(±)-Camphor-10-sulfonic acid catalyzed direct one-pot three-component Mannich type reaction of alkyl (hetero)aryl ketones under solvent-free conditions: Application to the synthesis of aminochromans

Kshama Kundu and Sandip K. Nayak *

Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai – 400085, India

Tel: +91-22-25592410; Fax: +91-22-25505151; e-mail: <u>sknayak@barc.gov.in</u>

Supporting Information

List of Contents

(I) ¹H and ¹³C Spectra

4a	
4b	
4c	
4d	
4e	
4f	
4g	
4h	
4i	
4j	
4k	
41	
4m	
4n	
40	
4p	
4q	

5a	
5b	
ба	
6b	

(II) C	rystal Structure of	ба	.845-854
--------	---------------------	----	----------

(I) ¹H NMR and ¹³C NMR Spectra

¹H NMR of 4a

¹³C NMR of 4a

¹H NMR of 4b

¹³C NMR of 4b

¹H NMR of 4c

¹³C NMR of 4c

¹H NMR of 4d

¹H NMR of 4e

¹³C NMR of 4e

¹H NMR of 4f

¹H NMR of 4g

¹H NMR of 4h

¹³C NMR of 4h

¹H NMR of 4i

¹³C NMR of 4i

¹H NMR of 4j

¹³C NMR of 4j

¹H NMR of 4k

¹³C NMR of 4k

¹³C NMR of 4l

¹H NMR of 4m

¹H NMR of 4n

¹H NMR of 40

¹³C NMR of 40

¹H NMR of 4p

¹³C NMR of 4p

¹H NMR of 4q

¹³C NMR of 4q

¹H NMR of 5a

¹H NMR of 5b

¹³C NMR of 5b

¹H NMR of 6a

¹³C NMR of 6a

¹H NMR of 6b

¹³C NMR of 6b

(II) Crystal Structure of 6a

Crystal data and structure refinement for 6a.

Identification code	barc025
Empirical formula	C22 H21 N O2
Formula weight	331.40
Temperature	293(2) K
Wavelength	0.71073 A
Crystal system, space group	Orthorhombic, P c a b
Unit cell dimensions	a = 8.5808(7) A alpha = 90 deg. b = 46.211(4) A beta = 90 deg. c = 8.7745(8) A gamma = 90 deg.
Volume	3479.3(5) A^3
Z, Calculated density	8, 1.265 Mg/m^3
Absorption coefficient	0.081 mm^-1
F(000)	1408

Crystal size	0.32 x 0.28 x 0.23 mm
Theta range for data collection	3.35 to 25.00 deg.
Limiting indices	-10<=h<=10, -54<=k<=54, -8<=l<=10
Reflections collected / unique	24296 / 3063 [R(int) = 0.0859]
Completeness to theta = 25.00	99.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9817 and 0.9747
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3063 / 0 / 227
Goodness-of-fit on F^2	0.862
Final R indices [I>2sigma(I)]	R1 = 0.0497, wR2 = 0.0941
R indices (all data)	R1 = 0.1316, wR2 = 0.1117
Largest diff. peak and hole	0.251 and -0.235 e.A^-3

Table 2. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² $x \ 10^{3}$) for barc025.U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x y	/ Z	U(eq)	
			· I/	
O (1)	91(2)	1742(1)	6505(2)	65(1)
O(2)	413(2)	187(1)	12771(2)	80(1)
N(1)	-428(2)	867(1)	7609(2)	59(1)
C(1)	-65(3)	1531(1)	5416(3)	54(1)
C(2)	-406(3)	1630(1)	3961(4)	68(1)
C(3)	-595(3)	1440(1)	2787(4)	73(1)
C(4)	-439(3)	1147(1)	3048(3)	70(1)
C(5)	-106(3)	1049(1)	4497(3)	60(1)
C(6)	81(2)	1238(1)	5711(3)	49(1)
C(7)	421(3)	1134(1)	7308(3)	51(1)
C(8)	50(3)	1371(1)	8452(3)	55(1)
C(9)	704(3)	1658(1)	7952(3)	56(1)
C(10)	350(3)	1899(1)	9034(3)	53(1)
C(11)	1342(3)	1967(1)	10206(3)	67(1)
C(12)	988(4)	2176(1)	11271(4)	80(1)
C(13)	-374(4)	2323(1)	11152(4)	90(1)
C(14)	-1381(4)	2264(1)	9976(4)	98(1)
C(15)	-1024(3)	2053(1)	8924(4)	78(1)
C(16)	-234(3)	713(1)	8967(3)	47(1)
C(17)	-1436(3)	542(1)	9491(3)	54(1)
C(18)	-1273(3)	365(1)	10744(3)	56(1)
C(19)	129(3)	356(1)	11512(3)	55(1)
C(20)	1316(3)	532(1)	11030(3)	58(1)
C(21)	1149(3)	707(1)	9774(3)	55(1)
C(22)	-638(3)	-46(1)	13041(3)	72(1)
	(-)	- ()	- (-)	

