Platinum-Catalyzed 1,3-Acyloxy Migration / [1,5]-Hydride Transfer/ Cycloaddition Sequence: Synthesis of Ring-Fused Tetrahydroquinolines

Xiao-Feng Xia, ${ }^{\dagger}$ Xian-Rong Song, ${ }^{\dagger}$ Ning Wang, ${ }^{\dagger}$ Hai-Long Wei, ${ }^{\dagger \dagger}$ Xue-Yuan Liu, ${ }^{\dagger}$ Yong-Min Liang ${ }^{*, t, *}$

${ }^{\dagger}$ State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000.

${ }^{\text {}}$ State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou 730000, P. R. China
${ }^{\dagger}$ State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.

E-mail: liangym@lzu.edu.cn
Table of Contents

1. General Remarks S2
2. Typical procedure for the preparation of propargylic esters S2-S3 derivatives
3. General procedure for the preparation of product 2a-2o S3
4. Characterization data of $\mathbf{1 a}-1 t$ and $\mathbf{D}-1 a$ S4-S11
5. Characterization data of 2a-2o and D-2a S11-S16
6. ${ }^{1} H$ NMR and ${ }^{13} C$ NMR spectra for compounds $1 a-1 t$ and $D-1 a$ S17-S58
7. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for compounds $2 \mathrm{a}-20$ and D-2a S59-S94
8 2D-NMR of product 2a S96-S99

General Remarks:

Column chromatography was carried out on silica gel. Unless noted ${ }^{1} H$ NMR spectra were recorded on 400 MHz or 300 MHz in $\mathrm{CDCl}_{3},{ }^{13} \mathrm{C}$ NMR spectra were recorded on 100 MHz or 75 MHz in CDCl_{3} using TMS as internal standard. IR spectra were recorded on an FT-IR spectrometer and only major peaks are reported in cm^{-1}. Melting points were determined on a microscopic apparatus and were uncorrected. All products were further characterized by HRMS (high resolution mass spectra); copies of their ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra are provided. Commercially available reagents and solvents were used without further purification.

Typical procedure for the preparation of propargylic esters derivatives

(i) To a stirred solution of potassium carbonate $(3.0 \mathrm{~g}, 22.0 \mathrm{mmol})$ in 20 mL DMF was added 2-fluorobenzaldehyde ($2.5 \mathrm{~g}, 20 \mathrm{mmol}$) and piperidine ($1.9 \mathrm{~g}, 22.0 \mathrm{mmol}$). After heating the reaction mixture at reflux for 8 h , it was cooled and diluted with diethyl ether and water. The organic layer was extracted with diethyl ether $(2 \times 20$ $\mathrm{mL})$. The combined organic phases were washed with brine and dried over sodium sulfate. The solvent was removed by rotary evaporation and purified by column chromatography on silica gel.
(ii) To a stirring solution of 2-(piperidin-1-yl)benzaldehyde (1 equiv) in THF (1.0 M) was added phenylethynylmagnesium bromide (1.0 M in THF, 2 equiv) at room temperature. After heating the reaction mixture at $50^{\circ} \mathrm{C}$ for 6 h , the reaction mixture was quenched by addition of saturated aqueous ammonium chloride (40 mL) and
extracted with ethyl ether $(2 \times 40 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude material was purified by flash column chromatography to obtain the pure product.
(iii) To a stirred solution of 2, DMAP (5 \%), and pyridine (10 equiv.) in 20 mL DCM was slowly added acyl chloride at $0{ }^{\circ} \mathrm{C}$, or to a stirred solution of 2, triethylamine (3 eq), DMAP (10%) was slowly added acetic anhydride (1.3 eq) at 0 ${ }^{\circ} \mathrm{C}$, when the reaction was finished, 5 ml water was added. The organic layer was extracted with DCM $(2 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine and dried over sodium sulfate. The solvent was removed by rotary evaporation and purified by column chromatography on silica gel.

General procedure for the preparation of product 2a-2o

To a test tube, propargylic esters derivatives (0.20 mmol), PtCl_{2} ($15 \mathrm{~mol} \%$), $\mathrm{LiCl}(2 \mathrm{eq})$ and CaO (4 eq) were added. The test tube was purged under vacuum and then refilled with argon 3 times. Toluene (2.0 mL) was then injected, and the mixture was allowed to stir at $110^{\circ} \mathrm{C}$. When the reaction was considered complete as determined by TLC analysis, ethyl acetate $(20 \mathrm{~mL})$ and water $(20 \mathrm{~mL})$ were then added to the reaction mixture. The organic layer was extracted with ethyl acetate (2 $\times 20 \mathrm{~mL}$). The combined organic phases were washed with brine and dried over sodium sulfate. The residue was purified by flash chromatography on alkalescence silica gel to afford corresponding products. The separated product was then treated with $\mathrm{K}_{2} \mathrm{CO}_{3}(3 \mathrm{eq})$ and methanol (2 ml). When the reaction was considered complete as determined by TLC analysis, ethyl acetate $(10 \mathrm{~mL})$ and water $(5 \mathrm{~mL})$ were then added to the reaction mixture. The organic layer was extracted with ethyl acetate (2 $\times 10 \mathrm{~mL})$. The combined organic phases were washed with brine and dried over sodium sulfate. The residue was purified by flash chromatography on alkalescence silica gel to afford corresponding products.

