Supporting Information

Catalyst- and solvent-free one-pot synthesis of some novel polyheterocycles from aryldiazenyl salicylaldehyde derivatives

Narsidas J. Parmar¹,* Rikin A. Patel¹, Shashikant B. Teraiya¹, Deepak Sharma² and Vivek K. Gupta²

¹Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar-388120. Dist. Anand, Gujarat, India., E-mail: <u>njpchemdeptspu@yahoo.co.in</u>

²Post-Graduate Department of Physics, University of Jammu, Jammu Tawi - 180 006, India

General information and experimental procedures

Solvents were dried by the standard procedures. ¹H and ¹³C NMR spectra were determined in CDCl₃ or DMSO- d_6 on a BRUKER Avance (¹H: 400 MHz, ¹³C: 100 MHz). IR spectra were obtained on a SHIMADZU FT-IR 8300 spectrophotometer using KBr disc. Mass spectra were obtained on SHIMADZU LCMS 2010 instrument. All the reactions were monitored by thin layer chromatography (TLC) using silica gel 60 F254 plates (Merck). The melting points were determined in open capillary tube on a TEMPO melting point apparatus and are uncorrected. The UV spectra were obtained on SHIMADZU UV-160 A.

General procedure

• Synthesis of O-allylated or prenylated-5-aryldiazenyl salicylaldehydes (3a-d).

To a stirred solution of 10 mmol diazenylsalicylaldehyde 2 in 25 ml DMF, in the presence of 15 mmol anhydrous potassium carbonate, was added dropwise a solution of 1.5 mmol of allyl bromide in 5 ml DMF. The resulted mass was then further stirred at room temperature to complete the reaction as monitored by TLC (10-12 h). It was then poured into ice with constant stirring. The solid precipitates were filtered, washed with cold water, and dried at room temperature. The products **3a-b** were received quantitatively. Similarly prenyl bromide was used to obtain Oprenylated salicylaldehyde derivatives **3c-d**.

• Synthesis of benzopyran derivatives (7a–p) & (9a-d)

In a round-bottom flask, O-allylated/prenylated-5-aryldiazenyl salicylaldehydes **3** (3.7 mmol) and 5-pyrazolones **4** (3.7 mmol) or diketone **8a-d** (3.7 mmol) was heated at 180°C until the substrate **3** disappeared as monitored by TLC. It gave products in good yields. Crude product left was then subjected to a column chromatography, employing an ethyl acetate/hexane (3:7) eluent, affording compounds **7a-p or 9a-h** in pure product with excellent yields.

Characterization of compounds

(5aR,11bS)-1-methyl-3-phenyl-10-[(E)-phenyldiazenyl]-3,5a,6,11b-tetrahydro-5H-chromeno

[4',3':4,5]pyrano[2,3-c]pyrazole (7a): Isolated yield (1.23 g, 78%) as yellow crystals, mp 190-192°C; $\lambda_{max}(DMF)/nm 348$ (ε/dm³ mol⁻¹ cm⁻¹ 17721), 270 (12552); $v_{max}/cm^{-1} = 2957$, 2927, 1490, 1467, 1241, 1092, 1026, 831, 758; $\delta_{H}(400 \text{ MHz}; \text{CDCl}_{3})$ 2.42 (s, 3H, Me), 2.60 (s, 1H, C(5_a)H), 4.16 (t, 1H, J_{b} = 10.4 Hz, C(6)H), 4.33 (d, 1H, J = 4.8 Hz, C(11_b)H), 4.43 (m, 2H, C(5)H), 4.65 (dd, 1H, J = 2.4 Hz, C(6)H), 6.99 (d, 1H, J = 10.0 Hz ArH), 7.22-7.87 (m, 12H ArH); $\delta_{C}(100 \text{ MHz}; \text{CDCl}_{3})$ 14.41 (CH₃), 29.51 (CH, benzylic methane), 30.12 (CH, benzylic methane), 66.20 (CH₂), 68.52 (CH₂), 118.10, 120.34, 122.73, 123.65, 125.66, 126.04, 129.56, 129.86, 131.36 (ArCH), 99.48, 125.15, 138.65, 145.11, 146.49, 146.77, 148.09, 149.24, 149.95, 152.40, 152.81 (ArC); m/z (ESI) 423.1 [M + H⁺], C₂₆H₂₂N₄O₂: calcd. C 73.92, H 5.25, N 13.26; found C 73.80, H 5.20, N 13.30.

