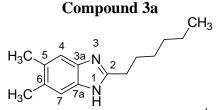
Synthesis of 2-alkyl substituted benzimidazoles under microwave irradiation: Anti-proliferative effect of some representative compounds on human histiocytic lymphoma cell U937

Chhanda Mukhopadhyay, $*^a$ Sabari Ghosh, a Sumita Sengupta (Bandyopadhyay) b and Soumasree De^b

Supplementary Information Part 1


Index

		page number
1.	General procedure for the synthesis of the benzimidazoles	2
2.	Characterization data of the synthesized compounds	2

^aDepartment of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India; Tel: +91 9433019610; E-mail: cmukhop@yahoo.co.in ^b Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 APC Road, Kolkata-700009, India

1. General procedure for the synthesis of the benzimidazoles: A typical example is as follows. Heptanoic acid 1a (0.14 ml, 1.0 mmol) was added to 4, 5-dimethyl-1, 2-phenylenediamine 2a (136 mg, 1.0 mmol). 62% aqueous hexafluorophosphoric acid (0.01 ml, 0.1 mmol) was added. The reaction mixture was mixed thoroughly and then heated in a microwave for 5 minutes (600 Watt) at 115 °C. It was then allowed to cool down to room temperature. TLC was checked. Unfortunately, the starting amine and the product 3a give the same RF value of 0.8 (100% ethyl acetate or at any other possible concentration of the running solvent). It is also true for compounds 3k, 3l, 3m, 3n, 3o, 3p and 3q. For workup, 10% NaOH solution was added followed by rigorous tituration. The solid which remained was filtered off, washed several times with distilled water and purified by recrystallisation from ethyl acetate and hexanes. The yield of compound 3a was 96%.

2. Characterization data of the synthesized compounds:

2-Hexyl-5,6-dimethyl-1H-benzoimidazole (**3a**): sticky solid; ¹H NMR (300 MHz, CDCl₃): δ (ppm) 12.71 (s, 1H, N₁<u>H</u>), 7.25 (s, 2H, H₄ and H₇), 2.86 (t, J = 7.5 Hz, 2H, C₂-C<u>H₂</u>), 2.22 (s, 6H, C₅-C<u>H₃</u> and C₆-C<u>H₃</u>), 1.79-1.69 (m, 2H, C₂-CH₂-C<u>H₂</u>), 1.20-1.05 (m, 6H, C₂-CH₂-C<u>H₂-CH₂-CH₂-CH₂-CH₂) and 0.75 (br s, 3H, C₂-(CH₂)₅-C<u>H₃</u>); ¹³C NMR (75 MHz, CDCl₃): δ 155.2 (C₂), 137.0 (C_{3a} and C_{7a}), 130.6 (C₅ and C₆), 114.7 (C₄ and C₇), 31.4 (C₂-C<u>H₂</u>), 29.2 (C₂-CH₂-C<u>H₂</u>), 29.0 (C₂-CH₂-CH₂-CH₂), 28.5 (C₂-CH₂-CH₂-CH₂-CH₂), 22.4 (C₂-CH₂-CH₂-CH₂-CH₂-CH₂), 20.1 (C₅-CH₂-CH₂-CH₂-CH₂), 20.1 (C₅-CH₂-CH₂-CH₂-CH₂), 20.1 (C₅-CH₂-CH₂-CH₂-CH₂-CH₂), 20.1 (C₅-CH₂-CH₂-CH₂-CH₂), 20.1 (C₅-CH₂-CH₂-CH₂-CH₂-CH₂), 20.1 (C₅-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂), 20.1 (C₅-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂), 20.1 (C₅-CH₂</u>

<u>CH</u>₃ and C₆-<u>CH</u>₃) and 13.8 (C₂-(CH₂)₅-<u>C</u>H₃); IR(KBr) 2927, 1451 and 1020 cm⁻¹; Anal. Calcd for C₁₅H₂₂N₂: C, 78.21; H, 9.63; N, 12.16. Found: C, 78.21; H, 9.61; N, 12.15; Yield: 96%

Compound 3b

1H-Benzoimidazole (**3b**): brown solid; 170 °C (m.p.); ¹H NMR (300 MHz, DMSO-*d*₆): δ (ppm) 8.18 (s, 1H, C₂-<u>H</u>), 7.56-7.54 (m, 2H, H₅ and H₆) and 7.15-7.12 (m, 2H, H₄ and H₇); ¹³C NMR (75 MHz, DMSO-*d*₆): δ 142.1 (C₂), 138.2 (C_{3a} and C_{7a}), 121.9 (C₅ and C₆) and 115.4 (C₄ and C₇); IR(KBr) 2793, 1407, 1245 and 744 cm⁻¹; Anal. Calcd for C₇H₆N₂: C, 71.17; H, 5.12; N, 23.71. Found: C, 71.17; H, 5.11; N, 23.70; Yield: 90%