Characterization data of 1a-1t and D-1a

1a was obtained according to the above method. mp:62-63 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta 7.78-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.31(\mathrm{~m}, 3$ H), 7.17-7.20(m, 3 H$), 2.78-2.89(\mathrm{~m}, 4 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.66-1.80(\mathrm{~m}, 4 \mathrm{H})$, 1.55-1.60 (m 2 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 169.7, 152.6, 133.1, 131.9, 129.8, $129.1,128.5,128.2,124.3,122.5,121.2,86.9,85.9,61.8,54.8,26.5,24.2,21.1$; IR (neat, $\left.\mathrm{cm}^{-1}\right)$ 2936, 2852, 2800, 1742, 1598, 1489, 1447, 1372, 1226, 1016, 951, 915, 759, 691, 535; HRMS (ESI) m/z: calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{2}: \mathrm{M}+\mathrm{H}=334.1802$; found: 334.1798.

1b was obtained according to the above method. mp: 129-130 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 8.07-8.09(\mathrm{~m}, 2 \mathrm{H}), 7.89-7.92(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.43(\mathrm{~m}, 6$ H), 7.19-7.29 (m, 5 H), 2.79-2.92 (m, 4 H), 1.63-1.74 (m, 4 H), 1.53-1.58 (m, $2 H$); ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 165.3,152.8,133.3,132.9,131.9,130.2,129.8,129.7$, $129.1,128.5,128.3,128.2,128.1,124.4,122.5,121.3,87.0,86.1,62.5,54.9,26.6$, 26.5, 24.2; IR (neat, cm^{-1}) 2935, 2852, 2801, 1722, 1599, 1489, 1448, 1378, 1319, 1267, 1098, 1028, 918, 759, 712, 597; HRMS (ESI) m/z: calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{NO}_{2}: \mathrm{M}+\mathrm{H}$ $=396.1958$; found: 396.1966.

1c was obtained according to the above method as an oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
δ 7.69-7.72 (m, 1 H$), 7.35-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.20(\mathrm{~m}, 3 \mathrm{H})$, 7.08-7.13 (m, 3 H), 2.70-2.81 (m, 4 H$), 2.21-2.38(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.71(\mathrm{~m}, 4 \mathrm{H})$, $1.46-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.06-1.09(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.0,152.6$, 133.3, 131.8, 129.7, 128.9, 128.4, 128.1, 124.3, 122.5, 121.1, 87.1, 85.8, 61.6, 54.8, 29.7, 27.7, 26.5, 24.2, 9.0; IR (neat, cm^{-1}) 2926, 2852, 1742, 1489, 1450, 1223, 1165, 1071, 1028, 919, 758, 691; HRMS (ESI) m/z: calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{2}: \mathrm{M}+\mathrm{H}=$ 348.1958; found: 348.1952.

1d was obtained according to the above method. mp: 79-80 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta 7.69-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.05-7.09(\mathrm{~m}, 3 \mathrm{H}), 6.95-6.98(\mathrm{~m}, 2$ H), 2.68-2.81 (m, 4 H), 2.21 (s, 3 H), 1.98 ($\mathrm{s}, 3 \mathrm{H}$), 1.55-1.68 (m, 4 H), 1.43-1.46 (m, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 169.5,152.5,138.5,133.2,131.7,129.6,128.9$, $128.8,124.3,121.1,119.4,86.2,86.0,67.8,61.8,54.7,26.4,24.1,21.3,20.9$; IR (neat, $\left.\mathrm{cm}^{-1}\right) 2933,2853,2801,1741,1600,1488,1448,1372,1226,1015,951,912,818$, 760, 554; HRMS (ESI) m/z: calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{2}: \mathrm{M}+\mathrm{H}=348.1958$; found: 348.1948.

1e was obtained according to the above method as an oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.78-7.80 (m, 1 H), 7.31-7.35 (m, 1 H), 7.22-7.27 (m, $2 H$), 7.14-7.18 (m, 4 H), 7.08-7.10 (m, 1 H), 2.78-2.88 (m, 4 H), 2.29 (s, 3 H), 2.09 ($\mathrm{s}, 3 \mathrm{H}), 1.68-1.76$ (m, 4 H), 1.55-1.56 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.6,152.6,137.8,133.1,132.4$, 129.7, 129.3, 129.0, 128.9, 128.0, 124.3, 122.2, 121.1, 86.5, 86.1, 61.8, 54.8, 26.5,
24.2, 21.1; IR (neat, cm^{-1}) 2934, 2255, 1735, 1601, 1448, 1374, 1244, 1046, 912, 734, 648, 608; HRMS (ESI) m / z : calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{2}: \mathrm{M}+\mathrm{H}=348.1958$; found: 348.1949 .

