Supplementary Information

Sterically Congested Pyrrole-Fused Tetrathiafulvalene Decamers as Highly Conductive Amorphous Molecular Materials

Masayoshi Takase,* Naofumi Yoshida, Tomoyuki Narita, Takashi Fujio, Tohru Nishinaga, and

Masahiko Iyoda^{*}

Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan, E-mail: mtakase@tmu.ac.jp, iyoda@tmu.ac.jp

Contents

S1. Material and methods	··· p.S2
S2. ¹ H and ¹³ C NMR spectra	··· p.S4
S3. Chemical oxidations of 4b	··· p.S6
S4. XRD patterns and SEM images of self-assembled 4b and their conductivities	··· p.S7
S5. Single crystal structure of 5	··· p.S8
S6. DFT calculations of decafluorobiphenyl and 4b	··· p.S10
S9. References	··· p.S14

S1. Material and methods

¹H and ¹³C NMR spectra were recorded on Bruker 500 spectrometer with use of tetramethylsilane proton or carbon signal as an internal standard. Electron impact (EI) mass spectra and laser desorption ionization time-of-flight (LDI-TOF) mass spectra were obtained on SHIMADZU GC-MS QP2020 and AXIMA-CFR, respectively. Melting points were determined with Yanako MP-500D and not corrected. Elemental analyses were performed with Exeter Analytical, Inc. CE-440F. Column chromatography was carried out using Merck silica gel 60, Daiso silica gel 1001W, or neutral alumina activity II-III, 70-230 mesh ASTM. Gel permeation chromatography (GPC) was performed using a JAI model LC-908 recycling preparative HPLC equipped with JAIGEL-1H-40 and -2H-40 columns (40 x 600 mm) with toluene as eluent. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) was carried out with Rigaku DSC8230L under nitrogen atmosphere. Absorption spectra were recorded on SHIMADZU UV-Vis-NIR scanning spectrophotometer (Model UV-3101-PC). Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) measurements were performed on BAS-ALS620B electrochemical analyzer using a standard three-electrode cell consisting of Pt working electrodes, a Pt wire counter electrode, and a Ag/AgNO₃ reference electrode under nitrogen atmosphere. The potentials were calibrated with ferrocene as an external standard. Atomic force field microscopy (AFM) and scanning electronic microscopy (SEM) measurements were carried out with KEYENCE, Nanoscale Hybrid Microscope VN-8000 (tapping mode) and KEYENCE VE-9800, respectively. Electric conductivity measurements were performed with Advantest R6551 Digital Multimeter. All reactions were carried out under nitrogen atmosphere. THF was freshly distilled from sodium benzophenone ketyl before use, and other solvents were purified with standard methods.

Synthetic Methods

Decakis[2-(4,5-bis(butylthio)-1,3-dithiol-2-ylidene)-(1,3)-dithiolo[4,5-c]-N-pyrrolyl]biphenyl (4b)

To a DMF-THF (5 + 5 mL) solution of **6** (303 mg 0.72 mmol) was adeded NaH (60% oil dispersion, 33 mg, 0.83 mmol) at 0 °C. After stirring for 30 min at the same temperature, decafluorobiphenyl (12 mg, 0.36 mmol) was added. The reaction mixture was allowed to warm to room temperature over 9 hours, and then it was heated up to 70 °C and stirred for 3 hours. After addition of H₂O, the aqueous phase was extracted by THF, and then combined organic phase was washed with brine, and dried over MgSO₄. Concentration in vacuo gave a dark oil, which was subjected to column chromatography (Al₂O₃; eluent, CH₂Cl₂) and GPC (eluent, toluene), and re-crystalized from CH₂Cl₂ and hexane to give **4b** as a dark-yellow solid in 44% yield (67 mg, 0.016 mmol). dec. > 226 °C; ¹H NMR (500 MHz,

