Electronic Supplementary Information

On the Electronic Structure and Conflicting d-Orbital Aromaticity in the Re₃O₃⁻ Cluster

Hua-Jin Zhai,[†] Wen-Jie Chen,^{‡,§} Xin Huang,^{‡,§} and Lai-Sheng Wang[†]

[†] Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States

[‡] Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China

[§] State Key Laboratory of Structural Chemistry, Fuzhou, Fujian 350002, P. R. China

Molecular Orbital Analyses for the high-lying $\text{Re}_3\text{O}_3^-D_{3h}$ structures.

Figures S1-S2. Alternative optimized structures for $Re_3O_3^-$ and Re_3O_3 at the B3LYP/Re/Stuttgart+2f1g/O/aug-cc-pVTZ level.

- **Figure S3.** Molecular orbital pictures for the $\text{Re}_3\text{O}_3^-D_{3h}(^3\text{A}_1')$ structure, which lies 3.06 eV above the global minimum at B3LYP/Re/Stuttgart+2f1g/O/aug-cc-pVTZ level.
- **Figure S4.** Molecular orbital pictures for the $\text{Re}_3\text{O}_3^-D_{3h}(^1\text{A}_1')$ structure, which lies 5.36 eV above the global minimum at B3LYP/Re/Stuttgart+2f1g/O/aug-cc-pVTZ level.
- **Table S1.** Cartesian coordinates for all optimized structures for Re_3O_3^- and Re_3O_3 atB3LYP/Re/Stuttgart+2f1g/O/aug-cc-pVTZ level.

Molecular Orbital Analyses for the High-Lying $\text{Re}_3\text{O}_3^-D_{3h}$ Structures

The highly symmetric Re₃O₃⁻ D_{3h} (³A₁') and D_{3h} (¹A₁') structures (Figures S3 and S4) seem to be tempting candidates to account for the vibrationally-resolved photoelectron spectrum (Figure 1a), which hints relatively high symmetry for both the anion and neutral clusters. This hypothesis turns out to be wrong, in terms of both their energetics and their simulated PES spectra (Figure 3d and 3e). Thus a critical question arises: Why are these D_{3h} structures so much higher in energy relative to the $C_{2\nu}$ (¹A₁) global minimum (Figure 2a)?

A three-center transition metal system in principle is capable of forming four completely bonding (two σ -, one π -, and one δ -) MOs.^{\$1,\$2} Ideally all these MOs need to be filled in order for a Re₃O₃⁻ structure to be stable. However, the D_{3h} structures each possess only three completely bonding MOs, and the two additional electrons that are supposed to occupy the missing σ -MO are forced to occupy the antibonding MOs instead.

To be specific, HOMO-5 (1a₁') and HOMO-1 (1e') of the D_{3h} (³A₁') structure (Figure S3) represent the σ/σ^* combination and HOMO-2 (1a₂") and HOMO-3 (1e") represent the π/π^* combination. These MOs can be roughly localized as three (albeit weak) Re=Re double bonds. The remaining HOMO-4 (2a₁') and half-occupied HOMO (2e') collectively render δ aromaticity for this species, according to the reversed 4*n* Hückel aromaticity rule for triplet coupled electrons. Overall, the Re-Re bonding (2.424 Å) in D_{3h} (³A₁') is slightly weaker than typical Re=Re double bonds (2.38 Å).^{S3}

For the D_{3h} (¹A₁') structure (Figure S4), the HOMO-5 (1a₁') and HOMO-2 (1e') form the σ framework and may be considered as three Re-Re σ -bonds, which are largely canceled by the net antibonding nature of the π framework: HOMO-4 (1a₂"), HOMO-1 (1e"), and HOMO (1a₁"). The remaining completely bonding HOMO-3 (2a₁') renders δ -aromaticity to this species. Not surprisingly, the net Re-Re bonding (2.699 Å) in D_{3h} (¹A₁') is even weaker than typical Re-Re single bonds (2.62 Å),⁵³ commensurate with its energetic instability.