N. B.: To justify presence of chloroform appeared in single crystal X-Ray data of compound 7a, we have carried out GC-MS as well as CHN analysis. As expected, both the reports confirmed the presence of chloroform molecule in compound **7a**.

						Date: 5/11/
To, Mr. Rikin P. V.V. Nagar, Anand. Ph. No. 987	atel, 19594272					
ID No.: 163	58/114755					
Sr. No.	Test	No. of sample	Rate	Discount (Educational 75%)	Total A	mount in Rs.
1	C.H.N ananlysis	1	2000.00	1500.00		500.00
Instrumen	t : Perkin E	A Imer-2400	<u>Analysis</u> (C H N S / O nalytical Scier	report Ananlysis) ce Discipline		
Instrumen No. of sam	t : Perkin E ples : 1	A Imer-2400	<u>Analysis</u> (C H N S / O nalytical Scier	report Ananlysis) ice Discipline		
Instrumen No. of sam Sr.no.	t : Perkin E ples : 1 Sample code	A Imer-2400 C	<u>Analvsis</u> (C H N S / O .nalytical Scien H	report Ananlysis) cce Discipline N	S	0
Instrumen No. of sam Sr.no. 1	t : Perkin E ples : 1 Sample code D1	A Imer-2400 C 61.01	Analysis (C H N S / O nalytical Scient H 4.80	nantysis) Anantysis) Ince Discipline	\$ -	0
Instrumen No. of sam Sr.no. 1 Reference	t : Perkin E ples : 1 Sample code D1 standard (Theoritica	A Imer-2400 61.01 al value)	Analysis (C H N S / O. nnalytical Scient H 4.80	report Ananlysis) cce Discipline N 10.56	S -	0
Instrumen No. of sam Sr.no. 1 Reference	t : Perkin E ples : 1 Sample code D1 standard (Theoritica Sacetanilide	A Imer-2400 C 61.01 al value) 71.09 20.00	Analysis (C H N S / O. (C H N S / O.)))))))))))))))))))))))))))))))))))	N 10.36	S	0
Instrumen No. of sam	t : Perkin E ples : 1 Sample code D1 standard (Theoritica Acetanilide Cystine standard (Experime	A Imer-2400 C 61.01 al value) 71.09 29.99 ntal value)	Analysis. (C H N S / O. nalytical Scier H 4.80 6.71 5.03	N 10.36 11.67	\$ 	0
Instrumen No. of sam	t : Perkin E ples : 1 Sample code D1 standard (Theoritica Acetanilide Cystine standard (Experime Acetanilide	A Imer-2400 C 61.01 al value) 71.09 29.99 ntal value) 71.03	Analysis. (C H N S / O. nalytical Scier H 4.80 6.71 5.03 6.52	N 10.36 10.46		0
Instrumen No. of sam	t : Perkin E ples : 1 Sample code D1 standard (Theoritica Acetanilide Cystine standard (Experime Acetanilide Cystine	A Imer-2400 C 61.01 al value) 71.09 29.99 ntal value) 71.03 29.91	Analysis (C H N S / O nalytical Scier H 4.80 6.71 5.03 6.52 5.10	N 10.56 10.36 11.67 10.46 11.59		0

CHN analysis report of compound 7a

GC-MS trace of Compound 7a

N.B.: Obviously, for others, elemental analysis without crystallizing from chloroform but chromatographically pure ones, it showed expected results. Below is an elemental analysis of compound 7a isolated by column chromatography.

To, Mr. Rikin Patel, V.V. Nagar, Anand.

ID No.: 16342/114755

Sr. No.	Test	No. of sample	Rate	Discount	Total Amount in Rs.
				(Educational 75%)	
1	C,H,N ananlysis	1	2000.00	1500.00	500.00

Analysis report

(CHNS/OAnanlysis) Analytical Science Discipline

: Perkin Elmer-2400 Instrument

No. of samples : 1

J

Sr.no.	Sample code	С	Н	N	S	0
1	D1	73.82	5.15	13.37	-	-

Reference standard (Theoritical value)

Acetanilide	71.09	6.71	10.36	-	· _
Cystine	29.99	5.03	11.67	-	· ·

Reference standard (Experimental value)