CDCl₃) δ 5.98 (s, 4H), 5.86 (s, 8H), 5.65 (s, 8H), 2.84-2.79 (t, J = 7.3 Hz, 40H), 1.68-1.58 (m, 40H), 1.44-1.39 (m, 40H), 0.97-0.89 (m, 60H); ¹³C NMR (125 MHz, CDCl₃) δ 132.35, 127.64, 127.52, 126.56, 125.17, 124.96, 124.42, 117.70, 117.46, 115.18, 114.86, 112.27, 112.15. 111.99, 111.72, 111.66, 36.04, 35.99, 31.76, 21.73, 21.70, 21.67, 13.68, 13.64; UV-vis (CH₂Cl₂/CH₃CN 2:1) λ_{max} nm (log ε) 298 (4.65), 322 (4.59), 370 (4.21); LDI-TOF-MS: calcd for MH⁺, C₁₇₂H₂₀₀N₁₀S₆₀: 4329.9; found 4331.5. Anal. Calcd for C₁₇₂H₂₀₀N₁₀S₆₀: C, 47.69; H, 4.65; N, 3.23. Found: C, 47.98; H, 4.72; N, 3.20.

Decakis(N-pyrrolyl)biphenyl (5)

To a DMF (20 mL) solution of pyrrole (679 mg 10.0 mmol) was adeded NaH (60% oil dispersion, 420 mg, 10.5 mmol) at 0 °C. After stirring for 30 min at the same temperature, decafluorobiphenyl (167 mg, 0.50 mmol) was added. The reaction mixture was heated up to 80 °C and stirred for overnight. After addition of H₂O, the aqueous phase was extracted by ether, and then combined organic phase was washed with brine, and dried over MgSO₄. Concentration in vacuo gave a pale-yellow solid, which was subjected to column chromatography (SiO₂; eluent, Hexane: CH₂Cl₂ = 2: 3) and crystalized from CH₂Cl₂ and hexane to give **5** as colorless prisms in 96% yield (378 mg, 0.47 mmol). dec. > 311 °C; ¹H NMR (500 MHz, CDCl₃) δ 6.08 (dd, *J* = 2.1, 2.1 Hz, 4H), 6.03-5.98 (m, 28H), 5.96 (dd, *J* = 2.2, 2.2 Hz, 8H); ¹³C NMR (125 MHz, CDCl₃) δ 136.89, 136.46, 133.53, 127.57, 121.46, 120.87(2C), 110.55, 110.40, 109.86; EI-MS: calcd for M⁺, C₅₂H₄₀N₁₀: 804.3; found 804.; Anal. Calcd for C₅₂H₄₀N₁₀: C, 77.59; H, 5.01; N, 17.40. Found: C, 77.20; H, 4.74; N, 17.22.

S2. ¹H and ¹³C NMR spectra

Figure S2-1. ¹H NMR of 4b (CDCl₃, 500 MHz)

Figure S2-2. ¹³C NMR of **4b** (CDCl₃, 125 MHz)

Figure S2-3. ¹H NMR of **5** (CDCl₃, 500 MHz)

Figure S2-4. ¹³C NMR of **5** (CDCl₃, 125 MHz)

S3. Chemical oxidations of 4b

Figure S3-1. Absorption spectra of **4b** (0.02 mM) in the presence of various amount of oxidant, $Fe(ClO_4)_3 \cdot 6H_2O$ in a mixture of CH_2Cl_2 and CH_3CN (2:1, v/v) at room temperature.

S4. XRD patterns and SEM images of self-assembled 4b and their conductivities

Figure S4-1. (a) SEM images and (b) XRD patterns of **4b-particle**. For SEM measurements, the samples were prepared by casting a suspension of nanostructures onto a cleaned Si wafer, followed by drying. The conductivities for these assembled structures were *measured by two-probe technique* using fine gold wires (10 μ m diameter) attached to the pellets made of fibers, particles or films with carbon paste. Thickness of the pellets and spin coat films were estimated by AFM with tapping mode. The values are averages of two measurements by preparing different samples.

 $(CH_2CI_2 : hexane = 1:4, v/v)$

 δ_{rt} = 7.8 x 10⁻² S/cm (after I₂ dope)

S5. Single crystal structure of 5

X-ray data were taken on a Bruker Smart APEX diffractometer equipped with a CCD area detector with graphite-monochromated MoKa. radiation ($\lambda = 0.71073$ Å). The structure was solved by direct methods (SHELXTL) and refined by the full-matrix least-squares method on F^2 (SHELXL-97). Non-hydrogen atoms were refined anisotropically, and hydrogen atoms were placed using AFIX instructions.