In contrast to these high-lying D_{3h} structures, all four bonding MOs are fully occupied in the $C_{2\nu}$ (¹A₁) global minimum, and in addition the structural distortion to $C_{2\nu}$ poses extra stabilization to the corresponding σ^* and π^* MOs.

References:

- (S1) Averkiev, B. B.; Boldyrev, A. I. Hf₃ Cluster Is Triply (σ -, π -, and δ -) Aromatic in the Lowest D_{3h} , ¹A₁' State. J. Phys. Chem. A **2007**, 111, 12864–12866.
- (S2) Zhai, H. J.; Wang, B.; Huang, X.; Wang, L. S. Structural Evolution, Sequential Oxidation, and Chemical Bonding in Tritantalum Oxide Clusters: Ta₃O_n⁻ and Ta₃O_n (n = 1-8). J. *Phys. Chem. A* 2009, *113*, 9804–9813.
- (S3) Pyykkö, P.; Atsumi, M. Molecular Double-Bond Covalent Radii for Elements Li–E112.
 Chem. Eur. J. 2009, 15, 12770–12779.

Figure S1. Optimized structures (distances in angstroms and angles in degrees) and their relative energies for Re_3O_3^- cluster.

S5

Figure S3. Molecular orbital pictures for the $\text{Re}_3\text{O}_3^-D_{3h}(^3\text{A}_1')$ structure, which lies 3.06 eV above the global minimum at B3LYP/Re/Stuttgart+2f1g/O/aug-cc-pVTZ level.

Figure S4. Molecular orbital pictures for the $\text{Re}_3\text{O}_3^- D_{3h}(^1\text{A}_1')$ structure, which lies 5.36 eV above the global minimum at B3LYP/Re/Stuttgart+2f1g/O/aug-cc-pVTZ level.

 $\text{Re}_{3}\text{O}_{3}^{-}$ D_{3h} (¹A₁': 5.36 eV)

Table S1. Cartesian Coordinates for All Optimized Structures for Re3O3⁻ and Re3O3 at
B3LYP/Re/Stuttgart+2f1g/O/aug-cc-pVTZ Level.

(a) $\operatorname{Re}_3O_3^-$

	X	У	Z		X		y 2	2
Re ₃ O	$_{3}^{-}(C_{2v}^{-1}A_{1}^{-1}0.0$	0 eV)		0	-3.161163	-0.289897	0.000000	
Re	0.000000	1.403968	-0.530269	0	3.161165	-0.289914	0.000000	
Re	0.000000	0.000000	1.302774					
Re	0.000000	-1.403968	-0.530269	Re ₃ C	D_3^{-} (C ₁ ⁻¹ A 0.97	eV)		
0	0.000000	0.000000	-1.839219	Re	-0.470287	1.264645	0.134883	
0	0.000000	3.103265	-0.215868	Re	1.452673	-0.283574	0.016967	
0	0.000000	-3.103265	-0.215868	Re	-1.212081	-0.706957	-0.261339	
				0	-2.351042	-1.415603	0.860504	
Re ₃ O	$_{3}^{-}(C_{s}^{-3}A'' 0.05)$	5 eV)		0	1.847366	-1.411683	1.264570	
Re	-1.421112	-0.481522	0.000000	0	2.657062	0.257466	-1.098615	
Re	0.000000	1.303898	0.000000					
Re	1.427331	-0.578406	0.000000	Re ₃ C	D_3^{-} (C ₁ ⁵ A 1.07	eV)		
0	-0.066257	-1.824300	0.000000	Re	-1.338828	-0.468467	0.018076	
0	-3.122358	-0.147669	0.000000	Re	1.376670	-0.602294	-0.173536	
0	3.130307	-0.315257	0.000000	Re	0.133185	1.392349	0.052840	
				0	-2.218265	-0.727672	-1.456399	
Re ₃ O	$_{3}^{-}(C_{s}^{-3}A'' 0.28)$	8 eV)		0	-1.959280	-0.976834	1.556340	
Re	0.451255	-0.270984	1.417659	0	2.574165	-1.310382	0.862119	
Re	-1.144063	0.666436	0.000000					
Re	0.451255	-0.270984	-1.417659	Re ₃ C	$D_3^{-}(C_s^{-3}A'' 1.2)$	5 eV)		
0	1.362050	-1.173570	0.000000	Re	-0.811076	1.060054	0.000000	
0	0.451255	0.003340	3.126534	Re	1.344133	0.587820	0.000000	
0	0.451255	0.003340	-3.126534	Re	-0.653789	-1.357718	0.000000	
	_			0	-0.811076	-2.179861	1.515888	
Re ₃ O	$_{3}^{-}(C_{2v}^{-5}A_{1}^{-}0.5$	1 eV)		0	-0.811076	-2.179861	-1.515888	
Re	0.000000	1.426503	-0.544321	0	2.754023	1.639511	0.000000	
Re	0.000000	0.000000	1.352087		1			
Re	0.000000	-1.426503	-0.544321	Re ₃ C	D_3^{-1} (C ₁ ⁻¹ A 1.34	eV)		
0	0.000000	0.000000	-1.826916	Re	-0.596135	1.136863	-0.175702	
0	0.000000	3.142620	-0.321443	Re	-1.077716	-1.083283	0.065582	
0	0.000000	-3.142620	-0.321443	Re	1.426319	-0.184616	0.058328	
	2			0	0.586282	-1.861898	-0.347943	
Re ₃ O	$_{3}^{-}$ (C _s ³ A' 0.85	eV)		0	-1.198126	2.443608	0.808479	
Re	-1.447446	-0.528157	0.000000	0	2.932461	0.646760	0.025015	
Re	0.000000	1.310229	0.000000					
Re	1.447445	-0.528157	0.000000					
0	0.000001	-1.800639	0.000000					

