www.rsc.org/xxxxx

ARTICLE TYPE

<u>Supplementary information</u> Water-Mediated Structural Tunability of Alkyl/siloxane Hybrid: from Amorphous to Lamellar Structure or Bilamellar Superstructure

⁵ S. C. Nunes^{a,b,c}, N. J. O. Silva^d, J. Hümmer^a, R. A. S. Ferreira^d, P. Almeida^{c,e}, L. D. Carlos^d, V. de Zea Bermudez^{a,b,*}

¹⁰ Scheme S1. Synthetic procedure of the m-A(x) and AC-m-A(8) (1:y) mono-amidosils. PC is palmitoyl chloride e DC is decanoyl chloride

www.rsc.org/xxxxx

ARTICLE TYPE

Table S1. Relevant details of the synthesis of the m-A(x) and AC-mA(8) (1:y) mono-amidosils

								losil	ytic route	y = 100		·		8.6 mL (480 mmol)	480 µL (0.48 mmol)
	SOLS	x = 8	L (4.80 mmol)	L (4.80 mmol)	(6.20 mmol)	(0.90 mmol)	40 mL	m-A(8) (1:y) mono-amic	the acid-catalized hydroly	y = 300	.			25.9 mL (1440 mmol)	960 µL (0.96 mmol)
	ES(x) mono-amidosil precur		1.000 m	1.132 m	1.333 5	77 µL			via	y = 600				51.8 mL (2880 mmol)	960 μL (0.96 mmol)
	m-ADPTI							s via the classical route	e classical route	x = 8	1.124 mL (19.3 mmol)	173 µL (9.63 mmol) 10 mL	·		·
,		$x = 14^{1}$	1.000 mL (3.30 mmol)	0.774 mL (3.30 mmol)	0.841 g (3.90 mmol)	53 μL (0.66 mmol)	30 mL	m-A(x) mono-amidosils	via the	$\mathbf{x} = 14^{1}$	769 µL (13.2 mmol)	118 µL (6.60 mmol)	10 mL	ı	
		Materials	DC/PC	APTES	Amberlyst resin	Py	THF			Materials	CH ₃ CH ₂ OH	H_2O	THF	H_2O	HCl (1M)

www.rsc.org/xxxxx

ARTICLE TYPE

Table S2. ¹H [CDCl₃; δ (ppm), *J*(Hz)] and ¹³C [CDCl₃; δ (ppm)] NMR and FT-IR data of the m-ADPTES(8) precursor.

		NMR									
	$^{1}\mathrm{H}$	¹³ C (CDCl ₃)									
δ (ppm)		J(Hz)	Attribution	δ (ppm)	Attribution					
4.02	6H	q	6.9	H^{d}	176.4	C ¹²					
3.55	2H	q	6.8	H ^c	57.71	C^4					
2.15	2Н	t	7.0	H^{f}	41.78	C^3					
1.66-1.59	6-1.59 4H			$H^{b,}H^{g}$	36.42	C^{6}					
1.257-1.201	21H	m	-	$H^{e} \text{ and } H^{h}$	31.64	C ⁹					
0.899-0.849	3Н	t	6.4	H^{i}	29.28-28.9	C ⁸ (4C)					
0.60	2Н	m	-	H^{a}	25.37	C^7					
					24.77	C^2					
					22.43	C^{10}					
					18.05	C^5					
					13.99	C ¹¹					
					13.83	C^1					
				FT-IR							
	\overline{V}	(cm ⁻¹)		Attribution						
		3293			vNH						
		3082				vNH					
			$\nu_{as} CH_3$								
		$v_s CH_2$									
		vC=O									
		1644			vC=O						
			δΝΗ								

www.rsc.org/xxxxx

ARTICLE TYPE

) mono-amidosils.
8
ē
1
$\widehat{}$
$\tilde{\sim}$
ġ
ㅈ
¥
7
ğ
)а
(×)
Ă
- 5
8
he
f
0
ita
ςβ
\simeq
\geq
Ē
Ś
Ā
Σ
6
à
ğ
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
4
Ž
5
IJ
õ
13
:
3
دە ا
Ĭ
a
F