Compound 3c

2-Methyl-1H-benzoimidazole (**3c**): brown solid; 175-176 °C (m.p.); ¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.57-7.51 (m, 2H, H₅ and H₆), 7.42 (br s, 1H, N₁<u>H</u>), 7.24-7.19 (m, 2H, H₄ and H₇) and 2.65 (s, 3H, C₂-C<u>H</u>₃); ¹³C NMR (75 MHz, CDCl₃): δ 151.2 (C₂), 138.6 (C_{3a} and C_{7a}), 122.2 (C₅ and C₆), 114.5 (C₄ and C₇) and 14.9 (C₂-<u>C</u>H₃); IR(KBr) 2673, 1384, 1267 and 732 cm⁻¹; Anal. Calcd for C₈H₈N₂: C, 72.70; H, 6.10; N, 21.20. Found: C, 72.70; H, 6.12; N, 21.20; Yield: 85%

Compound 3d

$$\begin{array}{c|c} & 4 & 3 \\ & 5 & & 1 \\$$

2,6-Dimethyl-1H-benzoimidazole (**3d**): brown solid; 202 °C (m.p.); ¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.92 (br s, 1H, N₁H), 7.45 (d, J = 8.1 Hz, 1H, H₄), 7.34 (s, 1H, H₇), 7.05 (d, J = 8.1 Hz, 1H, H₅), 2.63 (s, 3H, C₂-CH₃) and 2.44 (s, 3H, C₆-CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 151.0 (C₂), 138.1 (C_{3a}), 136.7 (C_{7a}), 132.0 (C₆), 123.7 (C₄), 114.2 (C₇), 113.9 (C₅), 21.5 (C₆-CH₃) and 14.7 (C₂-CH₃); IR(KBr) 2918, 1450, 1400, 1281, 1027 and 801 cm⁻¹; Anal. Calcd for C₉H₁₀N₂: C, 73.94; H, 6.89; N, 19.16. Found: C, 73.94; H, 6.89; N, 19.17; Yield: 76%

Compound 3e

2,5,6-Trimethyl-1H-benzoimidazole (**3e**): light brown solid; 229-231 °C (m.p.); ¹H NMR (300 MHz, DMSO- d_6): δ (ppm) 11.86 (br s, 1H, N₁H), 7.16 (s, 2H, H₄ and H₇), 2.38 (s, 3H, C₂-C_{H₃}) and 2.22 (s, 6H, C₅-C_{H₃} and C₆-C_{H₃}); ¹³C NMR (75 MHz, DMSO- d_6): δ 150.3 (C₂, C_{3a} and C_{7a}), 129.2 (C₄, C₅, C₆ and C₇), 20.0 (C₅-C₁H₃ and C₆-C₁H₃) and 14.7 (C₂-C₁H₃); IR(KBr) 2922, 1458, 1389, 1010 and 856 cm⁻¹; Anal. Calcd for C₁₀H₁₂N₂: C, 74.97; H, 7.55; N, 17.48. Found: C, 74.99; H, 7.56; N, 17.49; Yield: 90%

Compound 3f

5,6-Dichloro-2-methyl-1H-benzoimidazole (**3f**): grey solid; 249 °C (m.p.); ¹H NMR (300 MHz, DMSO-*d*₆): δ (ppm) 12.49 (br s, 1H, N₁H), 7.69 (s, 2H, H₄ and H₇) and 2.48 (C₂-CH₃); ¹³C NMR (75 MHz, DMSO-*d*₆): δ 154.9 (C₂, C_{3a} and C_{7a}), 123.9 (C₄, C₅, C₆ and C₇) and 15.1 (CH₃); IR(KBr) 3110, 1446, 1373, 1019 and 859 cm⁻¹; Anal. Calcd for C₈H₆Cl₂N₂: C, 47.79; H, 3.01; Cl, 35.27; N, 13.93. Found: C, 47.80; H, 3.01; Cl, 35.25; N, 13.93; Yield: 65%

