Highly fluorescent and photostable organic- and water-soluble

CdSe/ZnS core-shell quantum dots capped with thiols

Jordi Aguilera-Sigalat, Simon Rocton, Juan F. Sánchez-Royo, Raquel E. Galian* and

Julia Pérez-Prieto*

SupportingInformation

TABLE OF CONTENTS

Title

page

Table S1. Physical properties of the CdSe/ZnS QDs capped with thiol and their precursors State				
Table S2. Maximum in the fluorescence spectra and fluorescence quantum yield of the core-				
shell QDs upon the addition of the thiol or the thiolate compound. Fluorescence quantum yield	S3			
calculation.				
Figure S1. High resolution transmission electron microscopy images of CS1	S4			
Figure S2. Comparative fluorescence spectra of deareated toluene solutions of QD-CS2 and				
CS2@KP				
Figure S3. Comparative fluorescence spectra of deareated toluene solutions of QD-CS2 and	S5			
CS2@MU.				
Figure S4. High resolution transmission electron microscopy images of CS3 (A, 3.1 ± 0.3				
nm), CS3@MPA (B , 3.3 ± 0.3).				
Figure S5. Comparative fluorescence spectra of a deareated toluene solution of QD-CS3 and	6			
a water solution CS3@MPA				
Figure S6. Comparative IR spectra a freshly-prepared mixture of QD-CS2 and KP-SH,				
QD-CS2, CS2@KP, and of KP-SH.				
Figure S7. Normalized fluorescence spectra of deaerated solutions of QD-CS3 (toluene) and	S7			
CS3@MUA (water), before and after 270 min irradiation under 420 nm lamps.				
Figure S8. Normalized fluorescence spectra of deaerated aqueous solution CS3@MPA,	S 8			

before (\blacksquare) and after (\bigcirc) 270 min irradiation under 420 nm lamps.

		$\lambda_{max} 1^{st}$	D ^b	λ_{max} emission	FWHM ^c	$\phi_{\rm F}{}^{\rm d}$	
		exciton	(nm)	peak	(nm)		
		peak		(nm)			
-		(nm)					
QD-CS1 ^e	Evident	509	2.43	531	45 ± 1	0.50	
QD-CS2 ^e	Evident	521	2.64	539	40± 1	0.61	
QD-CS3 ^e	Evident	564	3.45	582	34± 1	0.63	
QD-CS4 ^e	Ocean	503	2.37	517	36± 1	0.58	
QD-CS5 ^e	Ocean	544	2.93	562	33±1	0.55	
QD-CS6 ^e	homemade	535	2.77	543	26± 1	0.45	
QD-CS7 ^e	homemade	539	2.84	548	26± 1	0.32	
CS1@KP	homemade	509		534	44± 1	0.75	
CS2@KP	homemade	520		540	38± 1	0.70	
CS6@KP	homemade	537	2.80	546	28± 1	0.35	
CS7@KP	homemade	538	2.82	547	27± 1	0.30	
CS3@MUA	homemade	571		595	30± 1	0.54	
CS3@MPA	homemade	566		586	30± 1	0.45	

Table S1: Physical properties of the CdSe/ZnS QDs capped with thiols and their precursors^a

^a The core-shell QD-CS1- QD-CS3 were commercially available (<u>www.evidenttech.com</u>), QD-CS4 and QD-CS5 were purchased from Ocean Nano Teach LLC. ^b The diameter was calculated according to the method of W. W. Yu, L. Qu, W. Guo, X. Peng *Chem. Mater.* 2003, **15**, 2854. ^c Full width at half maximum (FWHM), ^dFluorescence quantum yield obtained using fluoresceine as the standard. ^e Capping ligand: fatty amine and monosubstituted olefin (Evident), fatty amine, oleic acid, and monosubstituted olefin (Ocean), TOPO (QD-CS6), and TOPO and octadecylamine (QD-CS7). ^fThe ¹H-NMR spectrum of the QD showed the presence of monosubstituted olefin.

	λ_{max}		
QD / Thiol System	emission	Quantum	
(molar ratio 1:2200)	(nm)	yield (%)	
QD-CS4	517	58	
QD-CS4/MU	519	50	
QD-CS4/MU thiolate	526	20	
QD-CS5	561	55	
QD-CS5/MU	562	48	
QD-CS5/MU thiolate	565	40	
QD-CS5/KP-SH	561	53	
QD-CS5/KP-SH thiolate	562	46	

Table S2: Maximum in the fluorescence spectra (λ_{max} , nm) and fluorescence quantum yield (Φ_f) of the core-shell QDs upon the addition of the thiol or the thiolate compound.

^a Fluorescence measured 70 min after the addition of the thiol/thiolate of MU and 140 min for the thiol/thiolate of KP-SH.

Fluorescence Quantum vield Calculation

Quantum dots fluorescence quantum yield ($\varphi_{F,QD}$) was measured by comparing the integrated emission spectra for the QD and fluoresceine according to the following equation (Grabolle, M.; Spieles, M.; Lesnyak V.; Gaponik, N. Eychmüller, A. and Resch-Genger, U.; *Anal.Chem.* 2009, **81**, 6285):

$$\Phi_{F,QD} = \Phi_{F,st} \cdot \frac{F_{QD}}{F_{st}} \cdot \frac{f_{st(\lambda ex)}}{f_{QD}(\lambda ex)} \cdot \frac{n_{QD}^2}{n_{st}^2}$$

where $\Phi_{F, st}$ is the fluorescence quantum yield of the standard, F is the area under the fluorescence curve, *f* is the absorption factor at the excitation wavelength (λ_{ex}) and *n* is the refractive index of the solvent.

Figure S1: High Resolution Transmission Electron Microscopy images of CS1 ($2.2 \pm 0.2 \text{ nm}$)

Figure S2: Comparative fluorescence spectra of *deareated* toluene solutions of QD-CS2 and CS2@KP

Figure S3 . Comparative fluorescence spectra of *deareated* toluene solutions of QD-CS2 (●) and CS2@MU (■).

Figure S4: High resolution transmission electron microscopy images of CS3 (A, 3.1 ± 0.3 nm) and CS3@MPA (B, 3.3 ± 0.3), the scale bar is 10 nm.

Figure S5. Comparative fluorescence spectra of a *deareated* solution of QD-CS3 (●) and a water solution CS3@MPA (■).

Figure S6. Comparative IR spectra a freshly-prepared mixture of **QD-CS2** and KP-SH, **QD-CS2**, **CS2@KP**, and of KP-SH.

Figure S7. Normalized fluorescence spectra of **deaerated** solutions of a) **QD-CS3** (toluene) and b) **CS3@MUA** (water), before (■) and after (●) 270 min irradiation under 420 nm lamps.

Figure S8. Normalized fluorescence spectra of *deaerated* aqueous solution CS3@MPA, before (■) and after (●) 270 min irradiation under 420 nm lamps.