Figure S5-1. ORTEP drawings of 5.

Table S5-1. Crystal data and structure refinement for 5.

Identification code	5			
Empirical formula	C52 H40 N10			
Formula weight	804.94			
Temperature	293(2) K			
Wavelength	0.71073 Å			
Crystal system	orthorhombic			
Space group	Pbca			
Unit cell dimensions	a = 14.853(3) Å	$\alpha = 90^{\circ}$.		
	b = 22.747(3) Å	$\beta = 90^{\circ}$.		
	c = 25.640(4) Å	$\gamma = 90^{\circ}$.		
Volume	8663(2) Å ³			
Z	8			
Density (calculated)	1.234 Mg/m ³			
Absorption coefficient	0.076 mm ⁻¹			
F(000)	3376			
Crystal size	0.40 x 0.20 x 0.30 mm ³			
Theta range for data collection	1.59 to 23.28°.			
Index ranges	-16<=h<=16, -25<=k<=22, -28<=l<=27			
Reflections collected	36688			
Independent reflections	6235 [R(int) = 0.0468]			
Completeness to theta = 23.28°	99.8 %			
Absorption correction	Empirical			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	6235 / 0 / 559			
Goodness-of-fit on F ²	1.035			
Final R indices [I>2sigma(I)]	R1 = 0.0431, $wR2 = 0.1172$			
R indices (all data)	R1 = 0.0686, $wR2 = 0.1430$			
Largest diff. peak and hole	0.151 and -0.214 e.Å ⁻³			

S6. DFT calculations of decafluorobiphenyl and 4a^[1]

The optimizations were performed with D_2 symmetry for **4a** at the RB3LYP/6-31G (d) level of theory.

Figure S6-1. (a) LUMO of decafluorobiphenyl, and (b) optimized structure and (c) HOMO and LUMOs of 4a.

(a) LUMO of decafluorobiphenyl

Dihedral angle between pentafluorophenyl groups: 54°

According to the LUMO of decafluorobiphenyl, the orbitals are preferentially located at the *ortho-* and *para-*positions (C_2 , C_2 ', C_4 , and C_4 '), indicating that the S_NAr reactions at these positions are favorable. However, once less hindered positions of the biphenyl moiety, *i.e.*, C_3 , C_3 ', C_4 , C_4 ', C_5 , and C_5 ', are substituted, complete substitution at the *ortho-*positions, *i.e.*, C_2 , C_2 ', C_6 , and C_6 ', is hampered in the case with bulky substituent **6**, even at higher temperatures.

(b) Optimized structure of 4a

Dihedral angle between the phenyl groups: 71°

(c) Molecular orbitals of 4a

Table S8-1. Atomic coordination of 4a (D2 symmetry)