Compound 3g

2-Propyl-1H-benzoimidazole (**3g**): brown solid; 160-162 °C (m.p.); ¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.94 (br s, 1H, N₁<u>H</u>), 7.61-7.58 (m, 2H, H₅ and H₆), 7.28-7.24 (m, 2H, H₄ and H₇), 2.98 (t, J = 7.5 Hz, 2H, C₂-C<u>H₂</u>), 1.99-1.87 (m, 2H, C₂-CH₂-C<u>H₂</u>) and 1.00 (t, J = 7.5 Hz, 3H, C₂-CH₂-CH₂-C<u>H₃</u>); ¹³C NMR (75 MHz, CDCl₃): δ 155.0 (C₂), 137.7 (C_{3a} and C_{7a}), 122.5 (C₅ and C₆), 114.5 (C₄ and C₇), 30.9 (C₂-<u>C</u>H₂), 21.6 (C₂-CH₂-<u>C</u>H₂) and 13.8 (C₂-CH₂-CH₂-C<u>H₃</u>); IR(KBr) 2958, 1427, 1268 and 745 cm⁻¹; Anal. Calcd for C₁₀H₁₂N₂: C, 74.97; H, 7.55; N, 17.48. Found: C, 74.98; H, 7.56; N, 17.47; Yield: 80%

Compound 3h

6-Methyl-2-propyl-1H-benzoimidazole (**3h**): light brown solid; 153-154 °C (m.p.); ¹H NMR (300 MHz, CDCl₃): δ (ppm) 9.08 (br s, 1H, N₁<u>H</u>), 7.44 (d, J = 8.1 Hz, 1H, H₄), 7.33 (s, 1H, H₇), 7.04 (d, J = 8.1 Hz, 1H, H₅), 2.90 (t, J = 7.5 Hz, 2H, C₂-C<u>H</u>₂), 2.44 (s, 3H, C₆-C<u>H</u>₃), 1.94-1.81 (m, 2H, C₂-CH₂-C<u>H</u>₂) and 0.97 (t, J = 7.5 Hz, 3H, C₂-CH₂-CH₂-C<u>H</u>₂-C<u>H</u>₃); ¹³C NMR (75 MHz, CDCl₃): δ 155.1 (C₂), 138.4 (C_{3a}), 137.0 (C_{7a}), 131.8 (C₆), 123.4 (C₄), 114.4 (C₇), 114.1 (C₅), 31.2 (C₂-<u>C</u>H₂), 21.7 (C₂-CH₂-<u>C</u>H₂), 21.6 (C₆-<u>C</u>H₃) and 13.8 (C₂-CH₂-CH₂-C<u>H</u>₃); IR(KBr) 2959, 1446, 1281 and 798 cm⁻¹; Anal. Calcd for C₁₁H₁₄N₂: C, 75.82; H, 8.10; N, 16.08. Found: C, 75.81; H, 8.11; N, 16.08; Yield: 78%

Compound 3i

5,6-Dimethyl-2-propyl-1H-benzoimidazole (**3i**): light brown solid; 167 °C (m.p.); 1 H NMR (300 MHz, DMSO- d_{6}): δ (ppm) 11.86 (br s, 1H, N₁H), 7.17 (s, 2H, H₄ and H₇), 2.68 (t, J = 7.5 Hz, 2H, C₂-CH₂), 2.23 (s, 6H, C₅-CH₃ and C₆-CH₃), 1.77-1.67 (m, 2H, C₂-CH₂-CH₂) and 0.88 (t, J = 7.5 Hz, 3H, C₂-CH₂-CH₂-CH₂-CH₃); 13 C NMR (75 MHz, DMSO- d_{6}): δ 154.1 (C₂), 137.2 (C_{3a} and C_{7a}), 129.4 (C₅ and C₆), 114.6 (C₄ and C₇), 30.9 (C₂-CH₂), 21.5 (C₂-CH₂-CH₂), 20.3 (C₅-CH₃ and C₆-CH₃) and 14.1 (C₂-CH₂-CH₂-CH₃); IR(KBr) 2970, 1454, 1406, 1304, 1002 and 852 cm⁻¹; Anal. Calcd for C₁₂H₁₆N₂: C, 76.55; H, 8.57; N, 14.88. Found: C, 76.55; H, 8.57; N, 14.89; Yield: 95%

