A one pot synthesis of [1,3,4]-oxadiazoles mediated by molecular iodine

Srimanta Guin, Saroj Kumar Rout, Tuhin Ghosh, Nilufa Khatun

and Bhisma K. Patel*

Department of Chemistry, Indian Institute of Technology Guwahati, 781 039, Assam, India

patel@iitg.ernet.in

List of Contents

1.	Crystallographic description	S2-S3
2.	Spectral data	S4-S7
3.	Spectra (¹ H NMR, ¹³ C NMR and HRMS) of compounds	S8-S27

Experimental:

General remarks

Unless otherwise stated, all reagents were purchased from commercial sources and used without further purification. Reaction progress was monitored by TLC using Merck silica gel 60 F254 (0.25mm) with detection by UV or iodine. Chromatography was performed using Merck silica gel (60-120) mesh size with freshly distilled solvents. Columns were typically packed as slurry and equilibrated with the appropriate solvent system prior to use.1H NMR (400 MHz) and 13C NMR (100 MHz) spectra were recorded on a Varian FT-400 MHz instrument using TMS as an internal standard. Data are presented as follows: chemical shift (ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, b = broad, brs = broad singlet, brm= broad multiplet, coupling constant *J* (Hz). Elemental analyses were carried out on a Perkin–Elmer 2400 automatic carbon, hydrogen, nitrogen and sulfur analyser. Melting points were recorded on Buchi B-545 melting point apparatus and are uncorrected. IR spectra were recorded in KBr or neat on a Nicolet Impact 410 spectrophotometer. Mass data were obtained with a WATERS MS system, Q-tof premier and data analyzed using Mass Lynx4.1.

Crystallographic Analysis: Crystal data were collected with Bruker Smart Apex-II CCD diffractometer using graphite by using graphite-monochromated Mo- K_{α} radiation ($\lambda = 0.71073 \text{ Å}$) at 298 K. Cell parameters were retrieved using SMART ¹USA, 1995 software and refined with SAINT¹ for all observed reflections. Data reduction was performed with the SAINT software and corrected for Lorentzian and polarization effects. Absorption corrections were applied with the SADABS program.².The structures were solved by direct methods implemented in the SHELX-97³ program and refined by full-matrix least-squares methods on F^2 . All non-hydrogen atom positions were located in difference Fourier maps and refined anisotropically. The hydrogen atoms were placed in their geometrically generated positions. The crystals were isolated in rectangular shape from ethyl acetate and hexane mixture at room temperature.

Fig. 2 ORTEP view of *N*-(4-Methoxyphenyl)-1,3,4-oxadiazol-2-amine (4a). Crystallographic description of *N*-(4-Methoxyphenyl)-1,3,4-oxadiazol-2-amine (4a): C₉H₉N₃O₂, crystal dimensions 0.38 x 0.32 x 0.28 mm, $M_r = 191.19$, triclinic, space group P-1, a = 8.2269(8), b = 10.1265(11), c = 11.1995(11) Å, $\alpha = 84.312(6)^\circ$, $\beta = 86.837(6)^\circ$, $\gamma = 76.573(7)^\circ$, V = 902.56(16) Å³, Z = 4, $\rho_{calcd} = 1.407$ mg/m³, $\mu = 0.103$ mm⁻¹, F(000) = 400.0, reflection collected / unique = 4510 / 2747, refinement method = full-matrix least-squares on F^2 , final *R* indices [$I > 2\sigma(I)$]: $R_1 = 0.0782$, $wR_2 = 0.2253$, *R* indices (all data): $R_1 = 0.1067$, $wR_2 = 0.2489$, goodness of fit = 1.093. CCDC-824583 for *N*-(4-Methoxyphenyl)-1,3,4oxadiazol-2-amine (4a) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

Spectral Data

N-Phenyl-1,3,4-oxadiazol-2-amine (1a): Pinkish solid; M.p. 149-150 °C (Lit. M.p. 153-154 °C).^{4 1}H NMR (400 MHz, CDCl₃): δ = 7.01 (t, 1H, *J* = 7.6 Hz), 7.31 (t, 2H, *J* = 7.6 Hz), 7.52 (d, 2H, *J* = 8.0 H), 8.44 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 118.9, 123.9, 130.3, 139.9, 149.4, 162.1 ppm. IR (KBr): 3255, 3155, 3092, 3044, 2316, 1614, 1591, 1211, 1098, 1012, 755 cm⁻¹. C₈H₇N₃O (161.08): calcd. C 59.65, H 4.38, N 26.09; found C 59.61, H 4.32, N 26.13.