If was obtained according to the above method. mp: 72-73 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta 7.78-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.03-7.05(\mathrm{~m}, 1$ H), 2.78-2.89 (m, 4 H), 2.23 (s, 3 H), 2.21 ($\mathrm{s}, 3 \mathrm{H}$), 2.09 (s, 3 H), 1.67-1.76 (m, 4 H), 1.55-1.58 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.7,152.6,137.4,136.5,133.3$, $132.9,129.7,129.5,129.3,129.1,124.3,121.1,119.7,86.2,85.9,61.9,54.8,26.5$, 24.2, 21.1, 19.7, 19.5; IR (neat, cm^{-1}) 2927, 2228, 1740, 1600, 1493, 1448, 1373, 1228, 1025, 952, 821, 758, 538; HRMS (ESI) m/z: calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{2}: \mathrm{M}+\mathrm{H}=$ 362.2115; found: 362.2109 .

Ig was obtained according to the above method. mp: 65-66 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta 7.75-7.77(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.20(\mathrm{~m}, 3$ H), 2.78-2.90 (m, 4 H$), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.65-1.78(\mathrm{~m}, 4 \mathrm{H}), 1.54-1.57(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.7,152.6,134.5,133.1,132.9,129.9,128.9,128.5$, $124.4,121.3,120.9,87.9,84.7,61.7,54.8,26.5,24.2,21.1$; IR (neat, cm^{-1}) 2933, $2852,1742,1597,1489,1448,1372,1226,1092,1016,951,915,829,763,545 ;$ HRMS (ESI) m/z: calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NClO}_{2}: \mathrm{M}+\mathrm{H}=368.1412$; found: 368.1409 .

1h was obtained according to the above method. mp: $85-86^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta 7.75-7.77(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.20(\mathrm{~m}, 3$ H), 2.78-2.87 (m, 4 H), $2.10(\mathrm{~s}, 3 \mathrm{H}), 1.66-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.55-1.56(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): δ 169.7, 152.6, 133.2, 132.8, 131.4, 129.8, 128.9, 124.4, $122.8,121.4,121.3,88.1,84.8,77.2,61.7,54.8,26.5,24.1,21.1$; IR (neat, cm^{-1}) 2934, 2852, 2801, 1742, 1596, 1487, 1448, 1371, 1325, 1225, 1068, 1014, 951, 914, 825, 760, 544; HRMS (ESI) m/z: calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NBrO}_{2}: \mathrm{M}+\mathrm{H}=412.0907$; found: 412.0916.

1i was obtained according to the above method as an oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.07-8.09(\mathrm{~m}, 2 \mathrm{H}), 7.86-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.37-7,44(\mathrm{~m}, 6 \mathrm{H})$, 7.29-7.35 (m, 2 H$), 7.19-7.31(\mathrm{~m}, 2 \mathrm{H}), 2.79-2.89(\mathrm{~m}, 4 \mathrm{H}), 1.67-1.69(\mathrm{~m}, 4 \mathrm{H})$, 1.53-1.54 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.3,152.8,133.3,133.0,132.9$, $131.5,131.4,130.1,129.9,129.8,129.1,128.3,124.4,122.8,121.5,121.3,88.2,85.0$, 62.4, 54.9, 26.5, 24.2; IR (neat, cm^{-1}) 2926, 2853, 1724, 1596, 1487, 1452, 1380, 1319, 1265, 1096, 1068, 1018, 924, 823, 759, 711, 601,547; HRMS (ESI) m/z: calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{NBrO}_{2}$: $\mathrm{M}+\mathrm{H}=474.1063$; found: 474.1068 .

$\mathbf{1 j}$ was obtained according to the above method as an oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.87-7.89 (m, 2 H$), 7.76-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.37(\mathrm{~m}, 1 \mathrm{H})$, 7.17-7.21 (m, 3 H), 2.79-2.91 (m, 4 H$), 2.57$ (s, 3 H), 2.11 ($\mathrm{s}, 3 \mathrm{H}), 1.67-1.78$ (m, 4 H), 1.54-1.57 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 197.0,169.5,152.6,136.4,132.6$,
$131.8,129.9,128.9,128.0,127.2,124.4,121.3,90.3,84.9,61.6,54.7,26.4,24.1,20.9$; IR (neat, cm^{-1}) 2935, 2801, 1742, 1685, 1600, 1488, 1444, 1366, 1261, 1224, 1016, 954, 837, 758, 669, 602; HRMS (ESI) m/z: calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{3}: \mathrm{M}+\mathrm{H}=376.1907$; found: 376.1896.

$\mathbf{1 k}$ was obtained according to the above method. mp: 69-70 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H})$, 7.03-7.05 (m, 1 H), 2.84-2.89 (m, 2 H), 2.74-2.79 (m, 2 H), 2.11 (s, 3 H), 1.65-1.78 (m, 4 H), 1.53-1.56 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.8,169.4,151.9$, $151.4,135.4,133.1,132.6,131.8,131.7,131.5,128.6,128.2,123.0,122.1,121.7$, $117.3,116.2,86.3,86.2,61.7,61.1,54.7,54.3,26.4,24.1,21.0,20.9$; IR (neat, cm^{-1}) 2935, 2852, 2803, 1744, 1484, 1447, 1372, 1327, 1227, 1108, 1021, 958, 914, 867, 820, 756, 691, 657, 533; HRMS (ESI) m/z: calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NBrO}_{2}$: $\mathrm{M}+\mathrm{H}=$ 412.0907; found: 412.0897.