Acetanilide	71.05	6.57	10.26	-	-
Cystine	29.88	5.15	11.60	-	-

Signature of analyst : Manager

(5a*R*, 11b*S*)-3-(3-chlorophenyl)-1-methyl-10-[(*E*)-phenyldiazenyl]-3,5a,6,11b-tetrahydro-5*H*chromeno[4',3':4,5]pyrano[2,3-*c*]pyrazole (7b): Isolated yield (1.29 g, 75%) as yellow crystals, mp 191-193°C; λmax(DMF)/nm 348 (ε/dm3 mol-1 cm-1 17628), 271 (15803); vmax/cm-1 = 2950, 2930, 2890, 1490, 1481, 1235, 1092, 1089, 1030, 898, 822, 763; δH(400 MHz; CDCl3) 2.57 (m, 4H, Me, C(5a)H), 4.24 (d, 1H, J = 4.8 Hz, C(11b)H), 4.35 (t, 1H, Jb = 10.8 Hz, C(6)H), 4.47 (m, 2H, C(5)H), 4.57 (dd, 1H, J = 2.8 Hz, C(6)H), 6.95 (d, 1H, J = 8.4 Hz, ArH), 7.18–7.94 (m, 11H, ArH); δC(100 MHz; CDCl3) 14.12 (CH3), 30.11 (CH, benzylic methane), 30.77 (CH, benzylic methane), 66.12 (CH2), 68.49 (CH2), 117.72, 118.19, 120.29, 122.67, 123.37, 125.69, 125.84, 129.03, 130.00, 130.53 (ArCH), 99.42, 123.60, 134.69, 139.23, 147.21, 147.61, 149.41, 152.62, 154.88 (ArC); m/z (ESI) 457.1 [M + H+]; C₂₆H₂₁N₄O₂Cl: calcd. C 68.34, H 4.63, N 12.26; found C 68.25, H 4.58, N 12.06.

(5aR,11bS)-1,3-diphenyl-10-[(E)-phenyldiazenyl]-3,5a,6,11b-tetrahydro-5H-

chromeno[4',3':4,5]pyrano[2,3-*c*]**pyrazole** (**7c):** Isolated yield (1.47 g, 80%) as yellow crystals, mp 202-204 C; λ_{max} (DMF)/nm 348 (ϵ /dm³ mol⁻¹ cm⁻¹ 15738), 275 (23353); v_{max} /cm⁻¹ 2957, 2920, 2890, 1491, 1471, 1238, 1094, 1028, 888, 817, 760; δ_{H} (400 MHz; CDCl₃) 2.12 (m, 1H, C(5a)H), 4.42-4.62 (m, 5H), 6.92–8.06 (m, 18H, ArH); δ_{C} (100 MHz; CDCl₃) 30.75 (CH, benzylic methane), 31.09 (CH, benzylic methane), 66.64 (CH₂), 68.00 (CH₂), 117.38, 121.14, 122.58, 123.75, 125.64, 126.21, 127.33, 128.34, 128.84, 128.93, 128.96, 130.31 (ArCH), 98.44, 123.78, 134.13, 138.31, 147.42, 148.85, 149.81, 152.54, 154.55 (ArC); m/z (ESI) 485.0 [M + H⁺]; C₃₁H₂₄N₄O₂: calcd. C 76.84, H 4.99, N 11.56; found C 76.70, H 4.87, N 11.48.

(5a*R*,11b*S*)-3-(2,5-dichlorophenyl)-1-methyl-10-[(*E*)-phenyldiazenyl]-3,5a,6,11b-tetrahydro-5*H*-chromeno[4',3':4,5]pyrano[2,3-*c*]pyrazole (7d): Isolated yield (1.55 g, 83%) as brown crystals, mp 96-98 °C; λ_{max} (DMF)/nm 348 (ε/dm³ mol⁻¹ cm⁻¹ 18306), 270 (8969); ν_{max} /cm⁻¹ 2957, 2927, 1490, 1467, 1241, 1092, 1026, 831, 758; δ_{H} (400 MHz; CDCl₃) 2.55 (s, 4H, Me, C(5a)H), 4.28 (m, 2H, C(6)H), 4.42 (m, 3H, c(5)H, C(11b)H), 6.96 (d, 1H, *J* = 8.4 Hz ArH), 7.33–7.99 (m, 10H, ArH); δ_{C} (100 MHz; CDCl₃) 14.24 (CH₃), 30.33 (CH, benzylic methane), 30.97 (CH, benzylic methane), 65.95 (CH₂), 68.66 (CH₂), 117.77, 122.70, 123.14, 126.29, 129.05, 129.57, 130.02, 130.56, 131.06 (ArCH), 97.99, 135.47, 147.13, 148.22, 150.27, 152.63, 155.06 (ArC) C₂₆H₂₀Cl₂N₄O₂: calcd. C 63.55, H 4.10, N 11.40; found C 63.49, H 4.18, N 11.49.