Table 3. Bond lengths [A] and angles [deg] for barc025.

C(19)-C(20) C(20)-C(21) C(20)-H(20) C(21)-H(21) C(22)-H(22A) C(22)-H(22B) C(22)-H(22C)	$\begin{array}{c} 1.371(3) \\ 1.374(3) \\ 0.9300 \\ 0.9300 \\ 0.9600 \\ 0.9600 \\ 0.9600 \\ 0.9600 \end{array}$
C(1)-O(1)-C(9) C(19)-O(2)-C(22) C(16)-N(1)-C(7) C(16)-N(1)-H(1) C(7)-N(1)-H(1) O(1)-C(1)-C(6) O(1)-C(1)-C(2) C(6)-C(1)-C(2) C(3)-C(2)-H(2) C(3)-C(2)-H(2) C(1)-C(2)-H(2) C(2)-C(3)-C(4) C(2)-C(3)-H(3) C(4)-C(3)-H(3) C(5)-C(4)-H(3) C(5)-C(4)-H(4) C(5)-C(4)-H(4) C(3)-C(4)-H(4) C(3)-C(4)-H(4) C(4)-C(5)-C(6) C(4)-C(5)-H(5) C(6)-C(5)-H(5) C(1)-C(6)-C(7) N(1)-C(7)-C(8) C(6)-C(7)-C(8) C(6)-C(7)-C(8)	117.4(2) $116.8(2)$ $121.8(2)$ 119.1 119.1 $123.9(2)$ $115.1(3)$ $121.1(3)$ $120.3(3)$ 119.8 119.8 $119.7(3)$ 120.1 120.1 120.1 120.2 120.2 120.2 120.2 $121.7(3)$ 119.1 119.1 $117.4(2)$ $120.1(2)$ $122.4(2)$ $109.9(2)$ $112.7(2)$ $110.1(2)$
$\begin{array}{l} N(1)-C(7)-H(7) \\ C(6)-C(7)-H(7) \\ C(8)-C(7)-H(7) \\ C(9)-C(8)-C(7) \\ C(9)-C(8)-H(8A) \\ C(7)-C(8)-H(8A) \\ C(9)-C(8)-H(8B) \\ C(7)-C(8)-H(8B) \\ H(8A)-C(8)-H(8B) \\ H(8A)-C(8)-H(8B) \\ O(1)-C(9)-C(10) \\ O(1)-C(9)-C(8) \end{array}$	$108.0 \\108.0 \\108.0 \\111.4(2) \\109.3 \\109.3 \\109.3 \\109.3 \\109.3 \\108.0 \\106.7(2) \\111.1(2)$
C(10)-C(9)-C(8)	113.3(2)