*N-p-***Tolyl-1,3,4-oxadiazol-2-amine (2a):** White solid; M.p. 129-132 °C. ¹H NMR (400 MHz, CD₃OD): $\delta = 2.29$ (s, 3H), 7.14 (d, 2H, J = 8.4 Hz), 7.38 (d, 2H, J = 8.4 Hz), 8.43 (s, 1H) ppm. ¹³C NMR (100 MHz, CD₃OD): $\delta = 20.9$, 119.0, 130.8, 133.6, 137.4, 149.3, 162.3 ppm. IR (KBr): 3159, 2956, 2923, 2854, 1626, 1614, 1596, 1514, 1217, 1095, 1015, 819 cm⁻¹. C₉H₉N₃O (175.19): calcd. C 61.70, H 5.18, N 23.99; found C 61.66, H 5.23, N 23.96.

N-(2-Methoxyphenyl)-1,3,4-oxadiazol-2-amine (3a): White solid; M.p. 103-105 °C. ¹H NMR (400 MHz, CD₃OD): δ = 3.91 (s, 3H), 6.94-7.07 (m, 3H), 7.95 (d, 1H, *J* = 8 Hz), 8.46 (s, 1H) ppm. ¹³C NMR (100 MHz, CD₃OD): δ = 56.4, 111.9, 119.7, 121.9, 124.7, 128.7, 149.5, 150.2, 162.3 ppm. IR (KBr): 3367, 3147, 3087, 2940, 2840, 1623, 1590, 1548, 1464, 1252, 1097, 1023, 773, 758 cm⁻¹. C₉H₉N₃O₂ (191.19): calcd. C 56.54, H 4.74, N 21.98; found C 56.51, H 4.72, N 21.91.

N-(4-Methoxyphenyl)-1,3,4-oxadiazol-2-amine (4a): Pink solid; M.p. 164-166 °C. ¹H NMR (400 MHz, CD₃OD): δ = 3.76 (s, 3H), 6.90 (d, 2H, *J* = 9.2 Hz), 7.40 (d, 2H, *J* = 9.2), 8.40 (s, 1H) ppm. ¹³C NMR (100 MHz, CD₃OD): δ = 56.1, 115.6, 120.9, 133.1, 149.3, 157.3, 162.6 ppm. IR (KBr): 3234, 3142, 3046, 2341, 1614, 1511, 1237, 1097, 1032, 829 cm⁻¹. C₉H₉N₃O₂ (191.19): calcd. C 56.54, H 4.74, N 21.98; found C 56.59, H 4.69, N 21.97.

N-(**3,4-Dimethylphenyl**)-**1,3,4-oxadiazol-2-amine** (**5a**):. White solid; M.p. 133-135 °C. ¹H NMR (400 MHz, CD₃OD): $\delta = 2.17$ (s, 3H), 2.21 (s, 3H), 7.03 (d, 1H, J = 8.4 Hz), 7.19 (d, 1H, J = 8.4 Hz), 7.25 (s, 1H), 8.40 (s, 1H) ppm. ¹³C NMR (100 MHz, CD₃OD): $\delta = 19.3$, 20.2, 116.5, 120.2, 131.2, 132.1, 137.5, 138.6, 149.2, 162.2 ppm. IR (KBr): 3444, 3228,

2923, 2854, 2288, 1626, 1503, 1328, 1096, 871, 817, 723 cm⁻¹. C₁₀H₁₁N₃O (189.22): calcd. C 63.48, H 5.86, N 22.21; found C 63.44, H 5.89, N 22.19.