Red	$D_{1}^{-1}(C^{-5}\Lambda' + 1.41)$	eV)		
Re	0.626165	_0 214533	1 341095	
Re	-1 214662	0 551493	0.00000	
Re	0.626165	-0.21/1533	-1 3/1095	
0	0.626165	-0.214555	2 23/621	
0	0.626165	1 602650	2.234021	
0	1.605476	-1.092030	-2.234021	
0	-1.003470	2.237334	0.000000	
D _a ($C^{3} \Lambda 1 \Lambda \Lambda$	N)		
	$J_3 (C_1 A 1.44)$	(v)	0 002278	
Re Re	0.623005	1 210083	0.030510	
Re Do	1 211276	0.825871	0.001012	
	1.005048	-0.623671	1 570204	
0	-1.993940	-0.04/4/4	1.370394	
0	-2.301382	0.304393	-1.041483	
0	-0.306036	-1.3/1255	-0.803100	
D. (3 - 155	T <i>T</i>)		
Re ₃ C	$D_3 (C_1 A 1.55)$	eV)	0.2(0000	
Re	-0.8//1//	-1.050805	0.268888	
Re	-0.651127	1.240941	-0.194502	
Re	1.429560	-0.224486	-0.162576	
0	-1.530557	-2.019108	-0.999691	
0	2.895011	-0.036256	0.742118	
0	-0.438738	2.377397	1.084366	
	3			
$\operatorname{Re}_3($	$D_3 (C_s A'' 1.57)$	eV)		
Re	1.167437	0.870382	0.000000	
Re	-0.579372	-0.381874	1.220937	
Re	-0.579372	-0.381874	-1.220937	
0	1.077241	2.591912	0.000000	
0	-0.579372	-1.795798	-2.220404	
0	-0.579372	-1.795798	2.220404	
	<i>.</i>			
Re ₃ C	$D_3^{-1}(C_s^{-5}A' 1.66)$	eV)		
Re	-0.659568	1.207394	0.000000	
Re	0.409164	-0.815395	1.103831	
Re	0.409164	-0.815395	-1.103831	
0	0.409164	1.142068	-1.569627	
0	0.409164	1.142068	1.569627	
0	-2.306704	1.685206	0.000000	
Re ₃ C	$D_3^- (C_{2v}^{-5}B_1 1.70)$) eV)		
Re	0.000000	0.000000	1.732931	
Re	0.000000	1.103673	-1.130879	
Re	0.000000	-1.103673	-1.130879	