11 was obtained according to the above method as an oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.08-8.09(\mathrm{~m}, 2 \mathrm{H}), 7.99-8.07(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.46(\mathrm{~m}, 6 \mathrm{H})$, 7.23-7.30 (m, 3 H), 7.05-7.07 (m, 1 H), 2.76-2.90 (m, 4 H), 1.68-1.71 (m, 4 H), 1.49-1.55 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.1,151.7,135.5,133.1,132.7$, 132.0, 131.9, 129.9, 129.8, 129.6, 128.6, 128.4, 128.3, 128.2, 123.1, 122.2, 117.3, 86.6, 86.2, 61.8, 54.7, 54.3, 26.4, 26.3, 24.0; IR (neat, cm^{-1}) 2936, 2852, 2804, 1723, $1596,1484,1317,1264,1175,1097,1028,911,821,755,733,711,651,604,535$;

HRMS (ESI) m/z: calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{NBrO}_{2}: \mathrm{M}+\mathrm{H}=474.1063$; found: 474.1073.

1m was obtained according to the above method. mp: 87-88 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.83-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.03-7.08(\mathrm{~m}, 2$ H), 2.74-2.88 (m, 4 H), $2.12(\mathrm{~s}, 3 \mathrm{H}), 1.64-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.56(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 169.4,151.4,135.0,133.2,132.7,131.7,131.5,123.1$, $123.0,121.1,117.3,87.4,85.1,61.0,54.6,26.3,24.0,20.9$; IR (neat, cm^{-1}) 2935 , $2853,2804,1745,1483,1372,1328,1225,1069,1015,958,913,869,823,733,656$, 606, 538; HRMS (ESI) m/z: calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NBr}_{2} \mathrm{O}_{2}: \mathrm{M}+\mathrm{H}=490.0012$; found: 490.0020.

1n was obtained according to the above method as an oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.87(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=6.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.35(\mathrm{~m}, 2$ H), 7.08-7.10 (m, 3 H), $7.02(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.74-2.79(\mathrm{~m}, 2$ H), $2.32(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.67-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.52-1.55(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 169.4,151.4,138.8,135.5,132.5,131.8,131.7,128.9,122.9,119.0$, $117.3,86.5,85.5,61.2,54.6,26.4,24.0,21.4,21.0$; IR (neat, cm^{-1}) 2927, 2853, 1745, $1508,1480,1449,1373,1327,1229,1176,1109,1017,957,913,870,817,733,656$, 549; HRMS (ESI) m/z: calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NBrO}_{2}: \mathrm{M}+\mathrm{H}=426.1063$; found: 426.1070.

10 was obtained according to the above method as an oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.09 (s, 1 H), 7.00-7.04 (m, 2 H), 2.84-2.85 (m, 2 H), 2.75-2.77 (m, 2 H), 2.22 (s, 3 H), $2.19(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.67-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.55(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 169.4,151.3,137.5,136.4,135.4,132.8,132.5,131.8,129.4,129.2$, $122.9,119.2,117.2,86.6,85.2,61.1,54.6,26.3,23.9,20.9,19.6,19.4 ;$ IR (neat, cm^{-1}) 2934, 2854, 2803, 1744, 1682, 1484, 1451, 1372, 1225, 1111, 1023, 958, 912, 821, 734, 656, 538; MS: m/z 439 (2.02), 441 (2.04).

1p was obtained according to the above method. mp: 56-57 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): δ 7.77-7.78 (m, 1 H), 7.43-7.45 (m, 2 H), 7.24-7.36 (m, 4 H), 7.16-7.19 (m, 3 H), 2.95-3.12 (m, 2 H$), 2.65-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.67-1.70(\mathrm{~m}, 2 \mathrm{H})$, $1.36-1.55(\mathrm{~m}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.7$, $152.3,133.1,131.8,129.7,129.0,128.5,128.1,124.3,122.5,121.1,86.9,85.9,61.8$, 54.5, 53.9, 34.9, 34.8, 30.7, 21.9, 21.1; IR (neat, cm^{-1}) 2949, 2921, 2804, 1742, 1598, 1490, 1449, 1373, 1225, 1015, 950, 913, 759, 691, 659, 537; HRMS (ESI) m/z: calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{2}$: $\mathrm{M}+\mathrm{H}=348.1958$; found: 348.1950 .

