Electronic Supporting Information for

Constuction and Adsorption Properties of Microporous Tetrazine-Based Organic Frameworks

Da-Shuai Zhang, Ze Chang, Ying-Bin Lv, Tong-Liang Hu, Xian-He Bu*

Experimental procedures

Chemicals and Physical Measurements. All the chemicals used for synthesis were commercially available and used as received. Tetrakis(4-cyanatophenyl)methane (TCPM) was prepared according to the reported methods.¹ Solid-state NMR experiment was carried on a Varian Infinityplus-400 wide-bore (89 mm) NMR spectrometer at a proton frequency of 399.7 MHz using a 4 mm double-resonance HX CP/MAS NMR probe. IR spectra were measured on a Tensor 27 OPUS (Bruker) FT-IR spectrometer with KBr pellets. Thermogravimetric analyses (TGA) was carried out on a Rigaku standard TG-DTA analyzer with a heating rate of 10 °C min⁻¹ from room temperature to 800 °C. Elemental analyses (C, H, and N) were performed on a Perkin-Elmer 240C analyzer. The X-ray powder diffraction spectra (XRPD) was recorded on a Rigaku D/Max-2500 diffractometer at 40 kV, 100mA for a Cu-target tube and a graphite. Scanning electron microscope (SEM) images were recorded using a Hitachi S4800 Type II FE-SEM at 3.0 kV. Gas adsorption measurements were performed using an ASAP 2020 M gas adsorption analyzer.

Synthesis of the TzFs. These materials were obtained from TCPM by similar procedures, so only the synthesis of TzF-1 will be described in detail and other details are listed in Table S1. Also, the possible scheme of these reactions is shown in Scheme $S1^2$.

Synthesis of TzF-1. Tetrakis(4-cyanatophenyl)methane (300 mg, 0.71 mmol) and sulfur (0.3 g, 9.37 mmol) were placed in a 25 mL round flask, followed by the addition of hydrazine (5 mL). The reaction mixture was magnetically stirred and heated to reflux for 4 days. After cooling, the solvent was removed by filtration and the resulting light yellow solid was washed by hydrazine, water and ethanol. Subsequent suspension of the solid into a mixture of glacial acetic acid (60 mL) and water (40 mL) was cooled to 0 °C, and followed by the addition of sodium nitrite (1.81 g) in cold water (5 mL), the reaction mixture turned red-violet in color. The mixture was then filtrated and collected after soxhlet extracted over night with tetrahydrofuran (THF) (yield: 65% ~ 75%).

- 1. M. Grimm, B. Kirste and H. Kurreck, Angewandte Chemie, 1986, 98, 1095-1099.
- 2. G. Clavier and P. Audebert, Chemical Reviews, 2010, 110, 3299-3314.

TzFs	Hydrazine/mL	Sulphur/g	Reaction time	Temperature	Added solvent
TzF-1	5	0.3	4 days	reflux	none
TzF-2	5	0.3	2 days	reflux	THF 10mL
TzF-3	10	0.8	4 days	reflux	THF 10mL ethanol 10ml
TzF-4	6	0.4	4 days	reflux	1,4-dioxane 5mL DMSO 5mL
TzF-5	5	0.4	3 days	60°C	DMSO 10mL
TzF-6	16	0.6	3 days	90°C	none
TzF-7	18	0.6	overnight	90°C	Ethane-1,2-diol 10mL

Table S1. Details for the synthesis of the tetrazine-based framework materials

Table S2. Resulting BET and Langmuir surface areas and pore volume of the obtained materials

TzFs	$S_{BET} {}_{1}^{/m^2 \cdot g^2}$	S _{Langmujr} /m ² ·g ⁻	H-K Maxium Pore Volume/ cm ³ ·g ⁻¹
TzF-1	458	611	0.50
TzF-2	514	682	0.31
TzF-3	233	308	0.14
TzF-4	171	227	0.12
TzF-5	348	468	0.49
TzF-6	444	593	0.46
TzF-7	571	764	1.09

Scheme S1 The possible mechanism for the fomation of TzFs.

Figure S1. SEM images for the TzFs: (a) TzF-6 showing an amorphous forms; (b) TzF-7 displaying a more loose surface.

Figure S2. X-ray powder diffraction patterns of TzF-7 (blue), TzF-6 (red), and an empty pan (black).

Figure S3 (a) FT-IR spectra of the reactant TCPM and the TzF-7 prepared from TCPM; (b) TGA curve of TzF-1 under air atmosphere and heating rate of 10° C min⁻¹.

Figure S4 Solid ¹³C NMR spectra of TCPM (black), TzF-6 (red) and TzF-7 (blue). Asterisks denote spinning sidebands.

Figure S5 N₂ adsorption and desorption isotherms of the materials obtained at 77 K: TzF-1 (black), TzF-2 (olive), TzF-3 (violet), TzF-4 (wine), TzF-5 (red), TzF-6 (green) and TzF-7 (navy). For clarity, the curves for TzF-7, TzF-6, TzF-5, TzF-2 and TzF-1 were shifted vertically by 600, 500, 400, 300 and 200 cm³g⁻¹, respectively.

Figure S6 CH_4 adsorption and desorption isotherms of TzF-7 at 273 K (black) and 303 K (blue); CO_2 adsorption and desorption isotherms of TzF-7 at 273 K (olive) and 303 K (violet).

Figure S7 O_2 adsorption and desorption isotherms of TzF-7 at 77 K.

Estimation of adsorption enthalpies

A Virial Method model was used for calculating the isosteric enthalpies of adsorption.

The following equation is used for this method.

$In(n/p) = A_0 + A_1n + A_2n^2 \dots$

Where *n* is the amount adsorbed, *p* is the pressure and A_0 and A_1 are constants. A_0 is related to adsorbate-adsorbate interactions, and A_1 , adsorbate-adsorbate interactions. These equations were used interpolate between isotherm points to obtain pressures for specific amounts adsorbed. Henry's Law constant (K_H) is equal to exp(A_0). The van't Hoff isochore was used to determine the isosteric enthalpy of adsorption at specific surface coverages. At low surface coverage A_2 and higher terms can be neglected. The isosteric enthalpies of adsorption at zero surface coverage were obtained from the A_0 values.

Figure S8 Analysis of H₂ adsorption data of TzF-6 using Virial method.

Figure S9 Analysis of H₂ adsorption data of TzF-7 using Virial Method.