Compound 3j

6-Methyl-2-(1-phenyl-propyl)-1H-benzoimidazole (**3j**): brown solid; 120 °C (m.p.); ¹H NMR (300 MHz, CDCl₃): δ (ppm) 8.88 (br s, 1H, N₁H), 7.43 (d, J = 8.1 Hz, 1H, H₄), 7.33-7.14 (m, 6H, H₇, H₂', H₃', H₄', H₅' and H₆'), 7.04 (d, J = 8.1 Hz, 1H, H₅), 4.14 (t, J = 7.5 Hz, 1H, C₂-CH-CH₂-CH₃), 2.52-2.42 (m, 4H, C₆-CH₃ and ½ C₂-CH-CH₂-CH₃), 2.32-2.11 (m, 1H, ½ C₂-CH-CH₂-CH₃) and 0.93 (t, J = 7.5 Hz, 1H, C₂-CH-CH₂-CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 156.3 (C₂), 140.7 (C₁'), 137.3 (C_{3a}), 135.9 (C_{7a}), 132.5 (C₆), 128.8 (C₂' and C₆'), 128.0 (C₃' and C₅'), 127.2 (C₄'), 124.1 (C₄), 114.6 (C₇), 114.2 (C₅), 47.8 (C₂-CH-CH₂-CH₃), 27.5 (C₂-CH-CH₂-CH₃), 21.5 (C₆-CH₃) and 12.3 (C₂-CH-CH₂-CH₃); IR(KBr) 2928, 1449, 1278, 807 and 697 cm⁻¹; Anal. Calcd for C₁₇H₁₈N₂: C, 81.56; H, 7.25; N, 11.19. Found: C, 81.57; H, 7.26; N, 11.19; Yield: 78%

Compound 3k

2-Naphthalen-1-ylmethyl-1H-benzoimidazole (**3k**): pale pink solid; 230-232 °C (m.p.); ¹H NMR (300 MHz, DMSO- d_6): δ (ppm) 12.18 (br s, 1H, N<u>H</u>), 8.18-8.16 (m, 1H, H₈·), 7.91-7.88 (m, 1H, H₅·), 7.84-7.80 (m, 1H, H₄·), 7.51-7.40 (m, 6H, H₅, H₆, H₂·, H₃·, H₆· and H₇·), 7.07-7.04 (m, 2H, H₄ and H₇), 4.60 (s, 2H, C<u>H</u>₂) and 3.32 (s, 6H, C<u>H</u>₃); ¹³C NMR (75 MHz, DMSO- d_6): δ 153.5 (C₂), 133.6 (C_{3a}, C_{7a} and C₁·), 133.5 (C₄·a), 131.7 (C₈·a), 128.5 (C₅·), 127.4 (C₄ and C₄·), 126.3

 $(C_{3'})$, 125.8 $(C_7$ and $C_{7'})$, 125.7 $(C_{6'})$, 124.1 $(C_{8'})$, 121.3 $(C_5$ and $C_6)$ and 32.8 $(\underline{C}H_2)$; IR(KBr) 2740, 1426, 778 and 742 cm⁻¹; Anal. Calcd for $C_{18}H_{14}N_2$: C, 83.69; H, 5.46; N, 10.84. Found: C, 83.70; H, 5.44; N, 10.83; Yield: 75%

Compound 31

$$H_3C$$
 5 4 3a N 2 8' 7' 6 H_3C 7 7a N 1 8'a 5' 6

5,6-Dimethyl-2-naphthalen-1-ylmethyl-1H-benzoimidazole (**3l**): light brown solid; 218 °C (m.p.); ¹H NMR (300 MHz, DMSO-*d*₆): δ (ppm) 11.90 (br s, 1H, N<u>H</u>), 8.17-8.14 (m, 1H, H₈), 7.90-7.87 (m, 1H, H₅), 7.82-7.80 (m, 1H, H₄), 7.48-7.42 (m, 4H, H₂, H₃, H₆ and H₇), 7.17 (s, 2H, H₄ and H₇), 4.55 (s, 2H, C<u>H</u>₂) and 2.22 (s, 6H, C<u>H</u>₃); ¹³C NMR (75 MHz, DMSO-*d*₆): δ 152.5 (C₂), 133.9 (C₁), 133.5 (C₄, 131.7 (C₈, 129.5 (C_{3a} and C_{7a}), 128.5 (C₅), 127.34 (C₄ and C₄), 127.28 (C₃), 126.2 (C₂), 125.8 (C₇ and C₇), 125.7 (C₆), 124.1 (C₈), 32.8 (<u>C</u>H₂) and 19.9 (<u>C</u>H₃); IR(KBr) 2923, 1448, 1012 and 781 cm⁻¹; Anal. Calcd for C₂₀H₁₈N₂: C, 83.88; H, 6.34; N, 9.78. Found: C, 83.86; H, 6.35; N, 9.79; Yield: 80 %