(5a*R*,11b*S*)-1-methyl-3-(4-methylphenyl)-10-[(*E*)-phenyldiazenyl]-3,5a,6,11b-tetrahydro-5*H*-chromeno[4',3':4,5]pyrano[2,3-*c*]pyrazole (7e): Isolated yield(1.41 g, 85%) as yellow crystals, mp 179-181 °C; λ_{max} (DMF)/nm 348 (ε/dm³ mol⁻¹ cm⁻¹ 19138), 270 (14154); v_{max} /cm⁻¹ 2960, 2923, 2892, 1487, 1444, 1222, 1094, 1032, 818, 767; δ_{H} (400 MHz; CDCl₃) 2.37 (s, 3H, p-Me), 2.60 (m, 4H, Me, C(5a)H), 4.25 (d, 1H, *J* = 4.8 Hz, C(11_b)H), 4.33 (t, 1H, *J*_b = 3.2 Hz, C(6)H), 4.47 (m, 2H, C(5)H), 4.54 (dd, 1H, *J* = 3.2 Hz, C(6)H), 6.95 (d, 1H, *J* = 8.8 Hz, ArH), 7.21–7.95 (m, 11H, ArH),; δ_{C} (100 MHz; CDCl₃) 13.95 (CH₃), 20.97 (CH₃), 30.11 (CH, benzylic methane), 30.88 (CH, benzylic methane), 66.16 (CH₂), 68.41 (CH₂), 117.72, 120.92, 122.68, 123.25, 125.99, 129.04, 129.58, 130.49, (ArCH), 122.32, 123.70, 129.77, 146.57, 147.22, 149.11, 152.64, 154.90, 155.36 (ArC) C₂₇H₂₄N₄O₂: calcd. C 74.29, H 5.54, N 12.84; found C 74.33, H 5.51, N 12.78.

(5aR,11bS)-3-(2-chlorophenyl)-1-methyl-10-[(E)-phenyldiazenyl]-3,5a,6,11b-tetrahydro-5H-

chromeno[4',3':4,5]pyrano[2,3-*c*]**pyrazole** (**7f**): Isolated yield (1.42 g, 82%) as yellow crystals, mp 114-115 °C; λ_{max} (DMF)/nm 348 (ϵ /dm³ mol⁻¹ cm⁻¹ 18711), 271 (16305); v_{max} /cm⁻¹ 2924, 1489, 1446, 1249, 1094, 1031, 877, 759; δ_{H} (400 MHz; CDCl₃) 2.57 (m, 4H, Me, C(5a)H), 4.23 (d, 1H, J = 4.8 Hz, C(11_b)H), 4.34 (t, 1H, $J_{b} = 10.8$ Hz, C(6)H), 4.47 (m, 2H, C(5)H), 4.57 (dd, 1H, J = 2.8 Hz, C(6)H), 6.95 (d, 1H, J = 8.8 Hz, ArH), 7.18–7.94 (m, 11H, ArH); δ_{C} (100 MHz; CDCl₃) 14.15 (CH₃), 30.12 (CH, benzylic methane), 30.77 (CH, benzylic methane), 66.12 (CH₂), 68.48 (CH₂), 117.71, 118.15, 120.26, 122.67, 123.35, 125.63, 125.85, 129.03, 129.99, 130.52, (ArCH),99.40, 123.63, 125.64, 134.68, 139.29, 147.20, 147.61, 149.39, 152.62, 154.88 (ArC) C₂₆H₂₁ClN₄O₂: calcd. C 68.34, H 4.63, N 12.26; found C 68.28, H 4.55, N 12.38. (5a*R*,11b*S*)-10-[(*E*)-(4-chlorophenyl)diazenyl]-1-methyl-3-phenyl-3,5a,6,11b-tetrahydro-5*H*chromeno[4',3':4,5]pyrano[2,3-*c*]pyrazole (7g): Isolated yield (1.38 g, 80%) as yellow crystals, mp 219-221 C; λ_{max} (DMF)/nm 361 (ε/dm³ mol⁻¹ cm⁻¹ 17274), 270 (13614); v_{max} /cm⁻¹ 2926, 1490, 1440, 1249, 1000, 1030, 878, 760; δ_{H} (400 MHz; CDCl₃) 2.55 (s, 3H, Me), 2.58 (m, 1H, C(5a)H), 4.24 (d, 1H, *J* = 4.8 Hz, C(11_b)H), 4.32 (t, 1H, *J*_b = 10.4 Hz, C(6)H), 4.47 (m, 2H, C(5)H), 4.54 (dd, 1H, *J* = 2.0 Hz, C(6)H), 6.94 (d, 1H, *J* = 8.8, ArH), 7.21–7.97 (m, 11H, ArH); δ_{C} (100 MHz; CDCl₃) 14.25 (CH₃), 30.22 (CH, benzylic methane), 30.87 (CH, benzylic methane), 66.27 (CH₂), 68.23 (CH₂), 117.71, 120.49, 123.26,123.91, 125.71, 126.26, 128.93, 129.25 (ArCH), 98.79, 124.06, 136.28, 138.48, 146.97, 147.01, 149.08, 151.02, 155.20 (ArC) C₂₆H₂₁ClN₄O₂: calcd. C 68.34, H 4.63, N 12.26; found C 68.25, H 4.50, N 12.32.

