Electronic Supplementary Information

Synthesis, Structural Characterization, Solvatochromism, and Ionbinding Studies of a Ditopic Receptor Based on 2-(4-[2,2': 6',2"]Terpyridin-4'-yl-phenyl)-1*H*-phenanthro[9,10-*d*] imidazole (tpy-HImzphen) Unit

Chanchal Bhaumik, Dinesh Maity, Shyamal Das, and Sujoy Baitalik^{*} Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata – 700032, India

E-mail: sbaitalik@hotmail.com

tpy-HImzphen										
O(1)-C(38)	1.216(4)	C(35)-C(36)	1.395(4)	C(26)-C(25)	1.403(4)	C(12)-C(13)	1.364(5)			
N(1)-C(22)	1.325(4)	C(34)-C(35)	1.370(4)	C(25)-C(24)	1.438(4)	C(11)-C(12)	1.376(4)			
N(1)-C(24)	1.382(3)	C(33)-C(34)	1.385(5)	C(24)-C(23)	1.368(4)	C(10)-C(11)	1.479(4)			
N(2)-C(22)	1.365(3)	C(33)-C(32)	1.363(4)	C(22)-C(19)	1.454(4)	C(8)-C(9)	1.388(4)			
N(2)-C(23)	1.370(4)	C(36)-C(31)	1.421(4)	C(20)-C(21)	1.382(4)	C(8)-C(7)	1.390(4)			
N(3)-C(15)	1.334(5)	C(36)-C(23)	1.430(4)	C(16)-C(21)	1.391(4)	C(7)- C(6)	1.392(4)			
N(3)-C(11)	1.339(4)	C(31)-C(32)	1.405(4)	C(19)-C(20)	1.384(4)	C(6)-C(5)	1.489(4)			
N(4)-C(10)	1.348(4)	C(30)-C(31)	1.465(4)	C(19)-C(18)	1.380(4)	C(5)-C(4)	1.382(4)			
N(4)-C(6)	1.330(4)	C(29)-C(30)	1.408(4)	C(18)-C(17)	1.386(4)	C(3)-C(4)	1.383(5)			
N(5)-C(5)	1.340(4)	C(28)-C(29)	1.362(5)	C(17)-C(16)	1.374(4)	C(2)-C(3)	1.359(5)			
N(5)-C(1)	1.337(4)	C(28)-C(27)	1.385(4)	C(16)-C(8)	1.480(4)	C(1)-C(2)	1.358(5)			
C(38)-C(39)	1.505(5)	C(27)-C(26)	1.366(4)	C(14)-C(15)	1.358(6)					
C(37)-C(38)	1.484(5)	C(25)-C(30)	1.419(4)	C(13)-C(14)	1.370(6)					

Table S1 All bond distances (Å) for tpy-HImzphen

Table S2 All bond angles (deg) for tpy-HImzphen

tpy-HImzphen											
C(22)-N(1)- C(24)	104.2(2)	C(17)-C(16)- C(8)	122.8(3)	C(31)-C(36)- C(23)	116.3(3)						
C(22)-N(2)- C(23)	107.0(2)	C(21)-C(16)- C(8)	120.3(3)	C(24)-C(23)- C(36)	124.2(3)						
C(1)-N(5)-C(5)	116.9(3)	C(9)-C(8)- C(7)	116.7(3)	N(2)-C(23)-C(36)	130.3(3)						
C(15)-N(3)- C(11)	116.9(3)	C(9)-C(8)- C(16)	122.4(3)	C(28)-C(29)- C(30)	121.3(3)						
C(29)-C(28)- C(27)	121.3(3)	C(7)-C(8)- C(16)	120.9(3)	C(29)-C(30)- C(25)	117.0(3)						
C(26)-C(27)-C(28)	119.5(3)	C(8)-C(9)- C(10)	120.1(3)	C(31)-C(30)- C(29)	122.0(3)						
C(27)-C(26)- C(25)	120.6(3)	N(4)-C(10)- C(9)	122.8(3)	C(32)-C(31)- C(36)	116.3(3)						
C(26)-C(25)-C(30)	120.2(3)	N(4)-C(10)- C(11)	116.1(3)	C(32)-C(31)- C(30)	123.4(3)						
C(26)-C(25)-C(24)	122.5(3)	C(9)-C(10)- C(11)	121.1(3)	C(36)-C(31)- C(30)	120.3(3)						
C(30)-C(25)- C(24)	117.3(3)	N(3)-C(11)- C(12)	122.0(3)	C(33)-C(32)- C(31)	122.5(3)						
N(1)-C(24)- C(23)	111.1(2)	N(3)-C(11)- C(10)	117.1(3)	C(21)-C(20)- C(19)	121.6(3)						
N(1)-C(24)- C(25)	128.0(3)	C(12)-C(11)- C(10)	121.0(3)	C(20)-C(21)- C(16)	121.1(3)						
C(23)-C(24)- C(25)	120.9(3)	C(20)-C(21)- C(16)	121.2(2)	C(8)-C(7)- C(6)	119.9(3)						
N(1)-C(22)- N(2)	112.2(2)	C(13)-C(12)- C(11)	119.6(4)	N(4)-C(6)- C(7)	123.2(3)						
N(1)-C(22)- C(19)	124.3(2)	C(12)-C(13)- C(14)	119.0(4)	N(4)-C(6)- C(5)	116.6(3)						
N(2)-C(22)- C(19)	123.5(2)	C(15)-C(14)- C(13)	118.0(4)	C(7)-C(6)-C(5)	120.2(3)						
C(18)-C(19)- C(20)	117.2(3)	C(32)-C(33)- C(34)	120.1(3)	N(5)-C(5)- C(4)	121.7(3)						
C(18)-C(19)- C(22)	123.2(3)	C(35)-C(34)- C(33)	119.8(3)	N(5)-C(5)- C(6)	116.8(3)						
C(20)-C(19)- C(22)	119.6(2)	C(34)-C(35)- C(36)	120.7(3)	C(4)-C(5)-C(6)	121.5(3)						
C(19)-C(18)-C(17)	121.1(3)	C(35)-C(36)- C(31)	120.4(3)	N(5)-C(1)- C(2)	124.8(4)						
C(16)-C(17)- C(18)	122.0(3)	C(35)-C(36)- C(23)	123.3(3)	C(32)-C(33)- C(34)	119.1(3)						
C(17)-C(16)- C(21)	116.9(3)	C(24)-C(23)- N(2)	105.5(2)	C(1)-C(2)-C(3)	118.3(4)						
C(2)-C(3)-C(4)	118.8(3)	C(5)-C(4)- C(3)	119.6(3)	C(6)-N(4)- C(10)	117.2(2)						
N(3)-C(15)- C(14)	124.5(4)	C(37)-C(38)- C(39)	115.7(3)								
O(1)-C(38)- C(39)	122.9(3)	O(1)-C(38)- C(37)	121.5(3)								

