Supporting Information

The effect of temperature on internal dynamics of dansylated POPAM dendrimers

Jukka Aumanen,¹ Gilberto Teobaldi,² Francesco Zerbetto,³ and Jouko Korppi-Tommola¹

¹⁾ Department of Chemistry, Nanoscience Center, P.O. Box 35, FIN-40014 University of Jyväskylä, Finland

²⁾ Stephenson Institute for Renewable Energy and Surface Science Research Centre, Department of Chemistry, The University of Liverpool, L69 3BX Liverpool, United Kingdom ³⁾ Dipartimento di Chimica "G. Ciamician", Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy

Figure S1. Time evolution of the potential energy (top) and of the Root Mean Square Displacement (RMSD, middle) of the simulated systems $(G4+1728 \text{ CHCl}_3)$ as a function of the considered temperature. The bottom panel reports a close up of the RMSD graph (middle) in the 7-10 ns window.

		Emission		Anisotropy decay			
	T (K)	lifetime (ns)	χ^2	t ₁ (ns)	t ₂ (ns)	χ^2	
G1	213	16.0	2.54*10 ⁻⁵		1.58 (100 %)	1.10*10-4	
	233	15.3	2.59*10 ⁻⁵		1.00 (100 %)	6.65*10 ⁻⁵	
	253	14.5	2.93*10 ⁻⁵		0.63 (100 %)	5.85*10 ⁻⁵	
	273	13.9	3.01*10 ⁻⁵		0.42 (100 %)	5.34*10 ⁻⁵	
	293	13.6	2.69*10 ⁻⁵		0.30 (100 %)	5.26*10 ⁻⁵	
G2	213	15.8	2.94*10 ⁻⁵	0.61 (24 %)	4.29 (76 %)	$1.02*10^{-4}$	
	233	15.1	3.13*10 ⁻⁵	0.45 (25 %)	2.47 (75 %)	$8.77*10^{-5}$	
	253	14.5	2.78*10 ⁻⁵	0.37 (31 %)	1.63 (69 %)	7.39*10 ⁻⁵	
	273	13.8	3.92*10 ⁻⁵	0.36 (43 %)	1.21 (57 %)	6.96*10 ⁻⁵	
	293	13.6	3.56*10 ⁻⁵	0.42 (72 %)	1.17 (28 %)	5.02*10 ⁻⁵	
G3	213	16.0	2.34*10 ⁻⁵	0.85 (21 %)	9.24 (79 %)	$1.50*10^{-4}$	
	233	15.3	2.75*10 ⁻⁵	0.56 (23 %)	5.11 (77 %)	$1.05*10^{-4}$	
	253	14.7	3.30*10 ⁻⁵	0.46 (34 %)	3.17 (66 %)	8.17*10 ⁻⁵	
	273	14.0	4.02*10 ⁻⁵	0.35 (33 %)	2.05 (67 %)	$7.26*10^{-5}$	
_	293	13.7	4.14*10 ⁻⁵	0.34 (44 %)	1.48 (56 %)	6.60*10 ⁻⁵	
G4	213	15.9	3.18*10 ⁻⁵	2.09 (23 %)	19.1 (77 %)	8.13*10 ⁻⁴	
	233	15.2	3.70*10 ⁻⁵	1.46 (28 %)	11.1(72 %)	2.96*10-4	
	253	14.5	4.51*10 ⁻⁵	0.94 (33 %)	6.54 (67 %)	$1.85*10^{-4}$	
	273	13.7	5.68*10 ⁻⁵	0.54 (36 %)	4.02 (64 %)	1.33*10 ⁻⁴	
	293	13.2	6.24*10 ⁻⁵	0.40 (44 %)	2.61 (56 %)	$1.02*10^{-4}$	

Table S1. The χ^2 values for all fits showed in Table 1.

Table S2. The χ^2 values for all fits showed in Table 2.

		Emission lifetime (ns)				
	T (K)	Dansyl χ^2		Eosin χ^2		
G2-eosin	213	15.0 4.	32*10 ⁻⁵	2.7	3.00*10 ⁻⁵	
	253	13.6 5.	$37*10^{-5}$	2.5	2.72*10 ⁻⁵	
	293	13.1 4.	34*10 ⁻⁵	2.2	3.05*10 ⁻⁵	
G3-eosin	213	15.0 9.	86*10 ⁻⁵	1.5	1.70*10 ⁻⁴	
	253	13.9 9.	$26*10^{-5}$	1.6	$2.08*10^{-4}$	
	293	13.5 6.	$88*10^{-5}$	1.4	3.60*10 ⁻⁴	
G4-eosin	213	15.3 7.	55*10 ⁻⁵	1.4	3.04*10 ⁻⁴	
	253	13.8 7.	94*10 ⁻⁵	1.3	$2.64*10^{-4}$	
	293	13.3 6.	24*10 ⁻⁵	1.2	2.33*10 ⁻⁴	