(5a*R*,11b*S*)-3-(3-chlorophenyl)-10-[(*E*)-(4-chlorophenyl)diazenyl]-1-methyl-3,5a,6,11b-tetrahydro-5*H*-chromeno[4',3':4,5]pyrano[2,3-*c*]pyrazole (7h): Isolated yield (0.76 g, 84%) as yellow crystals, mp 180-181°C; ¹H NMR (CDCl₃, 400 MHz): δ = 2.55 (s, 3H, Me), 2.58 (m, 1H, C(5a)H) 2.57 (m, 1H, C(11b)H), 4.34 (t, *J* = 10.4 Hz, 1H, C(6)H), 4.48 (m, 2H), 4.59 (dd, *J* = 3.2 Hz, 1H, C(6)H), 6.95–7.94 (m, 11H, ArH); ¹³C NMR (CDCl₃, 100 MHz): δ = 14.23, 30.14, 30.77, 66.19, 68.38, 99.23, 117.76, 118.00, 120.16, 123.38, 123.85, 123.91, 125.50, 126.08, 129.26, 129.95, 134.67, 136.32, 139.55, 147.02, 147.57, 149.31, 150.99, 155.15; λ_{max}(DMF)/nm 360 (ε/dm³ mol⁻¹ cm⁻¹ 17644), 271 (17128); MS: calcd. for C₂₆H₂₀Cl₂N₄O₂ [M + H] 491.10; found 491.29; C₂₆H₂₀Cl₂N₄O₂ (490.10 g/mol): calcd. C 63.55, H 4.10, N 11.40; found C 63.48, H 4.18, N 11.55.

(5aR,11bS)-10-[(E)-(4-chlorophenyl)diazenyl]-1,3-diphenyl-3,5a,6,11b-tetrahydro-5H-

chromeno[4',3':4,5]pyrano[2,3-c]pyrazole (7i): Isolated yield (0.70 g, 86%) as yellow crystals, mp 209-210°C; IR (KBr): v = 2915, 1480, 1444, 1250, 1094, 1035, 875, 755; ¹H NMR (CDCl₃, 400 MHz): $\delta = 2.74$ (m, C(5a)H), 4.32 (t, J = 11.2 Hz, 1H, C(6)H), 4.54 (m, 2H, C(5)H), 4.59 (dd, J = 3.6 Hz, 1H, C(6)H), 4.74 (d, J = 4.8 Hz, 1H, C(11_b)H), 6.90 (d, J = 8.4 Hz, 1H, ArH), 7.25–8.02 (m, 16H, ArH); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 30.69$, 30.98, 66.62, 67.89, 98.28, 117.43, 120.94, 123.80, 123.90, 123.98, 125.66, 126.10, 127.18, 128.20, 128.87, 128.93, 129.09, 134.40, 136.10, 138.48, 147.22, 148.79, 149.72, 150.87, 154.75; λ_{max} (DMF)/nm 360 (ε /dm³ mol⁻¹ cm⁻¹ 16943), 274 (25725); MS: calcd. for C₃₁H₂₃ClN₄O₂ [M + H] 519.15; found 519.43; C₃₁H₂₃ClN₄O₂ (518.15 g/mol): calcd. C 71.74, H 4.47, N 10.80; found C 71.60, H 4.55, N 11.05.