0	0.000000	-1.614716	0.763657
0	0.000000	1.614716	0.763657
0	0.000000	0.000000	3.430433

$\text{Re}_{3}\text{O}_{3}^{-}(\text{C}_{s}^{-7}\text{A}' 1.79 \text{ eV})$

Re0.153093-1.0790401.109981Re0.153093-1.079040-1.109981o0.1530930.814659-1.654747o0.1530930.8146591.654747o-0.9968773.1641140.000000	Re	-0.232511	1.646780	0.000000
Re0.153093-1.079040-1.109981o0.1530930.814659-1.654747o0.1530930.8146591.654747o-0.9968773.1641140.000000	Re	0.153093	-1.079040	1.109981
o 0.153093 0.814659 -1.654747 o 0.153093 0.814659 1.654747 o -0.996877 3.164114 0.000000	Re	0.153093	-1.079040	-1.109981
o 0.153093 0.814659 1.654747 o -0.996877 3.164114 0.000000	0	0.153093	0.814659	-1.654747
o -0.996877 3.164114 0.000000	0	0.153093	0.814659	1.654747
	0	-0.996877	3.164114	0.000000

$\text{Re}_{3}\text{O}_{3}^{-}(\text{C}_{s}^{-7}\text{A}'' \ 1.96 \text{ eV})$

Re	-0.680542	1.159643	0.000000
Re	0.420134	-0.789182	1.175867
Re	0.420134	-0.789182	-1.175867
0	0.420134	1.155136	-1.569584
0	0.420134	1.155136	1.569584
0	-2.337689	1.615249	0.000000

$Re_{3}O_{3}^{-}(C_{1}^{-3}A = 2.05eV)$

Re	1.433994	0.000000	0.022366
Re	-0.831774	1.127915	-0.035621
Re	-0.831774	-1.127915	-0.035621
0	2.264141	-0.000001	-1.494456
0	2.254404	0.000001	1.546973
0	-2.366468	0.000000	0.405691

$\text{Re}_{3}\text{O}_{3}^{-}(\text{C}_{3v}^{-3}\text{A}_{1}\ 2.08\ \text{eV})$

Re	0.000000	1.373175	-0.033261
Re	-1.189205	-0.686588	-0.033261
Re	1.189205	-0.686588	-0.033261
0	1.901356	1.097749	0.311819
0	0.000000	-2.195497	0.311819
0	-1.901356	1.097749	0.311819

$\text{Re}_{3}\text{O}_{3}^{-}$ (C_s ⁵A' 2.19 eV)

Re	-0.053829	-0.691450	1.196394
Re	0.157218	1.403012	0.000000
Re	-0.053829	-0.691450	-1.196394
0	-0.356982	-2.212616	0.000000
0	-0.053829	1.012033	-2.014944
0	-0.053829	1.012033	2.014944

$\text{Re}_{3}\text{O}_{3}^{-}$ ($\text{C}_{8}^{-1}\text{A'}$ 2.27 eV)

Re	-0.085768	1.276017	0.000000
Re	-0.001144	-0.649271	1.244528
Re	-0.001144	-0.649271	-1.244528
0	-0.001144	1.056587	-2.035880
0	0.827810	-1.902002	0.000000
0	-0.001144	1.056587	2.035880

 $\text{Re}_{3}\text{O}_{3}^{-}(\text{C}_{2v}^{3}\text{B}_{2}\ 2.31\ \text{eV})$

Re	0.000000	0.000000	1.817455
Re	0.000000	1.052293	-1.176329
Re	0.000000	-1.052293	-1.176329
0	0.000000	-1.507770	0.750071
0	0.000000	1.507770	0.750071
0	0.000000	0.000000	3.517379

 $\text{Re}_{3}\text{O}_{3}^{-}$ (C_s ⁵A" 2.35 eV)