O(1)-C(9)-H(9)	108.5
C(10)-C(9)-H(9)	108.5
C(8)-C(9)-H(9)	108.5
C(11)-C(10)-C(15)	117.6(3)
C(11)-C(10)-C(9)	121.4(2)
C(15)-C(10)-C(9)	120.9(2)
C(10)- $C(11)$ - $C(12)$	122.2(3)
C(10) - C(11) - H(11)	118.9
C(12)- $C(11)$ - $H(11)$	118.9
$C(12) \cdot C(11) \cdot \Pi(11)$ $C(13) \cdot C(12) \cdot C(11)$	119 3(3)
C(13) - C(12) - H(12)	120.4
C(13)-C(12)-H(12)	120.4
$C(11)$ - $C(12)$ - $\Pi(12)$ C(12) $C(13)$ $C(14)$	120.4 120.0(3)
C(12)- $C(13)$ - $C(14)C(12)$ $C(12)$ $U(12)$	120.0(3)
$C(12)$ - $C(13)$ - $\Pi(13)$ $C(14)$ $C(12)$ $\Pi(12)$	120.0
$C(14)$ - $C(15)$ - $\Pi(15)$ C(12) $C(14)$ $C(15)$	120.0 120.4(2)
C(13)-C(14)-C(15)	120.4(3)
C(13)-C(14)-H(14)	119.8
C(15)-C(14)-H(14)	119.8
C(14)-C(15)-C(10)	120.5(3)
C(14)-C(15)-H(15)	119.7
C(10)-C(15)-H(15)	119.7
C(17)-C(16)-C(21)	117.4(2)
C(17)-C(16)-N(1)	119.2(2)
C(21)-C(16)-N(1)	123.3(2)
C(18)-C(17)-C(16)	122.0(2)
C(18)-C(17)-H(17)	119.0
C(16)-C(17)-H(17)	119.0
C(17)-C(18)-C(19)	119.9(2)
C(17)-C(18)-H(18)	120.1
C(19)-C(18)-H(18)	120.1
C(20)-C(19)-O(2)	117.0(2)
C(20)-C(19)-C(18)	118.5(2)
O(2)-C(19)-C(18)	124.5(2)
C(19)-C(20)-C(21)	121.2(2)
C(19)-C(20)-H(20)	119.4
C(21)-C(20)-H(20)	119.4
C(20)-C(21)-C(16)	120.9(2)
C(20)-C(21)-H(21)	119.6
C(16)-C(21)-H(21)	119.6
O(2)-C(22)-H(22A)	109.5
O(2)-C(22)-H(22B)	109.5
H(22A)-C(22)-H(22B)	109.5
O(2)-C(22)-H(22C)	109.5
H(22A)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $(A^2 \times 10^3)$ for barc025.

The anisotropic displacement factor exponent takes the form:

-2 pi^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]

_								
		U11	U22	U33	U23	U13	U12	
	O(1)	89(1)	53(1)	54(1)	11(1)	1(1)	2(1)	
	O(2)	90(1)	76(2)	74(2)	23(1)	-14(1)	-18(1)	
	N(1)	68(1)	50(2)	59(2)	6(1)	-15(1)	-10(1)	
	C(1)	49(2)	59(2)	54(2)	6(2)	10(2)	0(1)	
	C(2)	72(2)	72(2)	58(2)	15(2)	9(2)	4(2)	
	C(3)	69(2)	98(3)	53(2)	10(2)	10(2)	2(2)	
	C(4)	64(2)	93(3)	54(2)	-10(2)	6(2)	2(2)	
	C(5)	53(2)	62(2)	66(2)	-2(2)	9(2)	4(1)	
	C(6)	43(2)	52(2)	51(2)	3(2)	6(1)	6(1)	
	C(7)	46(1)	45(2)	62(2)	4(2)	1(1)	1(1)	
	C(8)	58(2)	54(2)	54(2)	15(2)	3(1)	2(1)	
	C(9)	56(2)	51(2)	60(2)	8(2)	1(1)	1(1)	
	C(10)	55(2)	44(2)	59(2)	6(1)	2(2)	-5(1)	
	C(11)	72(2)	61(2)	69(2)	7(2)	-6(2)	-1(2)	
	C(12)	99(3)	73(2)	67(2)	5(2)	-13(2)	-20(2)	
	C(13)	113(3)	71(2)	85(3)	-15(2)	9(2)	-11(2)	
	C(14)	88(2)	97(3)	110(3)	-31(2)	-2(2)	25(2)	
	C(15)	65(2)	85(2)	84(2)	-17(2)	-3(2)	9(2)	
	C(16)	48(2)	38(2)	54(2)	2(1)	0(1)	2(1)	
	C(17)	50(2)	56(2)	55(2)	-3(2)	-8(1)	-2(1)	
	C(18)	56(2)	57(2)	56(2)	1(2)	7(2)	-9(1)	
	C(19)	65(2)	45(2)	54(2)	9(2)	-6(2)	-2(2)	
	C(20)	55(2)	48(2)	72(2)	4(2)	-16(2)	-2(1)	
	C(21)	47(2)	45(2)	74(2)	6(2)	-2(2)	-5(1)	
	C(22)	87(2)	54(2)	76(2)	15(2)	8(2)	-6(2)	

Table 5.	Hydrogen	coordinates (x 10^4) and	isotropic	displacement	parameters	(A^2 x
10^3) for	barc025.							