(5aR,11bS)-10-[(E)-(4-chlorophenyl)diazenyl]-3-(2,5-dichlorophenyl)-1-methyl-3,5a,6,11b-tetrahydro-5H-chromeno[4',3':4,5]pyrano[2,3-c]pyrazole (7j): Isolated yield(1.40 g, 70%) as yellow crystals, mp 222-224 C; λ_{max} (DMF)/nm 361 (ε/dm³ mol⁻¹ cm⁻¹ 17260), 269 (9829); v_{max} /cm⁻¹ 2935, 1485, 1433, 1251, 1087, 1034, 865, 761; δ_{H} (400 MHz; CDCl₃) 2.51 (s, 3H, Me), 2.56 (m, C(5a)H), 4.27 (m, 2H, C(6)H), 4.46 (m, 3H, C(11b)H), 6.95–7.99 (m, 10H, ArH); δ_{C} (100 MHz; CDCl₃) 14.46 (Me), 30.42 (CH, benzylic methane), 31.01 (CH, benzylic methane), 66.05 (CH₂), 68.47 (CH₂), 117.78, 123.09, 123.93, 126.61, 129.27, 129.47, 129.79, 131.00 (ArCH), 97.61, 123.72, 129.91, 132.93, 136.19, 136.31, 146.93, 148.29, 150.01, 151.03, 155.37 (ArC); C₂₆H₁₉Cl₃N₄O₂: calcd. C 59.39, H 3.64, N 10.66; found C 59.48, H 3.58, N 10.54.

1-Methyl-3-(4-methylphenyl)-10-(4-chlorophenylazo)-3, 5a, 6, 11b-tetrahydro - *5H*-benzopyrano [4', **3':4, 5] pyrano[2,3-c] pyrazole (7k) :** Isolated yield (1.25 g, 70%) as yellow crystals, mp 175-176°C ; $\lambda_{max}(DMF)/nm 360$ ($\varepsilon/dm3$ mol-1 cm-1 17673), 270 (14935); v_{max}/cm^{-1} 2922, 1480, 1443, 1240, 1080, 1022, 754; $\delta_{H}(400 \text{ MHz}; \text{CDCl}_3)$ 2.36 (s, 3H, p-tolyl), 2.54 (m, 4H, Me, C(5a)H), 4.23 (d, 1H, J = 4.8 Hz, C(11_b)H), 4.31 (t, 1H, $J_b = 10.0 \text{ Hz}$, C(6)H), 4.47 (m, 3H, C(5)H, C(6)H), 6.94 (d, 1H, ArH), 6.96–7.97 (m, 10H, ArH); $\delta_{C}(100 \text{ MHz}; \text{CDCl}_3)$ 14.24 (Me), 20.94 (Me), 30.25 (CH, benzylic methane), 30.91 (CH, benzylic methane), 66.30 (CH₂), 68.19 (CH₂), 117.69, 120.61, 123.21, 123.90, 126.32, 129.25, 129.47 (ArCH), 98.55, 124.13, 135.52, 136.02, 136.26, 146.63, 147.00, 148.91, 151.02, 155.21 (ArC); C₂₇H₂₃CIN₄O₂: calcd. C 68.86, H 4.92, N 11.90; found C 68.70, H 5.01, N 11.84.

1,5,5-trimethyl-3-(2-chlorophenyl)--10-phenylazo-3, 5a, 6, 11b-tetrahydro-5H-chromeno [4',3':4,5] pyrano[2,3-c]pyrazole (7m): Yellow crystals (1.25 g, 80%), mp 212-214°C; v_{max} /cm⁻¹ 3030, 3000, 1630, 1245, 825, 750, 680; $\delta_{H}(400 \text{ MHz; CDCl}_{3})$ 1.55 (s, 3H, Me), 1.60 (s, 3H, Me), 2.23 (s, 3H, Me), 2.25 (m, 1H, C(5a)H), 4.12 (t, 1H, *J* = 11.0 Hz, C(6)H), 4.25 (d, 1H, *J* = 4.0 Hz, C(11_b)H), 4.51 (dd, 1H, *J* = 3.2 Hz, C(6)H), 6.92 (d, *J* = 8.4 Hz, 1H, Ar-H), 7.21-8.09 (m, 11H, Ar-H); $\delta_{C}(100 \text{ MHz; CDCl}_{3})$ 15.25, 25.48, 26.10, 30.55, 38.20, 63.70, 80.80, 95.90, 117.23, 120.60, 121.58, 122.60, 123.50, 125.67, 127.20, 129.07, 129.56, 130.45, 131.11, 135.68, 146.11, 147.04, 147.80, 148.50, 152.61, 156.86; C₂₈H₂₅ClN₄O₂: calcd. C 69.34, H 5.20, N 11.55; found C 69.29, H 5.17, N 11.64.

