1

Supporting Information

Chemiluminescence from the Biomimetic Reaction of 1,2,4-Trioxolanes and 1,2,4,5-Tetroxanes with Ferrous Ions

Dmitri V. Kazakov^a*, Azat R. Timerbaev^a, Farit E. Safarov^a, Timur A. Nazirov^a, Oxana B. Kazakova^a, Gumer Yu. Ishmuratov, Alexandr O. Terent'ev^b, Dmitri A. Borisov^b, Alexandr G. Tolstikov^c, Genrikh A. Tolstikov^a, Waldemar Adam^d

^aInstitute of Organic Chemistry, Ufa Scientific Centre of the RAS, 71 Prospect Oktyabrya, 450054 Ufa, Russia ^bZelinsky Institute of Organic Chemistry of the RAS, 47 Leninskiy prospekt, 119991 Moscow, Russia ^cInstitute of Petrochemistry and Catalysis of the RAS, 141 Prospect Oktyabrya, 450075 Ufa, Russia ^dInstitut für Organische Chemie der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany, Department of Chemistry, Facundo Bueso 110, University of Puerto Rico, Rio Piedras, Puerto Rico 00931, USA

Content: The Supporting Information (SI) material consists of the chemiluminescence procedure for the reaction of the cyclic peroxides with ferrous ions, the fluorescence and chemiluminescence spectra (taken by means of cut-off filters) recorded in the peroxide reactions (see Figures S-1, S-2, S-4, and S-5), and the kinetics of the chemiluminescence decay (see Figure S-3).

Measurement of the Chemiluminescence in the Reaction of Cyclic Peroxides **1-3**, OZ03 and Artemisinin with Ferrous Ion in CH₃CN/H₂O Solution.

In a typical procedure, an aliquot of the cyclic peroxide in a CH₃CN:H₂O (1:1) mixture was transferred to a cuvette, which was placed above the photocathode of the photomultiplier. Subsequently, an aliquot of FeSO₄/rhodamine G in CH₃CN:H₂O (1:1) mixture was rapidly (ca. 1 s) injected into the peroxide solution and immediately the CL was recorded. Similarly, in another set of experiments, a solution of FeCl₃/rhodamine G in aqueous (50%) acetonitrile was added rapidly to a mixture of *L*-cysteine hydrochloride and the cyclic peroxide in CH₃CN:H₂O (1:1) solution, and immediately the CL was recorded. All reactions were carried out at 70 °C (for peroxides **1-3** and OZO3) or 60 °C (for artemesinin) by bubbling a slow stream of oxygen gas through the CH₃CN/H₂O solution. Solutions in the cuvette and in the injector were thermostated at the required temperature for ca. 5 min prior to initiating the reaction.

The following concentrations of the reagents in the cuvette were chosen:

[peroxides 1 or 2] = [FeCl₃] = [Rhodamine G] = 1.5×10^{-3} M, [L-cysteine]= 3×10^{-3} M;

 $[\text{peroxide } 3] = 2 \times 10^{-3} \text{ M}, [\text{FeCl}_3] = 3 \times 10^{-3} \text{ M}, [L-\text{cysteine}] = 5 \times 10^{-3} \text{ M}, [\text{rhodamine } G] = 3 \times 10^{-3} \text{ M};$

 $[artemisinin] = 2 \times 10^{-2} \text{ M}, [FeSO_4] = 4 \times 10^{-3} \text{ M}, [rhodamine G] = 1 \times 10^{-3} \text{ M or}$

 $[\operatorname{artemisinin}] = 2 \times 10^{-2} \text{ M}, [\operatorname{FeCl}_3] = 1 \times 10^{-2} \text{ M}, [L-cysteine] = 2 \times 10^{-2} \text{ M}, [rhodamine G] = 1 \times 10^{-2} \text{ M};$

 $[OZ03] = 2 \times 10^{-3} \text{ M}, [FeSO_4] = 1 \times 10^{-3} \text{ M}, [rhodamine G] = 5 \times 10^{-4} \text{ M or}$

 $[OZ03] = [FeCl_3] = 1.5 \times 10^{-3} \text{ M}, [L-cysteine] = 3 \times 10^{-3} \text{ M}, [rhodamine G] = 1.5 \times 10^{-3} \text{ M}.$

Figure S-1. Curve 1 (dashed line) represents the CL spectrum for the reaction of peroxide **1** with FeCl₃ in the prescence of L-cysteine and rhodamine G ([peroxide **1**] = [FeCl₃] = [Rhodamine G] = 1.5×10^{-3} M, [*L*-cysteine]= 3×10^{-3} M, CH₃CN/H₂O (1:1), 70 °C, O₂ atmosphere). Curve 2 (solid line) represents the fluorescence spectrum of rhodamine G ([Rhodamine G] = 1×10^{-5} M, CH₃CN/H₂O (1:1), λ_{ex} = 488 nm.)

Figure S-2. Curve 1 (dashed line) represents the CL spectrum for the reaction of the trifluoroacetone tetroxane **4** with FeSO₄ ([peroxide **4**] = [FeSO₄] = 2×10^{-3} M, CH₃CN:H₂O (1:1), 30 °C). Curve 2 (solid line) represents the fluorescence spectrum of 1,1,1-trifluoroacetone in aqueous (50%) acetonitrile (1.5×10^{-2} M, 5 °C)

Figure S-3. Time profile of the CL decay for the reaction of the trifluoroacetone tetroxane **4** with FeSO₄ and its semi-logarithmic plot for the first-order kinetics ([peroxide **4**] = 2×10^{-4} M, [FeSO₄] = 4×10^{-3} M, CH₃CN : H₂O (1:1), 30 °C).

Figure S-4. CL spectrum for the reaction of the bicyclic tetroxane **5** with FeSO₄ ([tetroxane **5**] = $[FeSO_4] = 2 \times 10^{-3}$ M, CH₃CN : H₂O (1:1), 60 °C) taken under oxygen (curve 1, solid line) and argon (curve 2, dashed line) atmospheres.

Figure S-5. Curve 1 (dashed line) represents the CL spectrum for the reaction of the bicyclic tetroxane **5** with FeSO₄ in the presence of rhodamine G ([tetroxane **5**] = 5×10^{-3} M, [FeSO₄] = 1×10^{-3} M, [Rd] = 2×10^{-3} M, CH₃CN/H₂O (1:1), 60 °C). Curve 2 (solid line) represents the fluorescence spectrum of rhodamine G ([Rhodamine G] = 1×10^{-5} M, CH₃CN/H₂O (1:1), λ_{ex} = 488 nm.)