	Х	y z	U(ec	l)
H(1)	-1066	803	6934	71
H(2)	-505	1828	3786	81
H(3)	-829	1507	1815	88
H(4)	-558	1016	2251	84
H(5)	-3	851	4664	72
H(7)	1537	1092	7376	61
H(8A)	-1071	1387	8565	66
H(8B)	484	1320	9436	66
H(9)	1838	1640	7862	67
H(11)	2285	1869	10284	80
H(12)	1676	2216	12062	95
H(13)	-627	2465	11866	107
H(14)	-2309	2367	9891	118
H(15)	-1714	2014	8132	94
H(17)	-2386	546	8983	64
H(18)	-2106	253	11073	67
H(20)	2253	533	11564	70
H(21)	1976	822	9462	66
H(22A)	-1621	30	13379	109
H(22B)	-216	-171	13810	109
H(22C)	-786	-153	12116	109

C(9)-O(1)-C(1)-C(6)	11.4(3)
C(9)-O(1)-C(1)-C(2)	-169.3(2)
O(1)-C(1)-C(2)-C(3)	-179.7(2)
C(6)-C(1)-C(2)-C(3)	-0.3(4)
C(1)-C(2)-C(3)-C(4)	-0.3(4)
C(2)-C(3)-C(4)-C(5)	0.5(4)
C(3)-C(4)-C(5)-C(6)	-0.1(4)
O(1)-C(1)-C(6)-C(5)	-180.0(2)
C(2)-C(1)-C(6)-C(5)	0.8(4)
O(1)-C(1)-C(6)-C(7)	0.5(3)
C(2)-C(1)-C(6)-C(7)	-178.8(2)
C(4)-C(5)-C(6)-C(1)	-0.6(4)
C(4)-C(5)-C(6)-C(7)	179.0(2)
C(16)-N(1)-C(7)-C(6)	175.2(2)
C(16)-N(1)-C(7)-C(8)	-61.6(3)
C(1)-C(6)-C(7)-N(1)	142.6(2)
C(5)-C(6)-C(7)-N(1)	-37.0(3)
C(1)-C(6)-C(7)-C(8)	17.8(3)
C(5)-C(6)-C(7)-C(8)	-161.7(2)
N(1)-C(7)-C(8)-C(9)	-169.5(2)
C(6)-C(7)-C(8)-C(9)	-46.3(3)
C(1)-O(1)-C(9)-C(10)	-164.66(19)
C(1)-O(1)-C(9)-C(8)	-40.7(3)
C(7)-C(8)-C(9)-O(1)	59.1(3)
C(7)-C(8)-C(9)-C(10)	179.3(2)
O(1)-C(9)-C(10)-C(11)	-146.6(2)
C(8)-C(9)-C(10)-C(11)	90.8(3)
O(1)-C(9)-C(10)-C(15)	35.9(3)
C(8)-C(9)-C(10)-C(15)	-86.7(3)
C(15)-C(10)-C(11)-C(12)	1.6(4)
C(9)-C(10)-C(11)-C(12)	-175.9(2)
C(10)-C(11)-C(12)-C(13)	-1.0(4)
C(11)-C(12)-C(13)-C(14)	-0.2(5)
C(12)-C(13)-C(14)-C(15)	0.7(5)
C(13)-C(14)-C(15)-C(10)	0.0(5)
C(11)-C(10)-C(15)-C(14)	-1.1(4)
C(9)-C(10)-C(15)-C(14)	176.4(3)
C(7)-N(1)-C(16)-C(17)	153.3(2)
C(7)-N(1)-C(16)-C(21)	-31.1(3)
C(21)-C(16)-C(17)-C(18)	-1.6(4)
N(1)-C(16)-C(17)-C(18)	174.3(2)
C(16)-C(17)-C(18)-C(19)	-0.1(4)

Table 6. Torsion angles [deg] for barc025.

C(22)-O(2)-C(19)-C(20)	-164.5(2)
C(22)-O(2)-C(19)-C(18)	17.7(4)
C(17)-C(18)-C(19)-C(20)	2.3(4)
C(17)-C(18)-C(19)-O(2)	-179.9(2)
O(2)-C(19)-C(20)-C(21)	179.4(2)
C(18)-C(19)-C(20)-C(21)	-2.6(4)
C(19)-C(20)-C(21)-C(16)	0.9(4)
C(17)-C(16)-C(21)-C(20)	1.3(4)
N(1)-C(16)-C(21)-C(20)	-174.4(2)

Symmetry transformations used to generate equivalent atoms: