## **Supporting Information for**

# One-step hydrothermal synthesis of SnS<sub>2</sub>/graphene composites as anode material for high efficient rechargeable lithium ion batteries

Linhai Zhuo,<sup>a,c</sup> Yingqiang Wu,<sup>a,c,d</sup> Lingyan Wang,<sup>a,c,d</sup> Yancun Yu,<sup>a,c</sup> Xinbo Zhang,\*<sup>b</sup>

## Fengyu Zhao\*<sup>*a,c*</sup>

<sup>a</sup> State Key Laboratory of Electroanalytical Chemistry

<sup>b</sup> State Key Laboratory of Rare Earth Resource Utilizations

<sup>c</sup> Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences,

Changchun 130022, China

<sup>d</sup> University of the Chinese Academy of Sciences, Beijing 100049, China

### **Experimental Details**

#### **Materials Synthesis**

Graphite oxide (GO) was synthesized from natural graphite powder (Shanghai Colloid Chemical Plant, China) according to the reference.<sup>1</sup> The as-prepared GO was transferred from the as-made suspension into a 200 ml beaker, and then diluted to 30 ml with DI water. After ultrasonication for about 2 hours, 0.5 mmol tin (IV) chloride pentahydrate (SnCl<sub>4</sub>-5H<sub>2</sub>O) was added and stirred for 5 hours. Then 4 mmol thioacetamide (TAA) were dissolved into the above solution and the pH value was adjusted to 6.5 using 1 M NaOH solution. The mixture was then transferred into a 50 ml Teflon-lined stainless steel autoclave, sealed tightly, and heated at 240 °C for 24 h. After cooling naturally, the black precipitates were collected by centrifugation, washed with DI water and ethanol, and dried in a vacuum oven at 80 °C for 12 h. Other two samples with different ratio of graphene to SnS<sub>2</sub> were also prepared in order to investigate the effect of graphene on Li-ion storage. The pristine SnS<sub>2</sub> nanoplates were prepared through the chosen method employing SnCl<sub>4</sub>·5H<sub>2</sub>O and TAA as starting materials except for GO. Graphene nanosheets were synthesized by a hydrothermal method employing GO and TAA as starting materials.

### **Materials Characterizations**

Powder X-ray diffraction (XRD) was performed on a Rigaku D/MAX-2500 diffractometer. The

morphologies of the materials were analyzed by the scanning electron microscope (SEM Hitachi S-4800). Transmission electron microscope (TEM) and selected area electron diffraction (SAED) were recorded on a Tecnai G20 operating at 200 kV for the detailed microstructure information of the sample. The weight percentage of carbon content was analyzed by Elemental Analyzer (VarioEL).

## **Electrochemical Measurements**

The electrochemical tests were measured using two-electrode cells assembled in an argon-filled glove box. Li sheet served as the counter electrode and reference electrode, and a polypropylene film (Celgard-2300) was used as a separator. The electrolyte was a 1.0 M LiPF<sub>6</sub> solution in a mixture of EC/DMC (1:1 in volume). The working electrodes were prepared by a slurry coating procedure. The slurry consisted of 75 wt.% active materials, 15 wt.% acetylene black and 10 wt.% polyvinylidene fluorides dissolved in *N*-methyl-2-pyrrolidinone. This slurry was spread on copper foil, which acted as a current collector. The electrodes were dried at 80 °C for 12 h in vacuum and then pressed. Galvanostatic charge/discharge cycles were carried out on a battery tester between 0.01-3.00 V at various current densities on a LAND CT2001A cell test instrument (Wuhan Kingnuo Electronic Co., China). Cyclic voltammetry measurements were carried out on an electrochemical workstation (Zahner IM6ex) over the potential range of 0.01-3.00 V vs. Li/Li<sup>+</sup> at a scan rate of 0.5 mV/s. Electrochemical impedance spectroscopy (Zahner IM6ex) was carried by applying an AC voltage of 5 mV in the frequency range of 100 KHz to 0.01Hz.

#### **Supplementary Figures**



Fig. S1 SEM image of pristine SnS<sub>2</sub> nanoplates.



Fig. S2 a) SEM image of SnS<sub>2</sub>/GNS composites and b-d) elemental mapping with EDS showing



SnS<sub>2</sub> nanosheets are homogeneously distributed in carbon matrix.

Fig. S3. The first two charge and discharge curves of GNS at a current density of 100 mA  $g^{-1}$ , which were synthesized by the chosen method employing GO and TAA as starting materials.

| Sample | Amount of GO suspension in the preparation (mL) | Discharge capacity (retention) mAh g <sup>-1</sup><br>(at a current density of 100 mA g <sup>-1</sup> ) |                       |                        |                        |
|--------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------|------------------------|------------------------|
|        |                                                 | 1 <sup>st</sup> Cycle                                                                                   | 2 <sup>nd</sup> Cycle | 10 <sup>th</sup> Cycle | 30 <sup>th</sup> Cycle |
| 1      | 5                                               | 1367                                                                                                    | 1158                  | 1102                   | 1114                   |
|        |                                                 |                                                                                                         |                       | (95%)                  | (96%)                  |
| 2      | 2.5                                             | 1286                                                                                                    | 1105                  | 950                    | 773                    |
|        |                                                 |                                                                                                         |                       | (86%)                  | (70%)                  |
| 3      | 7.5                                             | 1520                                                                                                    | 1151                  | 1025                   | 895                    |
|        |                                                 |                                                                                                         |                       | (89%)                  | (77%)                  |

Table S1 The effect of ratio of graphene to SnS<sub>2</sub> on Li-ion storage

The as-prepared sample 1 contains 9.95% carbon, which was studied carefully in this work.

### References

1. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Z. Sun, A. Slesarev, L. B. Alemany, W. Lu and J. M. Tour, *Acs Nano*, 2010, **4**, 4806-4814.