1q was obtained according to the above method. mp: 66-67 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.78-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 7.12-7.16(\mathrm{~m}, 2 \mathrm{H})$, 7.02-7.04 (m, 2 H), 3.06-3.09 (m, 1 H), 2.94-2.97 (m, 1 H), 2.61-2.69 (m, 2 H), 2.26 (s, 3 H), 2.04 ($\mathrm{s}, 3 \mathrm{H}$), 1.65-1.67 (m, 2 H), 1.38-1.53 (m, 3 H), 0.97 (d, J = $5.2 \mathrm{~Hz}, 3$
H) ; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 169.3,152.1,138.4,133.1,131.6,129.5,128.9$, $128.8,124.2,120.9,119.3,86.2,85.9,61.7,54.3,53.7,34.8,34.7,21.8,21.2,20.8$; IR (neat, cm^{-1}) 2923, 2253, 1736, 1452, 1374, 1232, 1015, 952, 909, 818, 733, 650, 554; HRMS (ESI) m/z: calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{2}: \mathrm{M}+\mathrm{H}=362.2115$; found: 362.2122.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.85(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=5.6,2.0 \mathrm{~Hz}, 1$ H), 7.31-7.35 (m, 2 H), 7.12-7.24 (m, 5 H), 2.78-2.89 (m, 4 H), 2.08 (s, 3 H), 1.66-1.78 (m, 4 H), 1.53-1.56 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.5,152.6$, 136.2, 133.4, 132.6, 129.8, 129.4, 129.2, 129.1, 126.2, 124.3, 122.4, 121.0, 92.1, 82.6, 61.7, 54.7, 26.4, 24.1, 20.9; IR (neat, cm^{-1}) 2935, 2804, 1741, 1599, 1490, 1474, 1368, 1230, 1064, 1033, 1013, 951, 922, 757, 535.

1r was obtained according to the above method as an oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.73-7.75 (m, 1 H$), 7.31-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.23(\mathrm{~m}, 5 \mathrm{H}), 6.92-6.94(\mathrm{~m}, 1 \mathrm{H})$, 2.77-2.89 (m, 4 H), $2.09(\mathrm{~s}, 3 \mathrm{H}), 1.65-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.56(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 169.6,152.6,132.8,132.6,129.8,128.9,127.4,126.8,124.4$, $122.3,121.2,90.8,79.1,61.9,54.8,26.5,24.2,22.6,21.0,14.1$; IR (neat, cm^{-1}) 2928, 2853, 1736, 1218, 908, 760, 669, 539; HRMS (ESI) m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NSO}_{2}$: $\mathrm{M}+\mathrm{H}=340.1366$; found: 340.1377 .

1s ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.76-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.43(\mathrm{~m}, 14 \mathrm{H}), 4.07(\mathrm{~s}, 2$ H), $2.62(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.6,151.6,138.3$, $133.5,131.8,129.6,128.7,128.6,128.5,128.3,128.1,127.1,124.8,122.3,121.9$, 86.9, 85.9, 61.9, 61.7, 42.6, 21.1; IR (neat, cm^{-1}) 3061, 2948, 2845, 2796, 1741, 1446, 1373, 1224, 1015, 950, 759, 694, 564. HRMS (ESI) m/z: calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NO}_{2}: \mathrm{M}+\mathrm{H}$ $=370.1802$; found: 370.1809 .

1t was obtained according to the above method. mp: 66-67 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.78-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.20(\mathrm{~m}, 3 \mathrm{H}), 6.79-6.83(\mathrm{~m}, 2$ H), 3.79 ($\mathrm{s}, 3 \mathrm{H}$), 2.78-2.89 (m, 4 H$), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.67-1.78(\mathrm{~m}, 4 \mathrm{H}), 1.55-1.56(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.8,159.7,152.6,133.4,133.2,129.7,129.0$, $124.3,121.1,114.5,113.7,85.9,85.5,61.9,55.2,54.8,26.5,24.2,21.2 ;$ IR (neat, cm^{-1}) 3017, 2936, 2847, 2802, 2225, 1738, 1604, 1509, 1448, 1372, 1288, 1239, 1175, 1109, 1031, 951, 833, 757, 664, 538; HRMS (ESI) m/z: calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{3}: \mathrm{M}+\mathrm{H}=$ 364.1907; found: 364.1901 .

D-1a was obtained according to the above method as an oil. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, CDCl_{3}): $\delta 7.78-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.26(\mathrm{~m}, 3$ H), 2.77-2.93 (m, 2 H), $2.10(\mathrm{~s}, 3 \mathrm{H}), 1.66-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.64(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.7,152.6,133.1,131.8,129.6,129.0,128.5,128.1$, 124.3, 122.4, 121.2, 86.9, 85.9, 61.8, 54.7, 26.5, 26.3, 24.1, 21.1;

Characterization data of 2a-2o and D-2a.

2a was obtained according to the above method as an oil. major diastereomer: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.98-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.49$ (m, 2 H), 7.12 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.65(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.71-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.35-3.40(\mathrm{~m}, 1 \mathrm{H})$, 2.96-3.03 (m, 1 H$), 2.80-2.86(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.77(\mathrm{~m}, 3 \mathrm{H}), 1.36-1.65(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 202.2,146.1,136.9,133.3,128.7,128.6,128.5,128.3$, $127.5,123.1,117.2,112.9,58.9,48.5,46.9,32.4,31.6,25.4,24.3$; IR (neat, cm^{-1}) 3399, 2920, 2852, 1677, 1585, 1450, 1057, 754, 705, 590; HRMS (ESI) m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}: \mathrm{M}+\mathrm{H}=292.1696$; found: 292.1694. minor diastereomer: ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.93(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2$ H), 7.06-7.12 (m, 2 H$), 6.65(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.89$ $(\mathrm{m}, 1 \mathrm{H}), 3.63-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=9.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.27-3.32(\mathrm{~m}, 1 \mathrm{H}), 3.03$ (dd, $J=11.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.63(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.72(\mathrm{~m}, 2 \mathrm{H})$, 1.34-1.59 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.2,151.5,137.0,133.1,133.0$, $128.5,128.0,127.7,124.5,118.1,106.6,67.5,45.8,39.1,38.5,26.3,24.5,24.4 ;$

