Supporting Information

The calculation about the loading of the Ag NPs

 $\frac{\Delta m}{m_0} = \frac{m - m_0}{m_0} = \frac{0.08\% - 0.03\%}{0.03\%} = 1.66$

Where, m_0 is the loading of the Ag NPs onto the Ag NPs/PVDF composite, i.e. the atomic concentration of Ag in the Ag NPs/PVDF composite by XPS; m is the loading of the Ag NPs onto the Ag NPs/MWCNTs/PVDF composite, i.e. the atomic concentration of Ag in the Ag NPs/MWCNTs/PVDF composite by XPS.

Table S1. D- and G-bands shifts and Raman I_D/I_G intensity ratios of purifiedMWCNTs, MWCNTs/PVDF and Ag NPs/MWCNTs/PVDF composites.

Sample	D-band [cm ⁻¹]	G-band [cm ⁻¹]	I _D /I _G
purified MWNTs	1352	1585	0.88
MWNTs/PVDF	1353	1586	1.03
AgNPs/MWNTs/PVDF	1353	1586	1.31

Sample	∆Hm [J/g] ^{a)}	⊡Hc [J/g] ^{b)}	Tm [℃] ^{c)}	Tc [°C] ^{d)}	Xc [%] ^{e)}
PVDF	50.96	37.35	162	139	48.72
MWCNTs/PVDF	25.71	21.00	162	139	24.58
Ag NPs/PVDF	45.64	34.81	162	139	43.63
Ag NPs/MWCNTs /PVDF	25.53	21.80	162	140	24.41

Table S2. DSC parameters of the PVDF, Ag NPs/PVDF, MWCNTs/PVDF and Ag NPs/MWCNTs/PVDF composites

^{a)}the melting enthalpy of the first heating trace; ^{b)}the crystallization enthalpy of the cooling trace; ^{c)}the melting peak temperature; ^{d)}the crystallization temperature; ^{e)}the degree of mass crystallinity

To derive the information of sample crystallinity from the DSC results, the degree of mass crystallinity (X_c) was calculated from the melting enthalpy of the second heating trace ($\triangle H_m$) with the following Equation 1:

$$\boldsymbol{X}_{\rm C}(\%) = \frac{\Delta \mathbf{H}_m}{\Delta \boldsymbol{H}_0} \tag{1}$$

where $\triangle H_0=104.6 \text{ J/g}$ was the heat of fusion for 100% crystalline PVDF.

Samples	Ti [℃] ^{a)}	T _{max} [°C] ^{b)}	Weight loss rate at T _{max} (%)
PVDF	405.98	486.49	53.26%
MWCNTs/PVDF	346.15	484.97	36.89%
Ag NPs/ PVDF	368.27	478.87	39.78%
AgNPs/MWCNTs/PVDF	359.80	479.63	36.51%

Table S3. The T_i , T_{max} and Weight loss rate at T_{max} observed from Figure S1

^{a)}the initial degradation temperature; ^{b)}the temperature at the highest degradation rate

Fig. S1 FTIR spectra(A) and DSC heating (B) and cooling (C) curves of the PVDF(a), MWCNTs/PVDF(b), Ag NPs/PVDF(c) and Ag NPs/MWCNTs/PVDF(d) composites.

Fig. S2 TG and derivative TG (inset) curves of the PVDF(a), Ag NPs/ PVDF(b), MWCNTs/PVDF(c) and Ag NPs/ MWCNTs/PVDF(d) composites.