Zn

 $\mathbf{C}\mathbf{d}$

Pb

 $\frac{M^{2+} \text{ metal ions at three different wavelengths.}}{[M(tpy-HImzPh_3)_2]^{2+}} \frac{\epsilon \text{ Values in } M^{-1}}{\epsilon \text{ Values in } M^{-1}}$ ε Values in M⁻¹cm⁻¹ At 575 nm At 520 nm At 320 nm Mn 0 0 54910 45050 14340 Fe 70270 1010 65630 Co 5400 Ni 0 8 55540 58480 Cu 230 610

0

0

0

40

0

0

45360

56360

58220

Table S3. Epsilon (ϵ) values of complexes for different

Fig. S1 ESI–MS for (a) tpy-HImzphen (m/z = 525.51) in dimethylformamide and (b) complex cation [Fe(tpy-HImzphen)₂]²⁺ (m/z = 553.25) in acetonitrile showing the observed and simulated isotopic distribution patterns.

Fig. S2 Intermolecular hydrogen-bonding interaction between the imidazole N-H proton of the receptor and the solvent acetone molecule.

Electronic Supplementary Material (ESI) for RSC Advances This journal is C The Royal Society of Chemistry 2012

Fig. S3 ¹H NMR spectra of the receptor in DMSO- d_6 .

Fig. S4 ¹³C NMR spectra of the receptor in DMSO- d_6 .

Fig. S5 ¹H NMR spectra of [Fe(tpy-HImzphen)₂](ClO₄)₂ in DMSO-*d*₆.

Fig. S6¹³C NMR spectra of [Fe(tpy-HImzphen)₂](ClO₄)₂ in DMSO-*d*₆.

Fig. S7 { 1 H- 1 H} COSY NMR spectrum of the receptor in DMSO- d_{6} .

Fig. S8 UV-vis spectra of the receptor tpy-HImzphen (a) and its Zn(II) complex $[Zn(tpy-HImzphen)_2]^{2+}$ (b) in different solvents.

Fig. S9 UV-vis spectra of $[Fe(tpy-HImzphen)_2]^{2+}$ in acetonitrile.

Fig. S10 (a) Absorbance changes during the titration of tpy-HImzphen (20 μ M) with F⁻ (0-180 μ M) in dimethylformamide-acetonitrile (1:9), inset: Normalized absorbance between the minimum absorbance (free tpy-HImzphen) and the maximum absorbance (180 μ M F⁻ added). (b) A plot of (A-A_{min})/(A_{max}-A_{min}) vs Log([F⁻]), the calculated detection limit of receptor is 5.4 × 10⁻⁷ M.

Fig. S11 Changes in UV–vis (a) and luminescence (b) spectra of tpy-HImzphen (20 μ M) in dimethylformamide-acetonitrile (1:9) upon the addition of AcO⁻ ion (0-12000 μ M).

Fig. S12 Changes in UV–vis (a) and luminescence (b) spectra of tpy-HImzphen (20 μ M) in dimethylformamide-acetonitrile (1:9) upon the addition of OH⁻ ion (0-200 μ M). The inset shows the fit of the experimental absorbance and luminescence data to a 1:1 binding profile.