Re	1.300609	0.042268	0.000000
Re	-0.683760	-0.200754	1.304654
Re	-0.683760	-0.200754	-1.304654
0	1.994805	1.636828	0.000000
0	-0.683760	0.865524	-2.661830
0	-0.683760	0.865524	2.661830

$\text{Re}_{3}\text{O}_{3}^{-}(\text{C}_{2v}^{-5}\text{A}_{1}\ 2.35\ \text{eV})$

Re	0.000000	0.000000	1.393391
Re	0.000000	1.195497	-0.681868
Re	0.000000	-1.195497	-0.681868
0	0.000000	-2.061057	0.984800
0	0.000000	0.000000	-2.247625
0	0.000000	2.061057	0.984800

$\text{Re}_{3}\text{O}_{3}^{-}(\text{C}_{s}^{-1}\text{A'}\ 2.45\ \text{eV})$

Re	-0.748127	1.194124	0.000000
Re	0.450824	-0.807148	1.114338
Re	0.450824	-0.807148	-1.114338
0	0.450824	1.061950	-1.505050
0	0.450824	1.061950	1.505050
0	-2.340905	1.815208	0.000000

$\text{Re}_{3}\text{O}_{3}^{-}(\text{C}_{s}^{-1}\text{A}' 2.49 \text{ eV})$

Re	-0.428256	1.321165	0.000000	
Re	0.297036	-0.960655	1.051710	
Re	0.297036	-0.960655	-1.051710	

0	0.297036	2.071552	1.410430
0	0.297036	2.071552	-1.410430
0	-2.148590	1.483261	0.000000

 $\text{Re}_{3}\text{O}_{3}^{-}(\text{D}_{3h}^{-3}\text{A}_{1}^{+3}.06 \text{ eV})$

Re	0.000000	1.399206	0.000000
Re	1.211748	-0.699603	0.000000
Re	-1.211748	-0.699603	0.000000
0	0.000000	3.126660	0.000000
0	-2.707767	-1.563330	0.000000
0	2.707767	-1.563330	0.000000

 $\text{Re}_{3}\text{O}_{3}^{-}(\text{C}_{2v}^{-1}\text{A}_{1} \ 3.28 \ \text{eV})$

Re	0.000000	0.000000	1.383503
Re	0.000000	1.132912	-0.689097
Re	0.000000	-1.132912	-0.689097
0	0.000000	-1.950984	1.132741
0	0.000000	0.000000	-2.315255
0	0.000000	1.950984	1.132741

 $\text{Re}_{3}\text{O}_{3}^{-}(\text{C}_{2v}{}^{5}\text{A}_{2} \ 3.65 \ \text{eV})$

Re	0.000000	1.268869	-0.688691
Re	0.000000	0.000000	1.371110
Re	0.000000	-1.268869	-0.688691
0	-1.240393	0.000000	-1.531606
0	1.240393	0.000000	-1.531606
0	0.000000	0.000000	3.122020

$\text{Re}_{3}\text{O}_{3}^{-}(\text{C}_{s}^{-7}\text{A}^{"} 3.83 \text{ eV})$

Re	-0.155951	-0.663624	1.285141
Re	0.406010	1.318069	0.000000
Re	-0.155951	-0.663624	-1.285141
0	0.840471	-1.755068	0.000000
0	-1.566776	-1.120664	0.000000
0	-0.155951	2.961787	0.000000

$\text{Re}_{3}\text{O}_{3}^{-}(\text{C}_{2v}^{-1}\text{A}_{1} \text{ 4.29 eV})$

Re	0.000000	1.199939	-0.677833
Re	0.000000	0.000000	1.345203
Re	0.000000	-1.199939	-0.677833
0	-1.331727	0.000000	-1.503500
0	1.331727	0.000000	-1.503500
0	0.000000	0.000000	3.105083

 $\text{Re}_{3}\text{O}_{3}^{-}(\text{D}_{3h}^{-1}\text{A}_{1}^{-1}, 5.36 \text{ eV})$