N-(2-Chlorophenyl)-1,3,4-oxadiazol-2-amine (6a): White solid; M.p. 57-60 °C. ¹H NMR (400MHz, CD₃OD): δ = 7.07 (dt, 1H, J_1 = 8.0 Hz, J_2 = 1.6 Hz), 7.31 (dt, 1H, J_1 = 8.0 Hz, J_2 = 1.6 Hz), 7.41 (dd, 1H, J_1 = 8.0 Hz, J_2 = 1.2 Hz), 8.02 (dd, 1H, J_1 = 7.6 Hz, J_2 = 1.6 Hz), 8.51 (s, 1H) ppm. ¹³C NMR (100 MHz, CD₃OD): δ = 122.6, 125.9, 129.0, 131.0, 136.5, 143.4, 150.1, 162.3 ppm. IR (KBr): 3428, 3230, 2357, 1614, 1444, 1321, 1120, 1039, 737 cm⁻¹. C₈H₆ClN₃O (195.61): calcd. C 49.12, H 3.09, N 21.48; found C 49.16, H 3.05, N 21.41.

N-(**3-Chlorophenyl**)-**1,3,4-oxadiazol-2-amine** (**7a**): White solid; M.p. 119-122 °C. ¹H NMR (400 MHz, CD₃OD): $\delta = 6.96$ (d, 1H, J = 8.0 Hz), 7.24 (t, 1H, J = 8.4 Hz), 7.36 (d, 1H, J = 8.4 Hz), 7.63 (s, 1H), 8.47 (s, 1H) ppm. ¹³C NMR (100 MHz, CD₃OD): $\delta = 116.8$, 118.4, 123.5, 131.5, 135.9, 141.2, 149.6, 161.6 ppm. IR (KBr): 3435, 3153, 2924, 2853, 1687, 1599, 1502, 1484, 1217, 1065, 1025, 904, 852, 755 cm⁻¹. HRMS (ESI): calcd. for C₈H₆ClN₃O (MH⁺) 196.0272; found 196.0278.

N-(**4-Bromophenyl**)-**1,3,4-oxadiazol-2-amine** (**8a**): Pink solid; M.p. 167-169 °C. ¹H NMR (400 MHz, CD₃OD): δ = 7.38-7.44 (m, 4 H), 8.45 (s, 1H) ppm. ¹³C NMR (100 MHz, CD₃OD): δ = 115.9, 120.4, 133.2, 139.2, 149.5, 161.7 ppm. IR (KBr): 3277, 3092, 2925, 2854, 2399, 1609, 1405, 1093, 1008, 825, 777 cm⁻¹. C₈H₆BrN₃O (240.06): calcd. C 40.03, H 2.52, N 17.50; found C 40.07, H 2.46, N 17.48.

N-(**3**-Nitrophenyl)-1,3,4-oxadiazol-2-amine (**9**a): Yellowish white solid; M.p. 189-191 °C. ¹H NMR (400 MHz, CD₃OD): δ = 7.53 (t, 1H, *J* = 8.4 Hz), 7.83 (m, 2H), 8.52 (m, 3H) ppm. ¹³C NMR (100 MHz, CD₃OD): δ = 113.0, 118.0, 124.2, 131.4, 141.4, 149.9, 150.4, 161.5 ppm. IR (KBr): 3437, 3329, 3153, 2856, 1685, 1520, 1352, 1226, 1078, 1025, 934, 834, 735 cm⁻¹. C₈H₆N₄O₃ (206.16): calcd. C 46.61, H 2.93, N 27.18; found C 46.57, H 2.98, N 27.11. HRMS (ESI): calcd. for C₈H₆N₄O₃ (MH⁺) 207.0513; found 207.0523.

N-(4-(Trifluoromethyl)phenyl)-1,3,4-oxadiazol-2-amine (10a): White solid; M.p. 166-169 ^oC. ¹H NMR (400 MHz, CD₃OD): δ = 7.59 (d, 2H, *J* = 8.4 Hz), 7.69 (d, 2H, *J* = 8.4 Hz), 8.51 (s, 1H) ppm. ¹³C NMR (100 MHz, CD₃OD): δ = 118.4, 124.7, 125.1, 125.4, 127.5, 127.6,

143.4, 149.9, 161.6 ppm. IR (KBr): 3444, 3268, 2924, 1614, 1422, 1332, 1164, 1113, 1070, 1015, 838, 787 cm⁻¹. C₉H₆F₃N₃O (229.16): calcd. C 47.17, H 2.64, F 24.87, N 18.34; found C 47.23, H 2.61, F 24.84, N 18.37. HRMS (ESI): calcd. for C₉H₆F₃N₃O (MH⁺) 230.0536; found 230.0539.