Compound 3m

2-(1H-Indol-3-ylmethyl)-1H-benzoimidazole (**3m**): grey solid; 193-194 °C (m.p.); ¹H NMR (300 MHz, DMSO- d_6): δ (ppm) 10.97 (br s, 1H, N₁·<u>H</u>), 7.47-7.41 (m, 3H, H₅, H₆ and H₄·), 7.33-7.27 (m, 2H, H₂· and H₇·), 7.09-6.97 (m, 3H, H₄, H₇ and H₆·), 6.89 (t, J = 7.1 Hz, 1H, H₅·) and 4.26 (s, 2H, C<u>H</u>₂); ¹³C NMR (75 MHz, DMSO- d_6): δ 154.4 (C₂), 136.3 (C₇·_a), 127.0 (C_{3a}, C_{7a} and C₃·_a), 123.9 (C₂·), 121.4 (C₆·), 121.1 (C₅·), 118.5 (C₄·), 117.8 (C₇·), 114.5 (C₄ and C₇), 111.5 (C₅ and C₆), 109.8 (C₃·) and 25.3 (<u>C</u>H₂); IR(KBr) 3409, 3150, 1449, 1092 and 741 cm⁻¹; Anal. Calcd for C₁₆H₁₃N₃: C, 77.71; H, 5.30; N, 16.99. Found: C, 77.72; H, 5.30; N, 16.98; Yield: 70%

Compound 3n

2-(1H-Indol-3-ylmethyl)-6-methyl-1H-benzoimidazole (**3n**): grey solid; 90 °C (m.p.); ¹H NMR (300 MHz, DMSO- d_6): δ (ppm) 11.03 (s, 1H, N₁·H), 7.41-7.32 (m, 4H, H₄, H₇, H₄· and H₇·), 7.07-7.01 (m, 2H, H₅ and H₆·), 6.91 (t, J = 7.2 Hz, 1H, H₅·), 4.37 (s, 2H, CH₂) and 2.37 (s, 3H, CH₃); ¹³C NMR (75 MHz, DMSO- d_6): δ 154.0 (C₂), 136.3 (C₇·a), 130.2 (C_{3a}, C_{7a} and C₆), 127.0 (C₃·a), 123.7 (C₂·), 122.5 (C₆·), 121.1 (C₅·), 118.49 (C₄·), 118.46 (C₅ and C₇·), 111.4 (C₄ and C₇), 110.1 (C₃·), 25.4 (CH₂) and 21.3 (CH₃); IR(KBr) 3392 and 742 cm⁻¹; Anal. Calcd for C₁₇H₁₅N₃: C, 78.13; H, 5.79; N, 16.08. Found: C, 78.13; H, 5.78; N, 16.09; Yield: 75%

Compound 3o

2-(1H-Indol-3-ylmethyl)-5,6-dimethyl-1H-benzoimidazole (**3o**): light grey solid; 190 °C (m.p.); 1 H NMR (300 MHz, DMSO- 2 d₆): δ (ppm) 11.60 (br s, 1H, N₁H), 10.90 (s, 1H, N₁H), 7.41 (d, 2 = 7.8 Hz, 1H, H₄), 7.31 (d, 2 = 8.2 Hz, 1H, H₇), 7.22 (d, 2 = 2.1 Hz, 1H, H₂), 7.17 (s, 2H, H₄ and H₇), 7.01 (t, 2 = 7.2 Hz, 1H, H₆), 6.88 (t, 2 = 7.1 Hz, 1H, H₅), 4.19 (s, 2H, CH₂) and 2.22 (s, 6H, CH₃); 13 C NMR (75 MHz, DMSO- 2 d₆): δ 153.6 (C₂), 136.4 (C₇a), 129.5 (C_{3a} and C_{7a}), 127.1 (C₃and C₃a), 123.8 (C₂b), 121.2 (C₅and C₆b), 118.6 (C₄b), 111.6 (C₄a, C₇and C₇b), 110.4 (C₅and C₆b), 25.5 (C₂H₂and 20.1 (C₃H₃b); IR(KBr) 3385, 2929, 1448 and 735 cm⁻¹; Anal. Calcd for C₁₈H₁₇N₃: C, 78.52; H, 6.22; N, 15.26. Found: C, 78.51; H, 6.24; N, 15.25; Yield: 86%