					63	16	3.198802	-8.047977	-2.308064
Center	Atomic	Coc	ordinates (An	gstroms)	64	16	4.716419	-6.031281	-3.909317
Number	Numbe	r X	Y	Z	65	7	-1.405379	2.023539	0.776464
			-		66	6	-1.248528	3.383926	1.032351
1	6	0.00000	0 000000	0 750307	67	6	-2 390561	1 855898	-0 201009
2	6	-0 711951	0.990036	1462852	68	6	-2 118789	4 061884	0.221062
3	6	-0.735648	0.974842	2 875487	69	1	-0 523328	3 73//38	1 748419
4	6	0.755040	0.074042	2.070407	70	6	-9 999959	2 101065	-0 551549
5	6	0.735648	-0.074842	2 875487	70	1	-2.650052	0.881833	-0.560967
0 6	C C	0.755040	-0.000026	1 469959	71	16	-9 597010	5 757760	0.000907
0	0 C	0.711951	-0.990036	1.462692	12	10	-2.527910	0.707709 0.701701	-0.032663
0	6	-0.711051	-0.000000	-0.750307	13	10	-4.060327	5.721791	-1.660142
8	6	-0.711951	-0.990036	-1.462892	74	6	-3.471388	0.411777	-1.517289
9	6	-0.735648	-0.974842	-2.875487	75	6	-3.751186	6.355101	-2.441672
10	6	0.000000	0.000000	-3.579419	76	10	-3.198802	8.047977	-2.308064
11	6	0.735648	0.974842	-2.875487	77	16	-4.716419	6.031281	-3.909317
12	6	0.711951	0.990036	-1.462852	78	7	-1.405379	-2.023539	-0.776464
13	7	0.000000	0.000000	4.993587	79	6	-2.390561	-1.855898	0.201009
14	6	-1.132254	-0.116620	5.797075	80	6	-1.248528	-3.383926	-1.032351
15	6	1.132254	0.116620	5.797075	81	6	-2.838852	-3.101965	0.551542
16	6	-0.709424	-0.074009	7.100603	82	1	-2.672142	-0.881833	0.560967
17	1	-2.117344	-0.189348	5.363811	83	6	-2.118789	-4.061884	-0.221062
18	6	0.709424	0.074009	7.100603	84	1	-0.523328	-3.734438	-1.748412
19	1	2.117344	0.189348	5.363811	85	16	-4.060327	-3.721791	1.660142
20	16	-1.515265	-0.154121	8.660325	86	16	-2.527910	-5.757769	0.032883
21	16	1.515265	0.154121	8.660325	87	6	-3.471388	-5.411777	1.517289
22	6	0.000000	0.000000	9.609790	88	6	-3.751186	-6.355101	2.441672
23	6	0.000000	0.000000	10.959239	89	16	-4.716419	-6.031281	3.909317
24	16	-1.490085	-0.158032	11.936945	90	16	-3.198802	-8.047977	2.308064
25	16	1.490085	0.158032	11.936945	91	7	-1.480896	-1.942837	-3.589179
26	$\overline{7}$	-1.480896	1.942837	3.589179	92	6	-2.857057	-2.132919	-3.480626
27	6	-0.959351	2.839772	4.519266	93	6	-0.959351	-2.839772	-4.519266
28	6	-2.857057	2.132919	3.480626	94	6	-3.195573	-3.149732	-4.334979
29	6	-2.004756	3.593955	4.985394	95	1	-3.448049	-1.545139	-2.795797
30	1	0.089035	2.830833	4.773372	96	6	-2.004756	-3.593955	-4.985394
31	6	-3.195573	3.149732	4.334979	97	1	0.089035	-2.830833	-4.773372
32	1	-3.448049	1.545139	2.795797	98	16	-4.685550	-4.004543	-4.723751
33	16	-2.163046	4.943186	6.106949	99	16	-2.163046	-4.943186	-6.106949
34	16	-4.685550	4.004543	4.723751	100	6	-3.954683	-4.867697	-6.115152
35	6	-3.954683	4.867697	6.115152	101	6	-4.700099	-5.454996	-7.075027
36	6	-4.700099	5.454996	7.075027	102	16	-6.486660	-5.420473	-7.084857
37	16	-3.994850	6.354003	8.448513	103	16	-3.994850	-6.354003	-8.448513
38	16	-6.486660	5.420473	7.084857	104	7	1.405379	2.023539	-0.776464
39	7	1.480896	-1.942837	3.589179	105	6	2.390561	1.855898	0.201009
40	6	0.959351	-2.839772	4.519266	106	6	1.248528	3.383926	-1.032351
41	6	2.857057	-2.132919	3.480626	107	6	2.838852	3.101965	0.551542
42	6	2.004756	-3.593955	4.985394	108	1	2.672142	0.881833	0.560967
43	1	-0.089035	-2.830833	4.773372	109	6	2.118789	4.061884	-0.221062
44	6	3.195573	-3.149732	4.334979	110	1	0.523328	3.734438	-1.748412
45	1	3.448049	-1.545139	2.795797	111	16	4.060327	3.721791	1.660142
46	16	2.163046	-4.943186	6.106949	112	16	2.527910	5.757769	0.032883
47	16	4.685550	-4.004543	4.723751	113	6	3.471388	5.411777	1.517289
48	6	3.954683	-4.867697	6.115152	114	6	3.751186	6.355101	2,441672
49	6	4,700099	-5.454996	7.075027	115	16	4.716419	6.031281	3.909317
50	16	3.994850	-6.354003	8.448513	116	16	3.198802	8.047977	2.308064
51	16	6 486660	-5 420473	7 084857	117	7	1 480896	1 942837	-3 589179
52	7	1 405379	-2 023539	0 776464	118	6	2 857057	2 132919	-3 480626
53	6	1 248528	-3 383926	1 032351	119	6	0.959351	2 839772	-4 519266
54	6	2.390561	-1.855898	-0.201009	120	6	3,195573	3.149732	-4.334979
55	6	2.118789	-4 061884	0.221062	191	1	3 448049	1 545199	-2 795797
56	1	0.523328	-3 734/38	1 748419	199	6	2 004756	3 593955	-4 985394
57	6	2 838852	-3 101965	-0.551549	199	1	-0.089035	2.830833	-4 773379
58	1	2.000002	-0.881833	-0 560967	120	16	4 685550	4 004549	-4 799751
50	16	2.072142	-5 757760	-0.030883	124	16	4.000000 9.169046	4.004040	-6 106040
60	16	4 060397	-3 791701	-1 660149	120	10 6	2.100040	4.867607	-6 115159
61	10 6	2 171999	-5 /11777	-1 517990	120	G	J.JJ4000 4 700000	5 454006	-7 075097
60	0	0.411000 9.751100	0.411///	1.011200 -9 111679	141	0 1 <i>C</i>	4.100099	J.4J4990 5 490479	-7 084957
02	0	0.701100	0.000101	2.4410/Z	120	10	0.400000	0.420473	1.004001

