Supporting Information

Peapod-like Nickel@mesoporous carbon core-shell nanowires: a novel electrode

material for supercapacitors

Hao Jiang^{a,b}, Ting Sun,^c Chunzhong Li^{*,a}, Jan Ma^{*,b,c}

^a Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China

^b Temasek Laboratories, Nanyang Technological University, Singapore 637553, Singapore

^c School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore

* Electronic mail: <u>czli@ecust.edu.cn</u> (Prof. Chunzhong Li) and <u>asjma@ntu.edu.sg</u> (Prof. Jan Ma)

Part I: Experimental Section

Characterizations: The as-prepared products were characterized with X-ray powder diffractometer (XRD; Shimadzu XRD-6000, Cu K α radiation) at a scan rate of 2 °C min⁻¹, scanning electron microscopy (FESEM; JEOL, JSM-7600F) equipped, and transmission electron microscopy (TEM; JEOL, JEM-2100F) operated at 200 kV. N₂ adsorption/desorption was determined by Brunauer-Emmett-Teller (BET) measurements using an Tristar-3000 surface area analyzer.

Electrochemical measurements: The electrochemical measurements (Autolab PGSTAT30

potentiostat) were conducted using a three-electrode mode in a 1 M KOH aqueous solution. The working electrodes were prepared by mixing the active materials (90 wt%) and polyvinylidene fluoride (PVDF, 10 wt.%) in NMP. A small amount of absolute ethanol was then added to the mixture to promote homogeneity. After that, the mixture was coated onto the graphite paper (1 cm²) to form the electrode layer by drying at 120 °C for around two hours. Typical weight of the active materials of each sample was controlled within 1.0 ± 0.2 mg cm⁻². The reference electrode and counter electrode were Ag/AgCl electrode and platinum foil, respectively.

Figure S1 SEM image of the as-obtained Ni(OH)₂ nanowires.

Figure S2 (a) CV curves at different scan rates of the Ni@MPC.

Figure S3 (a) TG curve of the Ni@MPC. According to the TG curves, the weight loss is ~46%. Therefore, it can be calculated that the carbon concentration of Ni@MPC is about 57.4% if metal Ni nanoparticles are oxidized into NiO completely.

Figure S4 Ragone plot of the Ni@MPC. To evaluate the power applications of supercapacitors, the energy density and power density of the Ni@MPC nanocomposites electrode have been calculated according to the discharge curves at different current densities. The energy densities decreases from 36.8 to 16.7 Wh kg⁻¹, while the specific power densities increases from 145 to 2569 W kg⁻¹.

Part III: Calculations

The specific capacitance was calculated from the CV curves according to the following equation:

$$C = Q/(m\Delta V),$$

where C (F g⁻¹) is the specific capacitance, m(g) is the mass of the active materials, Q(C) is the average charge during the charging and discharging process, and $\Delta V(V)$ is the potential window.

The discharge specific capacitance could also be calculated from the discharge curves by the following equation:

$$C = I\Delta t / (m\Delta V),$$

where I(A), $\Delta t(s)$, m(g) and $\Delta V(V)$ are the discharge current, discharge time consumed in the potential range of ΔV , mass of the active materials (or mass of the total electrode materials), and the potential windows, respectively.