		Attribution		$T^{1}$	$\mathrm{T}^2$	$T^3$	c ^b	Empirical Formula						
		AC-m-A(8) (1:600)		-53.1 (3.4)	-57.7 (50.2)	-66.1 (46.4)	73	R'Si(OH) _{1.2} (O) _{0.7}						
²⁹ Si MAS	$\delta$ (ppm) (A ^a )	(x	$x = 14^{1}$	-49.5 (8.5)	-57.8 (59.9)	-67.0 (31.6)	74	R'Si(OH) _{1.1} (O) _{0.8}						
		m-A(	x = 8	-53.8 (13.7)	-58.9 (33.4)	-66.9 (52.9)	83	R'Si(OH) _{0.6} (O) _{1.2}						
		Attribution		C ¹²	C3	Ce	C,	C ⁸ trans	C ⁸ gauche	$\mathbf{C}^{7}$	$C^{2}/C^{10}$	C ¹⁰	C ¹¹	C1
CP/MAS		AC-m-A(8)	(1:600)	173	43	37	34	33	30	27	24	23	14	12
¹³ C	δ (ppm)	(x)	X = 1.4 lError!	174	42	36	34	32	ı	26	24	ı	14	11
		m-A	x = 8	174	42	36	32	I	30	26	23	ı	14	11

Dynamic Article Links >

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

# **ARTICLE TYPE**

**Table S4.** Characteristic bands of FT-IR and FT-Raman of the m-A(x) and AC-m-A(8) (1:600) mono-amidosils in the  $v_aCH_2$ ,  $v_sCH_2$ ,  $\delta CH_2$ , amide I, amide II modes and vC-C region. Wavenumbers in cm⁻¹.

Atributtion		Fermi Ressonance of v _s CH ₂ fundamental with $\delta$ CH ₂ overtones	gauche conformations	v _° CH, all- <i>trans</i> conformations	gauche conformations	all-trans conformations	gauche conformations	v _s CH ₂ gauche conformations	all-trans conformations	all-trans conformations	"", ", ", ", ", ", ", ", ", ", ", ", ",	annue i disordered aggregates	ordered aggregates	ordered aggregates	amide II		all-trans conformations	gauche conformations	vC-C gauche conformations	gauche conformations	all-trans conformations		
AC-m-A(8) (1:600)		FT-Raman	2925		ı	ı	2881	2860	ı	ı	2846	ı	ı		ı	I	I	1127	ı	ı		1062	
		FT-IR (fwhm) (A) (I ^b )			2924 (29) (49) (0.95)		·			2852 (14) (13) (0.50)			1656 (28) (18) (0.38)	1640 (20) (22) 0.62)	1622 (29) (20) (0.40)	1558 (35) (21) (0.34)	1542 (34) (19) (0.33)					ı	
	x = 14	FT-Raman	2925	·	ı	ı	2880	2858	ı	ı	2845	·	·	ı	ı	ı	ı	ı	ı	ı	ı	1062	maximum
m-A(x)		FT-IR (fwhm) (A) (I ^b )	1		2919 (21) (52) (2.2)					2850 (10) (19) (1.5)			1652 (27) (24) (0.46)	1640 (17) (33)(0.96)	1625 (15) (5) (0.17)	1560 (24) (23) (0.48)	1545 (25) (15) (0.32)					ı	y; fwhm - full width at half
		FT-Raman	2929	·		2890	ı	2851	ı	ı	ı		·	ı	ı	I	ı	ı	1121	1078	1064		1 %, b – intensity
	x = 8	FT-IR (fwhm) $(A^{a})$ $(I^{b})$		2929 (34) (45) (0.28)					2856 (10) (11) (0.16)			1676 (34) (12) (0.073)	1657 (24) (19) (0.13)	1643 (20) (17) (0.23)	1626 (20) (10) (0.11)	1560 (38) (25) (0.12)	1540 (31) (16) (0.14)			·		ı	Integrated area ir

www.rsc.org/xxxxx

### **ARTICLE TYPE**









This journal is © The Royal Society of Chemistry [year]

