#### **Electronic Supporting Information (ESI)**

# New Chiral Coordination Polymers Constructed from Well Elaborated Achiral and Chiral Ligands

Yun-Wu Li, Ying Tao, Li-Fu Wang, Tong-Liang Hu, and Xian-He Bu\*

Department of Chemistry, and Tianjin Key Lab on Metal and Molecule-based Material Chemistry, Nankai University, Tianjin 300071, China

#### **Contents List**

- **1**. Scheme S1: Structures of two ligands: H<sub>2</sub>pdtp and H<sub>2</sub>cdtp.
- 2. Scheme S2: The route for ligands synthesis.
- **3**. Table S1: The selected bond lengths [Å] and angles [°] of CCPs 1 and 2.
- 4. Fig. S1-2: XRD of CCPs 1 and 2.
- 5. Fig. S3: Twisted conformations of ligands H<sub>2</sub>pdtp and their torsion dihedral angles.
- 6. Scheme S3: Two coordination modes of H<sub>2</sub>cdtp ligands.

• Corresponding author. E-mail: <u>buxh@nankai.edu.cn</u>. Fax: +86-22-23502458.

**1**. Scheme S1: Structures of two ligands: H<sub>2</sub>pdtp and H<sub>2</sub>cdtp.



2. Scheme S2: The route for ligands synthesis.<sup>S1</sup>



#### Reference

S1 (a) F. D. Popp, J. Heterocycl. Chem., 1974, 11, 79; (b) W. Ried, S. Aboul-Fetouh, Tetrahedron, 1988, 44, 3399; (c) Z. P. Demko, K. B. Sharpless, Org. Lett., 2001, 3, 4091; (d) Z. P.
Demko, K. B. Sharpless, J. Org. Chem., 2001, 66, 7945; (e) J. R. Li, Y. Tao, Q. Yu, X. H. Bu, H.
Sakamoto, S. Kitagawa, Chem.–Eur. J., 2008, 14, 2771; (f) Y. Tao, J. R. Li, Z. Chang, X. H. Bu, Cryst. Growth Des., 2010, 10, 564; (g) T. L. Hu, Y. Tao, Z. Chang, X. H. Bu, Inorg. Chem., 2011, 50, 10994.

## **3**. **Table S1**: The selected bond lengths [Å] and angles [°] of CCPs **1** and **2**.

| 1                                                           |            |                    |            |
|-------------------------------------------------------------|------------|--------------------|------------|
| Hg(1)-N(3A)                                                 | 2.268(6)   | Hg(1)-N(3)         | 2.268(6)   |
| Hg(1)-Cl(1)                                                 | 2.476(2)   | Hg(1)-Cl(1A)       | 2.476(2)   |
| N(3A)-Hg(1)-N(3)                                            | 116.7(3)   | N(3A)-Hg(1)-Cl(1)  | 106.32(18) |
| N(3)-Hg(1)-Cl(1)                                            | 101.78(18) | N(3A)-Hg(1)-Cl(1A) | 101.78(18) |
| N(3)-Hg(1)-Cl(1A)                                           | 106.32(18) | Cl(1)-Hg(1)-Cl(1A) | 124.91(11) |
| Symmetry transformations used to generate equivalent atoms: |            |                    |            |
| A: - y + 1, - x + 1, - z + 1/2; B: y, x, - z                |            |                    |            |
|                                                             |            | 2                  |            |
| Zn(1)-N(3)                                                  | 2.024(5)   | Zn(1)-N(17)        | 2.045(5)   |
| Zn(1)-N(16)                                                 | 2.059(5)   | Zn(1)-N(27A)       | 2.070(6)   |
| Zn(1)-N(2)                                                  | 2.583(6)   | Zn(3)-N(20B)       | 2.047(5)   |
| Zn(3)-N(6C)                                                 | 2.051(5)   | Zn(3)-N(23)        | 2.050(5)   |
| Zn(3)-N(10C)                                                | 2.060(5)   | Zn(3)-N(22)        | 2.475(6)   |
| Zn(2)-N(13)                                                 | 1.979(5)   | Zn(2)-N(26)        | 1.997(5)   |
| Zn(2)-N(30)                                                 | 2.042(5)   | Zn(2)-N(11)        | 2.509(6)   |
| O(1)-Zn(2)                                                  | 2.049(6)   |                    |            |
| N(3)-Zn(1)-N(17)                                            | 151.3(2)   | N(3)-Zn(1)-N(16)   | 106.6(2)   |
| N(17)-Zn(1)-N(16)                                           | 91.9(2)    | N(3)-Zn(1)-N(2)    | 69.49(18)  |
| N(17)-Zn(1)-N(2)                                            | 92.8(2)    | N(16)-Zn(1)-N(2)   | 80.74(19)  |
| N(23)-Zn(3)-N(10C)                                          | 111.7(2)   | N(20B)-Zn(3)-N(22) | 82.2(2)    |
| N(23)-Zn(3)-N(22)                                           | 70.0(2)    | N(10C)-Zn(3)-N(22) | 178.3(2)   |
| N(13)-Zn(2)-N(26)                                           | 114.0(2)   | N(13)-Zn(2)-N(30)  | 108.7(2)   |
| N(26)-Zn(2)-N(30)                                           | 89.6(2)    | N(13)-Zn(2)-O(1)   | 115.0(3)   |
| N(26)-Zn(2)-O(1)                                            | 127.4(3)   | N(30)-Zn(2)-O(1)   | 92.0(2)    |
| N(13)-Zn(2)-N(11)                                           | 72.1(2)    | N(26)-Zn(2)-N(11)  | 99.9(2)    |
| N(30)-Zn(2)-N(11)                                           | 169.2(2)   | O(1)-Zn(2)-N(11)   | 78.2(2)    |

Symmetry transformations used to generate equivalent atoms:

 $A: -x+2, \, y+1/2, \, \text{-} \, z+1/2; \, B: -x+3/2, \, \text{-} \, y+2, \, z+1/2; \, C: -x+5/2, \, \text{-} \, y+2, \, z+1/2$ 

4. Fig. S1-2: XRD of CCPs 1 and 2.



Fig. S1 XRD of compound 1.



Fig. S2 XRD of compound 2.

### 5. Fig. S3: Twisted conformations of ligands H<sub>2</sub>pdtp and their torsion dihedral

angles.



(b)The distortion angle  $\theta_2=63.973(12584)^\circ$ 

**6**. Scheme S3: Two coordination modes of  $H_2$ cdtp ligands.