2b was obtained according to the above method as an oil. major diastereomer: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.25-7.29 (m, 2 H), $7.12(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1$ H), 3.99-4.02 (m, 1 H), 3.69-3.75 (m, 1 H), 3.32-3.38 (m, 1 H), 2.96-3.02 (m, 1 H), 2.78-2.86 (m, 2 H), 2.42 (s, 3 H), 1.71-1.77 (m, 3 H), 1.56-1.62 (m, 1 H$), 1.26-1.47$ (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 201.8,146.1,144.2,134.6,129.5,128.7$, $128.5,127.5,123.2,117.2,112.9,58.9,48.5,46.9,32.6,31.6,25.5,24.3,21.6$; IR (neat, cm^{-1}) 3434, 2925, 2852, 1673, 1604, 1494, 1451, 1377, 1255, 1225, 1177, 1113, 1061, 747, 574; HRMS (ESI) m/z: calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}: \mathrm{M}+\mathrm{H}=306.1852$; found: 306.1848.

2c was obtained according to the above method as an oil. major diastereomer: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.78-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.41$ ($\mathrm{m}, 2 \mathrm{H}$), $7.12(\mathrm{t}, \mathrm{J}=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.99-4.02 (m, 1 H$), 3.71-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.33-3.39(\mathrm{~m}, 1 \mathrm{H}), 2.95-3.02(\mathrm{~m}, 1 \mathrm{H})$,
2.79-2.86 (m, 2 H), $2.41(\mathrm{~s}, 3 \mathrm{H}), 1.71-1.77(\mathrm{~m}, 3 \mathrm{H}), 1.55-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.23-1.49$ (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 202.5,146.1,138.6,137.1,134.1,128.9$, 128.7, 128.6, 127.5, 125.6, 123.2, 117.2, 112.9, 58.9, 48.5, 47.1, 32.6, 31.6, 25.5, 24.3, 21.3; IR (neat, cm^{-1}) 3336, 2929, 2851, 1675, 1601, 1494, 1451, 1370, 1253, 1161, 1050, 744, 550; HRMS (ESI) m/z: calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}: \mathrm{M}+\mathrm{H}=306.1852$; found: 306.1850 .

2d was obtained according to the above method as an oil. major diastereomer: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.73-7.77$ (m, 2 H), 7.14-7.26 (m, 1 H), 7.10-7.14 (m, 1 H), $6.94(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.63-6.67(\mathrm{~m}, 1 \mathrm{H}), 3.99-4.03$ $(\mathrm{m}, 1 \mathrm{H}), 3.69-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.32-3.37(\mathrm{~m}, 1 \mathrm{H}), 2.96-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.86(\mathrm{~m}, 2$ H), $2.33(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.71-1.77(\mathrm{~m}, 3 \mathrm{H}), 1.56-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.24-1.47(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 202.1,146.1,143.0,137.2,135.0,130.0,129.5$, $128.8,127.4,126.1,123.3,117.1,112.9,59.0,48.5,46.8,32.6,31.6,25.6,24.3,20.0$, 19.8; IR (neat, cm^{-1}) 3400, 2923, 2851, 1671, 1602, 1494, 1451, 1378, 1253, 1115, 1054, 793, 749, 708; HRMS (ESI) m/z: calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}$: $\mathrm{M}+\mathrm{H}=320.2009$; found: 320.2006 .

2e was obtained according to the above method as an oil. major diastereomer: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.91-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{t}, \mathrm{J}=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.98-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.32-3.38(\mathrm{~m}, 1 \mathrm{H}), 2.95-3.01(\mathrm{~m}, 1 \mathrm{H})$, 2.78-2.86 (m, 2 H$), 1.55-1.76(\mathrm{~m}, 4 \mathrm{H}), 1.38-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.19-1.29(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 200.9,146.0,139.9,135.3,129.7,129.1,128.7,127.6$, $122.9,117.3,112.9,58.8,48.5,47.1,32.3,31.6,25.4,24.3$; IR (neat, cm^{-1}) 3436 , 2929, 2851, 1677, 1590, 1493, 1451, 1253, 1092, 1008, 839, 747, 534; HRMS (ESI) m / z : calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{ClNO}: \mathrm{M}+\mathrm{H}=326.1306$; found: 326.1301.

2f was obtained according to the above method as an oil. major diastereomer: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.84$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.62 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.12
(t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{t}, J=7.2$ Hz, 1 H), 3.98-4.01 (m. 1 H), 3.64-3.69 (m, 1 H), 3.33-3.38 (m, 1 H), 2.95-3.01 (m, 1 H), 2.78-2.86 (m, 2 H), 1.56-1.76 (m, 4 H), 1.20-1.49 (m, 2 H), ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 201.1,146.0,135.7,132.1,129.8,128.7,128.6,127.6,122.9,117.3,112.9$, $58.8,48.5,47.1,32.3,31.6,25.4,24.3$; IR (neat, cm^{-1}) 3403, 2923, 2853, 1764, 1681, 1452, 1381, 1243, 1061, 913, 746; HRMS (ESI) m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NOBr}: \mathrm{M}+\mathrm{H}=$ 370.0801; found: 370.0806.