N-(Naphthalen-1-yl)-1,3,4-oxadiazol-2-amine (11a): Black solid; M.p. 136-139 °C. ¹H NMR (400 MHz, CD₃OD): δ = 7.47-7.57 (m, 3H), 7.70 (d, 1H, *J* = 8 Hz), 7.86-7.91 (m, 2H), 8.12 (m, 1H), 8.48 (s, 1H) ppm. ¹³C NMR (100 MHz, CD₃OD): δ = 119.4, 122.8, 126.2, 126.8, 127.36, 127.42, 128.4, 129.6, 135.0, 135.9, 149.8, 163.6. ppm. IR (KBr): 3175, 2961, 2845, 1574, 1400, 1217, 1088, 1006, 780, 724 cm⁻¹. C₁₂H₉N₃O (211.22): calcd. C 68.24, H 4.29, N 19.89; found C 68.29, H 4.26, N 19.83. HRMS (ESI): calcd for C₁₂H₉N₃O (MH⁺) 212.0818; found 212.0824.

N,5-Diphenyl-1,3,4-oxadiazol-2-amine (12a): White solid; M.p. 218-220 °C.(Lit. M.p. 214.9-215.9 °C).^{5 1}H NMR (400 MHz, CD₃OD): $\delta = 7.06$ (t, 1H, J = 7.6 Hz), 7.36 (t, 2H, J = 6.8 Hz), 7.55 (m, 5H), 7.96 (m, 2H) ppm. ¹³C NMR (100 MHz, CD₃OD + DMSO- d_6): $\delta = 118.9$, 123.9, 125.4, 127.2, 130.5, 130.6, 132.6, 140.0, 160.2, 162.0 ppm. IR (KBr): 3446, 3264, 3053, 2923, 1620, 1580, 1500, 1444, 1242, 1050, 1021, 745, 722, 685 cm⁻¹. C₁₄H₁₁N₃O (237.26): calcd. C 70.87, H 4.67, N 17.71; found C 70.81; H 4.69, N 17.75. HRMS (ESI): calcd. for C₁₄H₁₁N₃O (MH⁺) 238.0975; found 238.0981.

5-Phenyl-*N***-***p***-tolyl-1,3,4-oxadiazol-2-amine (13a):** White solid; M.p. 214-217 °C (Lit. M.p. 214-216 °C).⁶ ¹H NMR (400 MHz, CD₃OD): $\delta = 2.31$ (s, 3H), 7.17 (d, 2H, J = 8.4 Hz), 7.43 (d, 2H, J = 8.4 Hz), 7.54 (m, 3H), 7.95 (m, 2H) ppm. ¹³C NMR (100 MHz, CD₃OD + DMSO*d*₆): $\delta = 21.2$, 119.0, 125.5, 127.1, 129.0, 130.6, 131.0, 132.5, 137.6, 159.9, 162.0 ppm. IR (KBr): 3435, 3298, 3044, 2917, 1613, 1581, 1518, 1286, 1244, 1232, 1050, 818, 719, 682 cm⁻¹. C₁₅H₁₃N₃O (251.29): calcd. C 71.70, H 5.21, N 16.72; found C 71.74, H 5.17, N 16.66.

N-(2-Fluorophenyl)-5-phenyl-1,3,4-oxadiazol-2-amine (14a): White solid; M.p. 120-122 ^oC. ¹H NMR (400 MHz, CD₃OD): $\delta = 7.05$ (m, 1H), 7.13-7.20 (m, 2H), 7.49 (m, 3H), 7.93 (m, 2H), 8.09 (t, 1H, 8.0 Hz) ppm. ¹³C NMR (100 MHz, CD₃OD): $\delta = 116.4$, 116.6, 121.8, 125.0, 125.1, 125.2, 125.8, 125.9, 127.2, 127.8, 127.9, 130.4, 132.5, 153.1, 155.5, 160.7, 162.0 ppm. IR (KBr): 3391, 3063, 1620, 1581, 1557, 1488, 1461, 1252, 1051, 749, 719, 688

cm⁻¹. $C_{14}H_{10}FN_{3}O$ (255.24): calcd. C 65.88, H 3.95, N 16.46; found C 65.83, H 3.99, N 16.41. HRMS (ESI): calcd. for $C_{14}H_{10}FN_{3}O$ (MH⁺) 256.0881; found 256.0883.