Fig. S13 (a) Fluorescence changes during the titration of tpy-HImzphen (20 μ M) with F⁻ (0-180 μ M) in dimethylformamide-acetonitrile (1:9), inset: Normalized intensity between the maximum intensity (free tpy-HImzphen) and the minimum intensity (180 μ M F⁻ added). (b) A plot of (I-I_{min})/(I_{max}-I_{min}) vs Log([F⁻]), the calculated detection limit of receptor is 1.5×10^{-7} M.

Fig. S14 Changes in UV–vis (a) and luminescence (b) spectra of tpy-HImzphen (20 μ M) in dimethylsulfoxide-water (3:2) upon the addition of F⁻ ion (0-5000 μ M). The inset shows the fit of the experimental absorbance and luminescence data to a 1:1 binding profile.

Fig. S15 a) Fluorescence changes during the titration of tpy-HImzphen (20 μ M) with F⁻ (0-5000 μ M) in dimethylsulfoxide-water (3:2), inset: Normalized intensity between the maximum intensity (free tpy-HImzphen) and the minimum intensity (5000 μ M F⁻ added). b) A plot of (I-I_{min})/(I_{max}-I_{min}) vs Log([F⁻]), the calculated detection limit of receptor is 1.2 $\times 10^{-6}$ M.

Fig. S16 Changes in UV-vis (a) and photoluminescence (b) spectra of tpy-HImzphen (20 μ M) in dimethylformamide-acetonitrile (1:9) upon addition of Mn(ClO₄)₂ (20 μ M). The inset shows the change of absorption and emission intensity as a function of the equivalent of Mn²⁺ ion added.

Fig. S17 Changes in UV-vis (a) and photoluminescence (b) spectra of tpy-HImzphen (20 μ M) in dimethylformamide-acetonitrile (1:9) upon addition of Co(ClO₄)₂ (20 μ M). The inset shows the change of absorption and emission intensity as a function of the equivalent of Co²⁺ ion added.

Fig. S18 Changes in UV-vis (a) and photoluminescence (b) spectra of tpy-HImzphen (20 μ M) in dimethylformamide-acetonitrile (1:9) upon addition of Ni(ClO₄)₂ (20 μ M). The inset shows the change of absorption and emission intensity as a function of the equivalent of Ni²⁺ ion added.

Fig. S19 Changes in UV-vis (a) and photoluminescence (b) spectra of tpy-HImzphen (20 μ M) in dimethylformamide-acetonitrile (1:9) upon addition of Cu(ClO₄)₂ (20 μ M). The inset shows the change of absorption and emission intensity as a function of the equivalent of Cu²⁺ ion added.

Fig. S20 Changes in UV-vis (a) and photoluminescence (b) spectra of tpy-HImzphen (20 μ M) in dimethylformamide-acetonitrile (1:9) upon addition of Cd(ClO₄)₂ (20 μ M). The inset shows the change of absorption and emission intensity as a function of the equivalent of Cd²⁺ ion added.

Fig. S21 Changes in UV-vis (a) and photoluminescence (b) spectra of tpy-HImzphen (20 μ M) in dimethylformamide-acetonitrile (1:9) upon addition of Pb(ClO₄)₂ (20 μ M). The inset shows the change of absorption and emission intensity as a function of the equivalent of Pb²⁺ ion added.

Fig. S22 (a) Absorbance changes during the titration of tpy-HImzphen (20 μ M) with Fe²⁺ (0-20 μ M) in dimethylformamide-acetonitrile (1:9), inset: Normalized absorbance between the minimum absorbance (free tpy-HImzphen) and the maximum absorbance (20 μ M Fe²⁺ added). (b) A plot of (A-A_{min})/(A_{max}-A_{min}) vs Log([Fe²⁺]), the calculated detection limit of receptor is 3.9 × 10⁻⁹ M.

Fig. S23 (a) Fluorescence changes during the titration of tpy-HImzphen (20 μ M) with Fe²⁺ (0-20 μ M) in dimethylformamide-acetonitrile (1:9), inset: Normalized intensity between the maximum intensity (free tpy-HImzphen) and the minimum intensity (20 μ M Fe²⁺ added). (b) A plot of (I-I_{min})/(I_{max}-I_{min}) vs Log([Fe²⁺]), the calculated detection limit of receptor is 3.89×10^{-9} M.

Fig. S24 Changes in UV-vis (a) and photoluminescence (b) spectra of tpy-HImzphen (20 μ M) in dimethylsulfoxide-water (3:2) upon addition of Fe(ClO₄)₂ (22 μ M). The inset shows the change of absorption and emission intensity as a function of the equivalent of Fe²⁺ ion added.

Fig. S25 (a) Fluorescence changes during the titration of tpy-HImzphen (20 μ M) with Fe²⁺ (0-22 μ M) in dimethylsulfoxide-water (3:2), inset: Normalized intensity between the maximum intensity (free tpy-HImzphen) and the minimum intensity (22 μ M Fe²⁺ added). (b) A plot of (I-I_{min})/(I_{max}-I_{min}) vs Log([Fe²⁺]), the calculated detection limit of receptor is 5.0×10^{-9} M.