Supplementary information

A highly selective and dual responsive test paper sensor of Hg^{2+}/Cr^{3+} for naked eye detection in neutral water

Priyadip Das, Amrita Ghosh, Hitesh Bhatt and Amitava Das*

Central Salt and Marine Chemicals Research Institute (CSIR),

G.B. Marg, Bhavnagar: 364002, Gujarat, India.

Email address: amitava@csmcri.org

Telephone number: +91 278 2567760 [672]; Fax number: +91 278 2567562/6970

Table of Contents:-

Synthetic Scheme-1	S 3
Synthetic Scheame-2	S 3
¹ H NMR of L	S 4
¹³ C NMR of L	S5
¹ H NMR of L_1	S 6
¹³ C NMR of L_1	S 7
¹ H NMR of L_2	S 8
¹³ C NMR of L_2	S 9
ESI-MS spectra of L ₁	S 10
Calculation of Binding constant	S11
¹ H NMR spectra of L_2 with Hg(ClO ₄) ₂	S13
¹ H NMR spectra of L_2 with Cr(ClO ₄) ₃ and Hg(ClO ₄) ₂	S 14
Absorption spectra of \mathbf{L} with $Cr(ClO_4)_3$ and $Hg(ClO_4)_2$	S14
UV response of L_1 in presence of different metal ion and interference study	S15
Luminescence response of L_1 in presence of different metal ion and interference study	S16
UV response of L_1 with different metal ions in absence and presence of $[Bu_4N]I$	S17
Luminescence response of L_1 with different metal ions in absence and presence of $[Bu_4N]I$	S18

Synthetic Scheame-1

Synthetic Scheame-2

¹H NMR of L

SI Figure 1: ¹H NMR spectra of L in CD₃CN.

¹³C NMR of L

SI Figure 2: ¹³C NMR spectra of L in CD₃CN.

¹H NMR of L₁

SI Figure 3: ¹H NMR spectra of L₁ in CD₃CN.

¹³C NMR of L₁

SI Figure 4: 13 C NMR spectra of L₁ in CD₃CN.

¹H NMR of L₂

SI Figure 5: ¹H NMR spectra of L₂ in CD₃OD.

¹³C NMR of L₂

SI Figure 6: 13 C NMR spectra of L₂ in CD₃OD.

ESI-Mass Spectra of L₁

SI Figure 7: ESI-Mass spectra of L_1 in CH₃CN.

Calculation of Binding constants:

Spectrophotometric titration:

The equilibrium of complexation between L_1 and $Cr(ClO_4)_2$, $Hg(ClO_4)_2$ was evaluated using non-linear least square equation (Eq. 4-6) for the following reaction.

$$L_1 + nM^{n+} \rightarrow [M^{n+}]_n L_1$$

The stability constant of the complex could be define as

$$K_n = [M_n L_1] / [L_1] [M]^n$$
 (SIEq. 1)

Where, M_nL_1 and M stands for $[\mathbf{Cr}^{3+}]_n\mathbf{L}_1$, $[\mathbf{Hg}^{2+}]_n\mathbf{L}_1$ and \mathbf{Cr}^{3+} , \mathbf{Hg}^{2+} respectively. \mathbf{L}_1 and \mathbf{M}^{n+} do not have any absorption maxima above 440 nm, so the new absorbance maxima that developed at around 509 nm on addition of \mathbf{M}^{n+} was attributed to the formation of a coordination complex (Eq. a). We have selected these two wavelengths for our studies. Thus we have

$$A_{440} = \varepsilon_{\{L_1\}_{440}}.l. \ [L_1] + \varepsilon_{\{M_nL_1\}_{440}}.l. \ [M_nL_1]$$
(SIEq. 2)
$$A_{509} = \varepsilon_{\{L_1\}_{509}}.l. [L_1] + \varepsilon_{\{M_nL_1\}_{509}}.l. \ [M_nL_1]$$
(SIEq. 3)

 $\epsilon_{\{L_1\}_{440}}$ and $\epsilon_{\{L_1\}_{509}}$ are the respective molar extinction coefficient of L_1 at 440 and 509 nm; while $\epsilon_{\{M_nL_1\}_{440}}$ and $\epsilon_{\{M_nL_1\}_{509}}$ are the molar extinction coefficients of $[M^{n+}]_nL_1$ at 440 and 509 nm respectively. For optical path length (l) of 1cm, as used for the present study and the ratio A_{440}/A_{509} could be expressed by SI Equation 4.

$$A_{440}/A_{509} = (K_n \epsilon_{\{M_n L_1\}_{440}} [M]^n + \epsilon_{\{L_1\}_{440}}) / (K_n \epsilon_{\{M_n L_1\}_{509}} [M]^n + \epsilon_{\{L_1\}_{509}})$$
(SIEq. 4)

The overall concentration in Cation is
$$C_M = [M] + n[M_nL_1]$$
 (SIEq. 5)

Thus
$$[M] = C_M - n[M_nL_1] = (C_M - nA_{440})/\epsilon_{\{M_nL_1\}_{440}}$$
 (SIEq. 6)

The absorbance data were analysed by using a nonlinear least squares method [Valeur, B.; Pouget, J.; Bouson, J. *J. Phys. Chem.* **1992**, *96*, 654]. Appropriate substitution and approximation was used for evaluation of the stochiometry and affinity constant (n and K_n, respectively).