1,5,5-trimethyl-3-(2,5-dichlorophenyl)-10-phenylazo-3, 5a, 6, 11b-tetrahydro-*5H***- chromeno [4',3':4,5] pyrano [2,3-c]pyrazole (7n)**: Yellow crystals (1.42 g, 84%), mp 244-246°C; v_{max} /cm⁻¹ 2957, 2926, 1490, 1245, 1022, 754; δ_{H} (400 MHz; CDCl₃) 1.50 (s, 3H, Me), 1.53 (s, 3H, Me), 2.20 (m, 4H, Me & C(5a)H), 4.13 (t, 1H, *J* = 11.4 Hz C(6)H), 4.32 (d, 1H, *J* = 4.4 Hz, C(11_b)H), 4.53 (dd, 1H, *J* = 4.0 Hz, C(6)H), 6.99 (d, 1H, *J* = 8.4 Hz, Ar-H), 7.28-8.01 (m, 10H, Ar-H); δ_{C} (100 MHz; CDCl₃) 15.10, 25.20, 25.98, 30.00, 38.90, 63.55, 81.10, 96.83, 117.30, 120.76, 121.45, 123.60, 123.90, 126.80, 127.94, 128.59, 129.10, 129.13, 129.94, 130.30, 133.71, 135.20, 145.52, 148.98, 152.62, 156.78; C₂₈H₂₄Cl₂N₄O₂: calcd. C 64.74, H 4.66, N 10.79; found C 64.89, H 4.50, N 10.60.

1,5,5-trimethyl-3-(2-chlorophenyl)-10-(4-chlorophenylazo)-3,5a,6,11b-tetrahydro-5*H***-chromeno [4',3':4,5**] **pyrano** [**2,3-***c*] **pyrazole** (**7o):** Yellow crystals (1.39 g, 79%), mp 118-120°C; v_{max} /cm⁻¹ 3030, 2980, 1640, 1250, 850, 770, 690; $\delta_{H}(400 \text{ MHz}; \text{CDCl}_{3})$ 1.50 (s, 3H, Me), 1.55 (s, 3H, Me), 2.22 (m, 4H, Me & 5a-H), 4.10 (t, 1H, *J* = 11.0 Hz, C(6a)H), 4.32 (d, 1H, *J* = 4.0 Hz, C(11b)H), 4.50 (dd, 1H, *J* = 3.2 Hz, C(6)H), 6.96 (d, 1H, *J* = 8.4 Hz, Ar-H), 7.28-8.09 (m, 10H, Ar-H); $\delta_{C}(100 \text{ MHz}; \text{CDCl}_{3})$ 15.23, 25.43, 25.98, 29.70, 30.52, 38.33, 63.62, 80.67, 94.71, 117.37, 123.69, 123.89, 127.35, 127.48, 129.25, 129.62, 129.86, 130.20, 131.75, 136.18, 145.85, 147.89, 148.98, 151.17; C₂₈H₂₅ClN₄O₂: calcd. C 69.34, H 5.20, N 11.55; found C 69.20, H 5.28, N 11.67.