N-Cyclohexyl-5-phenyl-1,3,4-oxadiazol-2-amine (15a): White solid; M.p. 146-148 °C (Lit. M.p. 152.8-152.9 °C).⁷ ¹H NMR (400 MHz, CD₃OD): $\delta = 1.22$ -1.48 (m, 5H), 1.66 (m, 1H), 1.81 (m, 2H), 2.07 (m, 2H), 3.49 (m, 1H), 7.49 (m, 3H), 7.87 (m, 2H) ppm ¹³C NMR (100 MHz, CD₃OD): $\delta = 26.1$, 26.8, 34.0, 53.77, 125.6, 126.8, 130.3, 132.1, 159.9, 164.8 ppm. IR (KBr): 3264, 3022, 2919, 2852, 1621, 1586, 1452, 1379, 1346, 1048, 770, 736, 693 cm⁻¹. C₁₄H₁₇N₃O (243.31): calcd. C 69.11, H 7.04, N 17.27; found C 69.15, H 7.06, N 17.20.

(*R*)-5-Phenyl-*N*-(1-phenylethyl)-1,3,4-oxadiazol-2-amine (16a). White solid; M.p. 179-180 ^oC (Lit. M.p. 181-183 ^oC).^{7 1}H NMR (400 MHz, CD₃OD): $\delta = 1.58$ (d, 3H, J = 6.8 Hz), 4.94 (m, 1H), 7.25 (m, 1H), 7.35 (t, 2H, J = 8.0 Hz), 7.42 (m, 2H), 7.49 (m, 3H), 7.85 (m, 2H) ppm. ¹³C NMR (100 MHz, CD₃OD): $\delta = 23.6$, 54.6, 125.5, 126.9, 127.2, 128.6, 129.8, 130.3, 132.2, 142.7, 145.2, 164.7 ppm. IR (KBr): 3231, 3036, 2976, 2936, 1614, 1494, 1256, 1127, 1048, 700, 691 cm⁻¹. C₁₆H₁₅N₃O (265.31): calcd. C 72.43, H 5.70, N 15.84; found C 72.39, H 5.73, N 15.77. HRMS (ESI): calcd. for C₁₆H₁₅N₃O (MH⁺) 266.1288; found 266.1293.

References:

- 1 SMART, SAINT and XPREP, Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin.
- 2 G. M. Sheldrick, *SADABS: Empirical Absorption and Correction Software*, University of Gottingen, Institut fur Anorganische Chemieder Universitat, Tammanstrasse 4, D-3400 Gottingen, Germany, 1999–2003.
- 3 G. M. Sheldrick, SHELXS-97, University of Gottingen, Germany, 1997.
- 4 G. Werber, J. Heterocycl. Chem., 1977, 14, 1385.
- 5 Y. Xie, J. Liu, P. Yang, X. Shi and J. Li, *Tetrahedron*, 2011, 67, 5369.
- 6 E. L. P. Chekler, H. M. Elokdah and J. Butera, *Tetrahedron Lett.*, 2008, 49, 6709.
- 7 C. G. Levins and Z. -K. Wan, Org. Lett., 2008, 10, 1755.