Re	0.000000	1.558476	0.000000
Re	1.349679	-0.779238	0.000000
Re	-1.349679	-0.779238	0.000000
0	-1.802856	1.040879	0.000000
0	0.000000	-2.081759	0.000000
0	1.802856	1.040879	0.000000

(b) Re₃O₃

	X	У	Z
Re ₃ O	$C_{2v}^{2}A_{1} 0.00$) eV)	
Re	0.000000	1.406000	-0.525145
Re	0.000000	0.000000	1.288476
Re	0.000000	-1.406000	-0.525145
0	0.000000	0.000000	-1.832466
0	0.000000	3.081623	-0.200262
0	0.000000	-3.081623	-0.200262
Re ₃ O	$V_3 (C_s^4 A'' 0.30)$	eV)	
Re	-1.406889	-0.453066	0.000000
Re	0.000000	1.327910	0.000000
Re	1.415142	-0.623222	0.000000
0	-0.106570	-1.830974	0.000000
0	-3.079309	-0.078438	0.000000
0	3.108510	-0.449547	0.000000
Re ₃ O	$O_3 (C_{2v} {}^4B_1 0.48)$	eV)	
Re	0.000000	1.401998	-0.539216
Re	0.000000	0.000000	1.338106
Re	0.000000	-1.401998	-0.539216
0	0.000000	0.000000	-1.830578
0	0.000000	3.093576	-0.301932
0	0.000000	-3.093576	-0.301932
Re ₃ O	$V_3 (C_{2v} {}^4A_2 0.49)$	eV)	
Re	0.000000	1.417064	-0.534708
Re	0.000000	0.000000	1.302951
Re	0.000000	-1.417064	-0.534708
0	0.000000	0.000000	-1.838965
0	0.000000	3.086394	-0.175211

	X		у	Z
0	0.000000	-3.086394	-0.175211	
Re ₃ O ₃	$_{3}(C_{2v}^{4}A_{1} 1.0$	1 eV)		
Re	0.000000	1.441400	-0.533688	
Re	0.000000	0.000000	1.327260	
Re	0.000000	-1.441400	-0.533688	
0	0.000000	0.000000	-1.813079	
0	0.000000	3.136665	-0.311667	
0	0.000000	-3.136665	-0.311667	
Re ₃ O ₂	$_{3}(C_{2v}^{2}B_{1}^{2}0.8)$	3 eV)		
Re	0.000000	1.434753	-0.519306	
Re	0.000000	0.000000	1.256809	
Re	0.000000	-1.434753	-0.519306	
0	0.000000	0.000000	-1.819969	
0	0.000000	3.093323	-0.112813	
0	0.000000	-3.093323	-0.112813	
Re ₃ O	$_{3}(C_{2v}^{2}A_{2}0.9)$	3 eV)		
Re	0.000000	1.419047	-0.523395	
Re	0.000000	0.000000	1.299482	
Re	0.000000	-1.419047	-0.523395	
0	0.000000	0.000000	-1.807975	
0	0.000000	3.108654	-0.280505	
0	0.000000	-3.108654	-0.280505	

