Characteristicsofthechargetransfersurfacecomp lexontitanium (IV)dioxideforthevisible-lightinducedchemo-se lective oxidationofbenzylalcohol

ShinyaHigashimoto, ^a*KoheiOkada, ^aMasashiAzuma, ^a HiroyoshiOhue, ^a TadamasaTerai, ^a andYoshihisaSakata ^b ^a DepartmentofAppliedChemistry,CollegeofEngineering,OsakaInstituteofTe chnology 5-16-10miya,Asahi-ku,Osaka535-8585,Japan ^b GraduateSchoolofScienceandEngineering,YamaguchiUniversity 2-16-1Tokiwadai,Ube755-8611,Japan AuthorE-mailaddress:higashimoto@chem.oit.ac.jp(ShinyaHigashimot o)

Figure S. 1 XRD patterns of (a) un-treated TiO_2 , (b) $\text{TiO}_2(573)$, (c) $\text{TiO}_2(673)$, (d) $\text{TiO}_2(773)$, (e) $\text{TiO}_2(873)$ and (f) $\text{TiO}_2(973)$. : anatase structure

Figure S. 2 Time profile for the photocatalytic oxidation of benzyl alcohol on the heat-treated TiO_2 (a - e) in the presence of O₂ under visible light irradiation, and the simulation (broken line) of amounts of photo-formed benzaldehyde (a'-e'). a, a': un-treated TiO₂, b, b': TiO₂(673), c, c': TiO₂(773), d, d': TiO₂(873), e, e': TiO₂(973). \blacksquare : amount of benzaldehyde; \bigcirc : amount of benzyl alcohol; \triangle : amount of benzyl alcohol and benzaldehyde in total.

Figure S. 3 Time profile for the photocatalytic oxidation of normal benzyl alcohol (a - d) and α , α -d2 benzyl alcohol (e - h) on TiO₂ with experiment (\bigcirc) and its simulation (broken line). The reaction temperatures were controlled at 283 K (a, e), 293 K (b, f), 303 K (c, g) and 313 K (d, h).

Figure S. 4 Mott-Schottky plots of the TiO_2 film electrode at the modulation frequency of 100 and 1000 Hz. The measurements were performed in acetonitrile solution involving 0.1 M LiClO₄ and 5 mM benzyl alcohol (pH = 3.8).

Figure S. 5 Plots for the amount of photo-formed benzaldehyde as a function of the amounts of conc. H_2SO_4 added. The photocatalytic oxidation of benzyl alcohol (50 µmol) was performed in acetonitrile solution on TiO₂ (50 mg) for 1h.