SPECTRA

N-Phenyl-1,3,4-oxadiazol-2-amine (1a): ¹H NMR (CD₃OD, 400 MHz)

N-Phenyl-1,3,4-oxadiazol-2-amine (1a): ¹³C NMR (CD₃OD, 100 MHz)

N-p-Tolyl-1,3,4-oxadiazol-2-amine (2a): ¹H NMR (CD₃OD, 400 MHz)

N-p-Tolyl-1,3,4-oxadiazol-2-amine (2a): ¹³C NMR (CD₃OD, 100 MHz)

N-(2-Methoxyphenyl)-1,3,4-oxadiazol-2-amine (3a): ¹³C NMR (CD₃OD, 100 MHz)

N-(4-Methoxyphenyl)-1,3,4-oxadiazol-2-amine (4a): ¹H NMR (CD₃OD, 400 MHz)

N-(4-Methoxyphenyl)-1,3,4-oxadiazol-2-amine (4a): ¹³C NMR (CD₃OD, 100 MHz)

N-(3,4-Dimethylphenyl)-1,3,4-oxadiazol-2-amine (5a): ¹H NMR (CD₃OD, 400 MHz)

N-(2-Chlorophenyl)-1,3,4-oxadiazol-2-amine (6a): ¹³C NMR (CD₃OD, 100 MHz)

N-(3-Chlorophenyl)-1,3,4-oxadiazol-2-amine (7a): ¹H NMR (CD₃OD, 400 MHz)

N-(3-Chlorophenyl)-1,3,4-oxadiazol-2-amine (7a): ¹³C NMR (CD₃OD, 100 MHz)

N-(4-Bromophenyl)-1,3,4-oxadiazol-2-amine (8a): ¹H NMR (CD₃OD, 400 MHz)

N-(3-Nitrophenyl)-1,3,4-oxadiazol-2-amine (9a): ¹H NMR (CD₃OD, 400 MHz)

N-(3-Nitrophenyl)-1,3,4-oxadiazol-2-amine (9a): (Mass Spectra)

N-(4-(Trifluoromethyl)phenyl)-1,3,4-oxadiazol-2-amine (10a): ¹H NMR (CD₃OD, 400 MHz)

N-(4-(Trifluoromethyl)phenyl)-1,3,4-oxadiazol-2-amine (10a): ¹³C NMR (CD₃OD, 100 MHz)

N-(4-(Trifluoromethyl)phenyl)-1,3,4-oxadiazol-2-amine (10a): (Mass Spectra)

N-(Naphthalen-1-yl)-1,3,4-oxadiazol-2-amine (11a): ¹H NMR (CD₃OD, 400 MHz)

N-(Naphthalen-1-yl)-1,3,4-oxadiazol-2-amine (11a): ¹³C NMR (CD₃OD, 100 MHz)

N-(Naphthalen-1-yl)-1,3,4-oxadiazol-2-amine (11a): (Mass Spectra)

N,5-Diphenyl-1,3,4-oxadiazol-2-amine (12a): ¹H NMR (CD₃OD, 400 MHz)

N,5-Diphenyl-1,3,4-oxadiazol-2-amine (12a): ¹³C NMR (CD₃OD + DMSO-*d*₆, 100 MHz)

N,5-Diphenyl-1,3,4-oxadiazol-2-amine (12a): (Mass Spectra)

5-Phenyl-N-p-tolyl-1,3,4-oxadiazol-2-amine (13a): ¹H NMR (CD₃OD, 400 MHz)

N-(2-Fluorophenyl)-5-phenyl-1,3,4-oxadiazol-2-amine (14a): ¹H NMR (CD₃OD, 400 MHz)

N-(2-Fluorophenyl)-5-phenyl-1,3,4-oxadiazol-2-amine (14a): ¹³C NMR (CD₃OD , 100 MHz)

N-(2-Fluorophenyl)-5-phenyl-1,3,4-oxadiazol-2-amine (14a): (Mass Spectra)

N-Cyclohexyl-5-phenyl-1,3,4-oxadiazol-2-amine (15a): ¹³C NMR (CD₃OD , 100 MHz)

(*R*)-5-Phenyl-*N*-(1-phenylethyl)-1,3,4-oxadiazol-2-amine (16a): ¹H NMR (CD₃OD, 400 MHz)

(R)-5-Phenyl-N-(1-phenylethyl)-1,3,4-oxadiazol-2-amine (16a): ¹³C NMR (CD₃OD , 100 MHz)

(R)-5-Phenyl-N-(1-phenylethyl)-1,3,4-oxadiazol-2-amine (16a): (Mass Spectra)

Electronic Supplementary Material (ESI) for RSC Advances This journal is The Royal Society of Chemistry 2012