$\mathbf{2 g}$ was obtained according to the above method as an oil. major diastereomer: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.05(\mathrm{~m}, 4 \mathrm{H}), 7.13(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-4.02(\mathrm{~m}, 1 \mathrm{H})$, 3.72-3.78 (m, 1 H), 3.35-3.41 (m, 1 H), 2.96-3.03 (m, 1 H), 2.80-2.86 (m, 2 H), 2.65 (s, 3 H), 1.73-1.79 (m, 3 H), 1.28-1.69 (m, 3 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 201.7, 197.4, 146.0, 140.2, 140.1, 128.7, 128.6, 128.5, 127.6, 122.8, 117.3, 113.0, 58.8, 48.5, 47.6, 32.2, 31.6, 26.9, 25.3, 24.3; IR (neat, cm^{-1}) 2927, 2852, 1683, 1601, 1495, 1259, 910, 748; HRMS (ESI) m/z: calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{2}: \mathrm{M}+\mathrm{H}=334.1802$; found: 334.1812.

2h was obtained according to the above method as an oil. major diastereomer: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.96-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.50$ (m, 2 H$), 7.17-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$; 3.89-3.93 (m, 1 H), 3.67-3.72 (m, 1 H), 3.34-3.39 (m, 1 H), 2.91-2.97 (m, 1 H), 2.76-2.86 (m, 2 H), 1.70-1.79 (m, 3 H), 1.54-1.63 (m, 1 H), 1.39-1.49 (m, 1 H), 1.20-1.30 (m, 1 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 201.6,145.1,136.8,133.4,130.9$, $130.1,128.8,128.3,125.3,114.5,108.8,58.7,48.4,46.8,31.8,31.5,25.2,24.2$; IR (neat, cm^{-1}) 3436, 2927, 2851, 1676, 1592, 1489, 1445, 1370, 1254, 1219, 793, 705, 546; HRMS (ESI) m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NOBr}$: $\mathrm{M}+\mathrm{H}=370.0801$; found: 370.0795 .

$2 \mathbf{i}$ was obtained according to the above method as an oil. major diastereomer: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$,
7.17-7.19 (m, 1 H$), 7.03(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.93(\mathrm{~m}$, $1 \mathrm{H}), 3.60-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.31-3.36(\mathrm{~m}, 1 \mathrm{H}), 2.90-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.85(\mathrm{~m}, 2 \mathrm{H})$, $1.66-1.79(\mathrm{~m}, 3 \mathrm{H}), 1.28-1.63(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 200.6,145.0$, 135.4, 132.2, 130.9, 130.1, 129.8, 128.8, 125.0, 114.5, 108.9, 58.7, 48.4, 46.8, 31.7, $31.5,25.1,24.2$; IR (neat, cm^{-1}) 3433, 2923, 2851, 1764, 1676, 1584, 1488, 1387, 1251, 1066, 1009, 746; HRMS (ESI) m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NOBr}_{2}$: $\mathrm{M}+\mathrm{H}=447.9906$; found:447.9914.

$2 \mathbf{j}$ was obtained according to the above method as an oil. major diastereomer: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.18$ $(\mathrm{dd}, J=6.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.90-3.93 (m, 1 H), 3.64-3.70 (m, 1 H), 3.32-3.38 (m, 1 H), 2.91-2.98 (m, 1 H), 2.74-2.86 (m, 2 H), $2.43(\mathrm{~s}, 3 \mathrm{H}), 1.69-1.79(\mathrm{~m}, 3 \mathrm{H}), 1.26-1.59(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 201.2,145.2,144.4,134.4,130.9,130.1,129.5,128.5,125.4$, $114.5,108.8,58.8,48.5,46.7,31.9,31.5,25.2,24.2,21.6$; IR (neat, cm^{-1}) 3400,2922 , 2852, 2332, 1764, 1674, 1489, 1380, 1248, 1058, 913, 771, 747, 669; HRMS (ESI) m / z : calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NOBr}: \mathrm{M}+\mathrm{H}=384.0958$; found: 384.0962 .

$\mathbf{2 k}$ was obtained according to the above method as an oil. major diastereomer: ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.67-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.25(\mathrm{~m}, 3 \mathrm{H}), 6.28-6.34(\mathrm{~m}, 1$ H), 3.81-3.87 (m, 1 H), 3.59-3.56 (m, 1 H), 3.23-3.37 (m, 2 H), 2.95-3.01 (m, 1 H), 2.57-2.64 (m, 1 H$), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.69(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 198.5,150.5,142.7,136.9,135.6,134.7,130.2,129.9$, $129.8,129.2,127.5,127.1,125.8,125.7,109.5,107.8,67.5,45.7,38.9,38.1,26.0$, 24.2, 24.1, 20.0, 19.8; IR (neat, cm^{-1}) 2930, 2852, 1679, 1602, 1477, 1448, 1382, 1249, 1122, 803; HRMS (ESI) m/z: calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{BrNO}: \mathrm{M}+\mathrm{H}=398.1114$; found: 398.1111 .

