. | sin g-cos(g-uﬂ sin{f-sin(:-uﬂ
to(2)= “-cos(n-uj | ua.sin(ﬂ.u) " &40
2 2 2 2

u=qB,a=A/B, c=C/Band q = (4rns/io)sin(6/2)
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The form factor of a triaxial ellipsoid with semiaxis a, b and ¢ is*

11
P(g,a,b,c) =”¢2 {q[a2 0082(nX/2)+bZSin2(TcX/2)(l— y2)+czy2}%}dxdy (S.18)
00
where
. 2
% (t)zg(smtzstcostj (5.19)
anda<b<c
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