### Symmetric and asymmetric stretching $CH_2$ modes ( $v_sCH_2$ and $v_aCH_2$ , respectively).

10

15

The FT-IR v_sCH₂ and v_aCH₂ bands of *all-trans* conformations of ²⁰ crystalline alkyl chains appear in the 2846-2849 and 2919-2918 cm⁻¹ ranges, respectively.^{2,3} In the case of *gauche* conformations, the FT-IR v_sCH₂ and v_aCH₂ bands undergo a shift to higher wavenumbers and are typically observed at 2856–2858 and 2924–2928 cm⁻¹, respectively^{2,3} The frequency, width and height ²⁵ of the FT-IR v_sCH₂ and v_aCH₂ bands are sensitive to the *gauche/trans* conformer ratio and to the intermolecular interactions between the alkyl chains.³

In the FT-Raman spectrum of crystalline alkyl chains (*all-trans* conformations) the v_aCH₂ mode appears as a strong band in ³⁰ the 2884-2878 cm⁻¹ region and the v_sCH₂ mode gives rise to bands at 2930 cm⁻¹ (weak, w), 2900-2898 cm⁻¹ (medium, m) and 2850-2844 cm⁻¹ (strong, S). ^{2c-e,3,4} In the case of disordered alkyl chains (*gauche* conformations), the Raman v_aCH₂ mode was reported at 2897-2890 cm⁻¹ and the v_sCH₂ bands typically ³⁵ developed at 2920 cm⁻¹ (m), 2904 cm⁻¹ (m) and 2858-2853 cm⁻¹ (S).^{2e-e,3,4} The location and intensity of the Raman v_sCH₂ mode is complicated because of Fermi resonance between the v_sCH₂ fundamental with the many overtones of the CH₂ bending ( $\delta$ CH₂)

vibrations.^{2e,2d, 2e,2e,3b} The  $\nu_s$ CH₂ mode is affected by coupling to ⁴⁰ the torsional and rotational motions of the chain.^{2e,2d, 2e,3b}



**Figure S2.** FT-IR (A) and FT-Raman (B) spectra of the m-A(8) (a), AC-m-(8) (1:600) (b) and m-A(14) (c) mono-amidosils in the  $5 v_s CH_2$  and  $v_a CH_2$  regions.



¹⁰ **Figure S3.** FT-Raman spectra of the m-A(8) (a), AC-m-A(8) (1:600) (b) and m-A(14)¹ (c) mono-amidosils in the vC-C region

15

35

#### "Amide I" and "Amide II" modes

The amide I mode receives a major contribution from the C=O 20 stretching vibration and minor contributions from the C-N stretching and C-C-N deformation vibrations.⁵ The amide I mode is sensitive to the specificity and strength of hydrogen bonding.⁶ Usually the amide I band envelope consists of several distinct components that correspond to different environments of the C=O 25 group, usually named aggregates. Within this spectral region (1800-1600 cm⁻¹) the lower the wavenumber of the component intensity maximum, the stronger the hydrogen-bonded aggregate is. The amide II mode, mainly associated with the N-H in-plane bending vibration is sensitive to chain conformation and 30 intermolecular hydrogen bonding, providing information about the distribution of hydrogen bond strengths.^{6a} In the amide II interval (1600-1500 cm⁻¹) components with higher wavenumber intensity maxima are correlated with stronger hydrogen-bonded aggregates.



**Figure S4.** FT-IR spectra of the m-A(8) (a), as-prepared AC-m-(8) (1:600) (b) and m-A(14)¹ (c) mono-amidosils in the amide I and amide II regions.