 $Re_{3}O_{3} \left(C_{2v} \ ^{6}A_{1} \ 1.19 \ eV\right)$

Re 0.000000 1.457350 -0.560025

Re	0.000000	0.000000	1.390707	Ο	0.117973
Re	0.000000	-1.457350	-0.560025		
0	0.000000	0.000000	-1.811565	Re ₃ O	$P_3 (C_s^4 A'' 1.81 e)$
0	0.000000	3.151060	-0.362924	Re	-0.248178
0	0.000000	-3.151060	-0.362924	Re	0.078959
				Re	0.078959
Re ₃ O	$O_3 (C_1^2 A 1.63 e$	eV)		0	0.078959
Re	-0.560699	1.275027	0.008553	0	0.688276
Re	1.476960	-0.230299	0.029988	0	0.078959
Re	-1.155747	-0.800416	-0.164550		
0	-2.263035	-1.415897	1.001300	Re ₃ O	$C_3 (C_1^2 A 2.00 e^3)$
0	2.156788	-0.362801	1.595548	Re	1.527182
0	2.351425	-0.511719	-1.415513	Re	-0.848245
				Re	-1.179918
Re ₃ O	$O_3 (C_1 {}^4A 1.42 e$	eV)		0	0.573007
Re	-0.472312	1.314751	0.053682	0	0.906410
Re	1.425890	-0.280779	0.020997	0	3.217282
Re	-1.213929	-0.785785	-0.211926		
0	-2.006718	-1.364421	1.184984	Re ₃ O	$P_3 (C_{2v} {}^4A_2 2.03)$
0	2.122041	-0.649579	1.540749	Re	0.000000
0	2.325466	-0.312748	-1.439040	Re	0.000000
				Re	0.000000
Re ₃ O	$O_3 (C_1 {}^6A 1.70 e$	eV)		0	0.000000
Re	-0.351194	1.455962	0.075068	0	0.000000
Re	1.362655	-0.374433	0.006156	Ο	0.000000
Re	-1.260536	-0.754656	-0.198295		
0	-1.922870	-1.758043	1.002543	Re ₃ O	$P_3 (C_1^4 A 2.89 e^{-3})$
0	1.977161	-0.849625	1.527410	Re	0.429365
0	2.280789	-0.456771	-1.432410	Re	1.032562
				Re	-1.484182
$Re_{3}O_{3} (C_{s}^{4}A' 1.86 eV)$				0	1.379314
Re	0.627875	-0.170080	1.363721	0	-2.527334
Re	-1.233774	0.482957	0.000000	0	1.356661
Re	0.627875	-0.170080	-1.363721		
0	0.627875	-1.758122	1.957737	Re ₃ O	$P_3 (C_s^4 A' 3.66 e)$
0	0.627875	-1.758122	-1.957737	Re	0.160198
0	-1.461772	2.177513	0.000000	Re	-0.435097
				Re	0.160198
Re ₃ O	$O_3 (C_s^4 A' 1.88)$	Ο	1.709370		
Re	-0.345518	1.356314	0.000000	Ο	-0.794239
Re	0.117973	-0.689303	1.157623	0	0.160198
Re	0.117973	-0.689303	-1.157623		
0	0.117973	1.151095	-1.848650		
0	0.791292	-2.093209	0.000000		

Re ₃ O	$_{3}(C_{s}^{4}A'' 1.81)$	eV)	
Re	-0.248178	1.369447	0.000000
Re	0.078959	-0.680357	1.182501
Re	0.078959	-0.680357	-1.182501
0	0.078959	1.010310	-1.988715
0	0.688276	-2.102487	0.000000
0	0.078959	1.010310	1.988715
Re ₃ O	$_{3}(C_{1}^{2}A 2.00 e$	eV)	
Re	1.527182	-0.109708	0.011984
Re	-0.848245	1.111968	-0.117091
Re	-1.179918	-0.966418	0.097130
0	0.573007	-1.553231	-0.601933
0	0.906410	1.429311	0.805145
0	3.217282	-0.212090	-0.128427
Re ₃ O	$_{3}(C_{2v}^{4}A_{2}2.03)$	3 eV)	
Re	0.000000	0.000000	1.773045
Re	0.000000	1.078546	-1.147404
Re	0.000000	-1.078546	-1.147404
0	0.000000	-1.567134	0.721686
0	0.000000	1.567134	0.721686
0	0.000000	0.000000	3.448156

1.151095

1.848650

V)

Re	0.429365	1.249965	-0.163039
Re	1.032562	-1.007948	-0.135590
Re	-1.484182	-0.343810	-0.083071
0	1.379314	2.008947	1.041667
0	-2.527334	0.360019	1.046695
0	1.356661	-1.414650	1.490074

eV)

Re	0.160198	-0.681889	1.169324
Re	-0.435097	1.347930	0.000000
Re	0.160198	-0.681889	-1.169324
0	1.709370	-0.872661	0.000000
0	-0.794239	-1.935426	0.000000
0	0.160198	2.956667	0.000000