Electronic Supplementary Information (ESI) for:

Role of microorganism growth phase in the accumulation and characteristics of biomacromolecules (BMM) in a membrane bioreactor

Zhongbo Zhou^{a,b}, Fangang Meng^{a,b}*, Shuang Liang^c, Bing-Jie Ni^d, Xiaoshan Jia^{a,b}, Shiyu Li^{a,b}, Yankai Song^{a,b}, Guocheng Huang^{a,b}

^a School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China

^c Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and

Engineering, Shandong University, Jinan 250100, PR China

^d Department of Environmental Engineering, Technical University of Denmark, Miljøvej building 113, 2800

Kongens Lyngby, Denmark

Submitted to

RSC Advances

^b Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China

^{*} Corresponding authors. Email: <u>fgmeng80@126.com</u>, Tel: 86-20-39335060, Fax: 86-20-84110267

FIGURE S1. Diagram of the lab-scale MBR

FIGURE S2. COD and NH₄⁺-N removal of the MBR

FIGURE S3 Molecular weight distribution of feedwater

0

>0.45µm

0.45µm-100kDa

30-5kDa

<5kDa

100-30kDa

FIGURE S4. Molecular weight distribution of BAP on day 4, 9 and 37

FIGURE S5. EEM spectra of SMP samples over the MBR operation

FIGURE S6. EEM data of the BAP on day 4, 9 and 37

Ingredient	mg/L	Trace elements	mg/L
Na-acetate	35	FeSO ₄ .7H ₂ O	2.50
KH ₂ PO ₄	23	ZnCl ₂	0.06
K ₂ HPO ₄	21	MnCl ₂ .4H ₂ O	0.06
NH ₄ Cl	40	NaMoO ₄ .2H ₂ O	0.19
Starch	162	CoCl ₂ .6H ₂ O	0.13
Milk powder	200	NiCl ₂ .6H ₂ O	0.04
Sucrose	141	$CuSO_4$	0.06
Urea	50	CaCl ₂	0.44
Peptone	32	H ₃ BO ₃	0.06
Yeast extract	77	MgCl ₂	0.19
Beef extract	80		
NaHCO ₃	30		

TABLE S1. Compositions of synthetic wastewater