21 was obtained according to the above method as an oil. major diastereomer: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.99-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.12 (t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $6.94(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1$ H), $6.65(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.43(\mathrm{~m}, 1$ H), 2.94-3.00 (m, 1 H), 2.81-2.88 (m, 2 H), 1.70-1.76 (m, $2 H$), 1.21-1.64 (m, 3 H), 0.87 (d, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 202.2,145.9,136.9,133.3$, $128.8,128.6,128.4,127.5,123.1,117.2,112.9,58.3,48.0,47.1,39.9,33.8,32.6,30.9$, 21.9; IR (neat, cm^{-1}) 3440, 2923, 2849, 1677, 1600, 1495, 1452, 1373, 1239, 1210, 750, 702, 665; HRMS (ESI) m/z: calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}: \mathrm{M}+\mathrm{H}=306.1852$; found: 306.1855.

2m was obtained according to the above method as an oil. major diastereomer: ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.89-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{t}, ~ J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.99-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.36-3.41(\mathrm{~m}, 1 \mathrm{H}), 2.94-3.01(\mathrm{~m}, 1 \mathrm{H})$, 2.79-2.88 (m, 2 H), 2.43 (s, 3 H), 1.69-1.77 (m, 2 H), 1.53-1.63 (m, 2 H), 1.24-1.28 $(\mathrm{m}, 1 \mathrm{H}), 0.87(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 201.8,145.9$, $144.3,134.5,129.5,128.7,128.5,127.5,123.2,117.2,112.9,58.4,48.1,46.9,39.9$, 33.9, 32.7, 30.9, 21.9, 21.6; IR (neat, cm^{-1}) 3399, 2019, 2850, 1672, 1603, 1494, 1453, 1374, 1241, 1045, 748, 610; HRMS (ESI) m/z: calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}: \mathrm{M}+\mathrm{H}=$ 320.2009; found: 320.2001 .

2n was obtained according to the above method as an oil. major diastereomer: ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.77(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.10-7.17 (m, 2 H$), 6.96(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.87$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.99-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.28-3.34(\mathrm{~m}, 1 \mathrm{H})$ 3.05-3.12 (m, 1 H), 2.78-2.87 (m, 2 H$), 1.76-1.78(\mathrm{~m}, 3 \mathrm{H}), 1.57-1.66(\mathrm{~m}, 1 \mathrm{H})$, 1.28-1.47 (m, 2 H$)$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 194.9,146.1,144.9,134.5,132.2,128.6,128.4,127.5$, 123.0, 117.3, 113.1, 58.8, 49.1, 48.5, 32.6, 31.6, 25.5, 24.1; IR (neat, cm^{-1}) 3399 , 2925, 2851, 1653, 1494, 1413, 1253, 1057, 789, 744, 661; HRMS (ESI) m/z: calcd for
$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NOS}: \mathrm{M}+\mathrm{H}=298.1260$; found:298.1254.

$2 \mathbf{~}^{1}{ }^{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.17(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2$ H), $7.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.91-2.94(\mathrm{~m}, 4 \mathrm{H}), 1.73-1.78$ (m, 4 H), 1.57-1.60 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 189.4,163.2,154.4$, $142.0,131.4,130.9,130.8,130.7,129.2,127.9,122.3,121.4,119.0,113.7,113.6$, 55.4, 54.4, 26.4, 24.2; IR (neat, cm^{-1}): 2928, 1655, 1599, 1449, 1380, 1332, 1257, 1219, 1167, 1021, 835, 757, 575; HRMS (ESI) m/z: calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{2}: \mathrm{M}+\mathrm{H}=$ 322.1802; found:322.1808.

D-2a ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.99(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1$ H), $7.49(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.86$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-4.02(\mathrm{~m}, 0.3 \mathrm{H}), 3.71-3.78(\mathrm{~m}, 1$ H), 3.35-3.40 (m, 0.7 H), 2.96-3.03 (m, 1 H), 2.80-2.88 (m, 1.2 H), 1.38-1.79 (m, 6 H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl3): $\delta 202.2,146.1,137.1,133.3,128.8,128.7,128.4$, 127.5, 123.1, 117.2, 112.9, 58.9, 47.1, 32.5, 31.6, 25.3, 24.3; HRMS (ESI) m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NOD}_{2}$: $\mathrm{M}+\mathrm{H}=294.1821$; found:294.1825.

Electronic Supplementary Material (ESI) for RSC Advances

$000 \cdot 0$

${ }_{8 E} \cdot 69 \mathrm{~T}=$
xxfcyc-13-yl-C

xxt201097-yl-C

000%

10

xat2011322-1-H

$\angle V^{\circ} 202-$
xxt2010831-1-C

XXF2010826-2-1-h

19.002-
$x \times f 2010105-1-1-C$

Electronic Supplementary Material (ESI) for RSC Advances

xof201094'-H

D-2a

D-2a

2D NMR of product 2a

HMBC

H-H cosy

HMQC

From the 2D NMR of product 2a, we can identify the site of the hydrogen atom in 2a, see below:

Electronic Supplementary Material (ESI) for RSC Advances

нз