The absorbance data obtained from the spectroscopic titration of L_1 with Hg(ClO₄)2 and Cr(ClO₄)₃ were analyzed by using the nonlinear least square method (previously mentioned) for n and K_n. The analysis provided the stoichiometry of the complex formed between L_1 and Cr³⁺ (SI Figure-8A) was 1:1 (L₁:Cr³⁺) and the association constant $K_{ass} = (6.54 \pm 0.07) \times 10^{-4}$ M⁻¹ with a correlation coefficient 0.987. For the complex of L_1 and Hg²⁺ (SI Figure-8B) the stoichiometric assembly was 1:1 (L₁:Hg²⁺) and the association K_{ass} = (4.31 ± 0.04) $\times 10^{-4}$ M⁻¹ with the correlation coefficient 0.9935. These results of receptor L_1 with Cr3⁺ and Hg²⁺ are consistent and therefore verify the proposed coordinating process (as shown in Figure 9).

SI Figure 8: variations in absorbance of A_{509} / A_{440} of a solution receptor L_1 in acetonitrile (2 x 10⁻⁵M) as a function of concentration of (A) Cr(ClO₄)₃ and (B) Hg(ClO₄)₂. The solid lines represent the best fit with the equation SIEq. 4.

¹<u>H NMR Spectra of L₂ with Hg(ClO₄)₂</u>

SI Figure 9: ¹H NMR spectra of L_2 in presence of different concentration of Hg(ClO₄)₂ in dmso(d₆) medium.

SI Figure 10: ¹H NMR spectra of L in presence of 20 mol eq concentration of $Hg(ClO_4)_2$ in CD_3CN medium.

Absorption Spectra Of L with Cr(ClO₄)₃ and Hg(ClO₄)₂

SI Figure11: Absorption spectra of L (2.0 X 10^{-5} M) in absence and presence of Cr(ClO₄)₃ and Hg(ClO₄)₂ in CH₃CN medium.

<u>UV response of L_1 in presence of different metal ion and interference study or competitive effect</u>

SI Figure 12: Absorbance of L_1 (20 μ M) at 509 nm in presence of 10 mole equivalent different metal ions (Cu^{2+} , Zn^{2+} , K^+ , Na^+ , Ba^{2+} , Sr^{2+} , Hg^{2+} , Li^+ , Cd^{2+} , Co^{3+} , Cr^{3+} , Ca^{2+} , Mg^{2+} , Ni^{2+} , Fe^{2+} , Ag^+)(blue bars). The red and green bars show the absorbance of L_1 -Hg²⁺ and L_1 -Cr³⁺ respectively (at 509 nm) in presence of the above mentioned metal ions in actonitrile medium.

<u>Luminescence response of L_1 in presence of different metal ion and interference study</u> or competitive effect

SI Figure 13: Emission intensity of L_1 (20 μ M) at 575 nm in presence of 10 mole equivalent different metal ions (Cu^{2+} , Zn^{2+} , K^+ , Na^+ , Ba^{2+} , Sr^{2+} , Hg^{2+} , Li^+ , Cd^{2+} , Co^{3+} , Cr^{3+} , Ca^{2+} , Mg^{2+} , Ni^{2+} , Fe^{2+} , Ag^+)(blue bars). The red and green bars show the emission intensity of L_1 -Hg²⁺ and L_1 -Cr³⁺ respectively (at 575 nm) in presence of the above mentioned metal ions in acetonitrile medium.

SI Figure 14: Absorbance of L_1 (20 μ M) at 509 nm with 10 mole equivalent different metal ions in absence of [Bu₄N]I (blue bars) and in presence of [Bu₄N]I (5mM) (red bars) in actonitrile medium.

Emission response of L₁ with different metal ions in absence and presence of [Bu₄N]I

SI Figure15: Emission intensity of L_1 (20 μ M) at 575 nm with 10 mole equivalent different metal ions in absence of [Bu₄N]I (blue bars) and in presence of [Bu₄N]I (5mM) (red bars) in actonitrile medium.