129	16	3.994850	6.354003	-8.448513	157	6	-6.637357	6.108090	8.701781	
130	7	0.000000	0.000000	-4.993587	158	1	-7.635702	6.178067	9.117603	
131	6	1.132254	-0.116620	-5.797075	159	6	-4.369705	7.589841	-4.659296	
132	6	-1.132254	0.116620	-5.797075	160	1	-4.744238	7.748762	-5.663711	
133	6	0.709424	-0.074009	-7.100603	161	6	-3.691082	8.491290	-3.942346	
134	1	2.117344	-0.189348	-5.363811	162	1	-3.434758	9.488127	-4.281596	
135	6	-0.709424	0.074009	-7.100603	163	6	3.691082	8.491290	3.942346	
136	1	-2.117344	0.189348	-5.363811	164	1	3.434758	9.488127	4.281596	
137	16	1.515265	-0.154121	-8.660325	165	6	4.369705	7.589841	4.659296	
138	16	-1.515265	0.154121	-8.660325	166	1	4.744238	7.748762	5.663711	
139	6	0.000000	0.000000	-9.609790	167	6	5.523112	6.525692	-9.311337	
140	6	0.000000	0.000000	-10.959239	168	1	5.487202	6.982929	-10.293237	
141	16	1.490085	-0.158032	-11.936945	169	6	6.637357	6.108090	-8.701781	
142	16	-1.490085	0.158032	-11.936945	170	1	7.635702	6.178067	-9.117603	
143	6	6.637357	-6.108090	8.701781	171	6	-0.664730	0.070735	-13.490880	
144	1	7.635702	-6.178067	9.117603	172	1	-1.280548	0.136144	-14.380265	
145	6	5.523112	-6.525692	9.311337	173	6	0.664730	-0.070735	-13.490880	
146	1	5.487202	-6.982929	10.293237	174	1	1.280548	-0.136144	-14.380265	
147	6	-0.664730	-0.070735	13.490880	175	6	-5.523112	-6.525692	-9.311337	
148	1	-1.280548	-0.136144	14.380265	176	1	-5.487202	-6.982929	-10.293237	
149	6	0.664730	0.070735	13.490880	177	6	-6.637357	-6.108090	-8.701781	
150	1	1.280548	0.136144	14.380265	178	1	-7.635702	-6.178067	-9.117603	
151	6	-3.691082	-8.491290	3.942346	179	6	4.369705	-7.589841	-4.659296	
152	1	-3.434758	-9.488127	4.281596	180	1	4.744238	-7.748762	-5.663711	
153	6	-4.369705	-7.589841	4.659296	181	6	3.691082	-8.491290	-3.942346	
154	1	-4.744238	-7.748762	5.663711	182	1	3.434758	-9.488127	-4.281596	
155	6	-5.523112	6.525692	9.311337						
156	1	-5.487202	6.982929	10.293237						

S6. References

 Gaussian 03, Revision E.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, .; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Wallingford CT, 2004.