**Figure S5.** Emission decay curves of m-A(8) (open squares) and AC-m-A(8) (1:600) (solid squares) mono-amidosils excited at 360 nm and monitored at 500 nm (a), 455 nm (b) and 427 nm (c). The solid lines represent the best fit of the data using a single ¹⁰ exponential function.



**Figure S6**. Room temperature XRD pattern of the AC-m-A(8) 15 (1:600) mono-amidosil recorded two months after performing the the two heating cycles described in Figure 4.

#### Notes and references

^a Chemistry Department, University of Trás-os-Montes e Alto Douro, 20 5001-801 Vila Real, Portugal, Fax: +351 259 350 480; Tel: +351 275

259 350 253; E-mail: vbermude@utad.pt. ^b CQ-VR, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal, Fax: +351 259 350 480; Tel: +351 275 259 350 253; Email: vbermude@utad.pt.

25 ^c Chemistry Department, Faculty of Sciences, University of Beira Interior 6200-001 Covilhã, Portugal, Fax: +351 259 329 730; Tel: +351 275 329 174 E-mail: pjsa@ubi.pt

 ^d Physics Department and CICECO, University of Aveiro, 3810-193 Aveiro, Portugal, Fax: +351-234-424965; Tel: +351-234-370946; E-³⁰ mail: lcarlos@fis.ua.pt

^e CICS- UBI – Centro de Investigação em Ciências de Saúde, University of Beira Interior, 6200-001 Covilhã, Portugal, Fax: +351 259 329 730; Tel: +351 275 329 174 E-mail: pjsa@ubi.pt

- (a) L. D. Carlos, V. de Zea Bermudez, V. S. Amaral, S. C. Nunes, N. J. O. Silva, R. A. Sá Ferreira, C. V. Santilli, D. Ostrovskii, J. Rocha, *Adv. Mater.*, 2007, **19**, 341; (b) S. C. Nunes, PhD Dissertation, 2007, Vila Real (Portugal), 92678/1/2 SD (http://opac.sde.utad.pt/geral/)
- 2 (a) M. D. Porter, T. B. Bright, D. L. Allara, C. E. D. Childsey, J. Am. Chem. Soc., 1987, 109, 3559; (b) S. Singh, J. Wegmann, K. Albert, K. Muller, J. Phys. Chem. B, 2002, 106, 878; (c) N. V. Venkataram, S. Vasudevan, J Phys Chem B, 2001, 105, 7639; (d) N. V. Venkataram, S. Bhagyalakshmi, S. Vasudevan, R. Seshachi, Phys. Chem. Chem. Phys., 2002, 4, 4533; (e) R. Wang, G. Baran, S. L. Wunder, Langmuir, 2000, 16, 6298.
- 3 (a) R. A. Macphail, H. L. Strauss, R. G. Snyder, C. A. Ellinger, *J. Phys. Chem.*, 1984, 88, 334; (b) R. G. Snyder, H. L. Strauss, C. A. Ellinger, *J. Phys. Chem.*, 1982, 86, 5145.
- 4 K. G. Brown, E. Bicknell-Brown, M. Ladjadj, J. Phys. Chem., 1987, 91, 3436.

8 | Journal Name, [year], [vol], 00-00

- (5) T. Miyazawa, T. Shimanouchi, S.-I. Mizushima, J. Chem. Phys., 1956, 24(2), 408.
- (6) (a) D. J. Skrovanek, S. E. Howe, P. C. Painter, M. M. Coleman, *Macromolecules*, 1985, 18, 1676; (b) D. J. Skrovanek, P. C. Painter, M. M. Coleman, *Macromolecules*, 1986, 19, 699; (c) M. M. Coleman, K. H. Lee, D. J. Skrovanek, P. C. Painter, *Macromolecules*, 1986, 19, 2149.