Compound 3p

2-[3-(1H-Indol-3-yl)-propyl]-5,6-dimethyl-1H-benzoimidazole (**3p**): light grey solid; 96 °C (m.p.); ¹H NMR (300 MHz, DMSO- d_6): δ (ppm) 10.77 (s, 1H, N₁·<u>H</u>), 7.47 (d, J = 7.7 Hz, 1H, H₄·), 7.30 (d, J = 8.0 Hz, 1H, H₇·), 7.18 (s, 2H, H₄ and H₇), 7.11 (s, 1H, H₂·), 7.02 (t, J = 7.2 Hz, 1H, H₆·), 6.92 (t, J = 7.2 Hz, 1H, H₅·), 2.81-2.70 (m, 4H, C₂-CH₂ and C₃·-CH₂), 2.23 (s, 6H, CH₃) and 2.13-2.06 (m, 2H, C₂-CH₂-CH₂); ¹³C NMR (75 MHz, DMSO- d_6): δ 154.2 (C₂), 136.4 (C₇₃),

129.2 (C_{3a} and C_{7a}), 127.3 ($C_{3'}$ and $C_{3'a}$), 122.4 ($C_{2'}$), 120.9 ($C_{6'}$), 118.4 ($C_{4'}$), 118.2 ($C_{5'}$), 114.1 (C_{4} , C_{5} , C_{6} and C_{7}), 111.4 ($C_{7'}$), 28.5 (C_{2} - $\underline{C}H_{2}$ - $\underline{C}H_{2}$), 24.4 ($C_{3'}$ - $\underline{C}H_{2}$) and 20.0 ($\underline{C}H_{3}$); IR(KBr) 3409 and 743 cm⁻¹; Anal. Calcd for $C_{20}H_{21}N_{3}$: C, 79.17; H, 6.98; N, 13.85. Found: C, 79.16; H, 6.97; N, 13.87; Yield: 79%

Compound 3q

2-Cyclopropyl-5,6-dimethyl-1H-benzoimidazole (**3q**): light brown solid; 220 °C (m.p.); ¹H NMR (300 MHz, DMSO-*d*₆): δ (ppm) 11.86 (br s, 1H, N₁<u>H</u>), 7.12 (s, 2H, H₄ and H₇), 2.22 (s, 6H, C₅-C<u>H</u>₃ and C₆-C<u>H</u>₃), 2.03-1.98 (m, 1H, cyclopropyl C<u>H</u>) and 0.97-0.93 (m, 4H, cyclopropyl C<u>H</u>₂); ¹³C NMR (75 MHz, DMSO-*d*₆): δ 155.9 (C₂), 129.0 (C_{3a} and C_{7a}), 117.8 (C₄, C₅, C₆ and C₇), 19.9 (C₅-CH₃ and C₆-CH₃), 9.5 (cyclopropyl CH) and 8.5 (cyclopropyl CH₂); IR(KBr) 2896, 1437, 1307, 998 and 853 cm⁻¹; Anal. Calcd for C₁₂H₁₄N₂: C, 77.38; H, 7.58; N, 15.04. Found: C, 77.39; H, 7.60; N, 15.03; Yield: 90%

Compound 3r

2-Benzyl-5,6-dimethyl-1H-benzoimidazole (**3r**): greenish-brown solid; 104-105 °C (m.p.); 1 H NMR (300 MHz, CDCl₃): δ (ppm) 7.29-7.26 (m, 7H, H₄, H₇, H₂, H₃, H₄, H₅ and H₆), 4.23 (s, 2H, C<u>H</u>₂) and 2.35 (C₅-C<u>H</u>₃ and C₆-C<u>H</u>₃); 13 C NMR (75 MHz, DMSO- d_6): δ 152.4 (C₂), 136.3

 (C_{3a}) , 136.2 (C_{7a}) , 131.6 $(C_{1'})$, 128.93 $(C_{2'}$ and $C_{6'})$, 128.87 $(C_{3'}$ and $C_{5'})$, 127.2 $(C_{4'})$, 114.8 $(C_{4'})$ and C_{7} , 35.3 $(\underline{C}H_2)$ and 20.2 $(C_{5}-\underline{C}H_3)$ and $C_{6}-\underline{C}H_3$; IR(KBr) 1636, 1463, 1444, 1422, 1313 and 721 cm⁻¹; Anal. Calcd for $C_{16}H_{16}N_2$: C, 81.32; H, 6.82; N, 11.85. Found: C, 81.33; H, 6.83; N, 11.84; Yield: 95%