1,5,5-trimethyl-3-(2,5-dichlorophenyl)-10-(4-chlorophenylazo)-3,5a,6,11b-tetrahydro-5*H***-chromeno [4',3':4,5]pyrano**[**2,3-***c*]**pyrazole** (**7p**): Yellow crystals (1.45 g, 75%), mp 276-278°C; v_{max}/cm^{-1} 3025, 3000, 1635, 1220, 875, 780, 690; $\delta_{H}(400 \text{ MHz}; \text{CDCl}_{3})$ 1.52 (s, 3H, Me), 1.55 (s, 3H, Me), 2.23 (m, 4H, Me & C(5a)H), 4.07 (t, 1H, *J* = 11.2 Hz, C(6a)H), 4.31(d, 1H, *J* = 4.4 Hz, C(11b)H), 4.50 (dd, 1H, *J* = 4.0 Hz, C(6)H), 6.97 (d, 1H, *J* = 8.8 Hz, Ar-H), 7.35-8.08 (m, 9H, Ar-H); $\delta_{C}(100 \text{ MHz}; \text{CDCl}_{3})$ 15.19, 25.38, 25.97, 30.44, 38.27, 63.56, 81.22, 95.01, 117.41, 121.28, 123.78, 123.90, 127.24, 128.80, 129.28, 129.65, 129.94, 130.96, 132.98, 135.89, 136.23, 145.88, 148.52, 149.04, 151.11, 156.79; C₂₈H₂₃Cl₃N₄O₂: calcd. C 60.72, H 4.19, N 10.12; found C 60.50, H 4.10, N 10.30.

(4a*R*,10b*S*)-9-[(E)-phenyldiazenyl]-1,4a,5,10b-tetrahydro-2*H*,4*H*-pyrano[3,4-*c*]chromen-2-one(9a): Yellow crystals (0.91 g, 78%), mp 195-196°C; Yellow crystals (0.77 g, 73%), mp 212-214°C; IR (KBr): $v = 3050, 2990, 1670, 1600, 1380, 1250, 1000, 840, 650; {}^{1}H NMR (CDCl_3, 400 MHz): <math>\delta = 2.58 \text{ (m, 2H, C(6)H)}, 2.98 \text{ (dd, } J = 7.2 \text{ Hz}, 1\text{H}, C(1)\text{H}), 3.62 \text{ (q, 1H, C(10b)H)}, 4.37 \text{ (m, 2H, C(4)H)}, 4.12 \text{ (m, 2H, C(5)H)}, 6.91 \text{ (d, } J = 8.4 \text{ Hz}, 1\text{H}, \text{Ar-H}), 7.51-7.90 \text{ (m, 7H, Ar-H)}; {}^{13}C NMR (CDCl_3, 100 MHz): <math>\delta = 29.93, 31.55, 35.71, 65.24, 67.87, 118.31, 123.29, 123.93, 124.10, 129.34; MS: calcd. for C₁₈H₁₆N₂O₃ [M + H] 309.1; found 309.20; C₁₈H₁₆N₂O₃ (309.1 g/mol): calcd. C 70.12, H 5.23, N 9.09; found C 70.20, H 5.20, N 9.12.$

5-[(*E***)-phenyldiazenyl]-1,6b,14,14a-tetrahydro-7***H***,14***H***-cromeno[3',4':5,6]pyrano[3,4-c]-chromen-7-one (9b): Yellow crystals (0.91 g, 70%), mp 210-212°C; IR (KBr): v = 3050, 2970, 1620, 1465, 1380, 1250, 1130, 750; ¹H NMR (CDCl₃, 400 MHz): \delta = 2.52 (m, 1H, C(6)H), 4.38 (t, 1H, C(14a)H), 4.56 (m, 4H, Me & C(14)H), 6.92-8.15 (m, 12H, Ar-H); ¹³C NMR (CDCl₃, 100 MHz): \delta = 29.22, 29.70, 66.07, 103.31, 115.29, 116.73, 117.81, 120.53, 121.49, 122.72, 122.99, 124.03, 127.39, 128.51, 128.94, 130.38, 132.21, 147.73, 152.70, 154.38, 160.21, 164.14; MS: calcd. for C₂₅H₁₈N₂O₄ [M + H] 411.1; found 411.30; C₂₅H₁₈N₂O₄ (410.1 g/mol): calcd. C 73.16, H 4.42, N 6.83; found C 73.25, H 4.34, N 6.70.**

(6a*R*,12b*S*)-14-methyl-11-[(*E*)-(4-chlorophenyl)phenyldiazenyl]-6a,7,12b,14-tetrahydro-6*H*,13*H*-chromeno[4',3':4,5]pyrano[3,2-*c*]quinolin-13-one(9c): Yellow crystals (1.30 g, 71%), mp 240-241°C;

(6aR,12bS)-11-[(E)-(4-chlorophenyl)diazenyl]-14-phenyl-6a,7,12b,14-tetrahydro-6H,13H-

chromeno[4',3':4,5]pyrano[3,2-*c***]quinolin-13-one (9d):** Yellow crystals (0.67 g, 76%), mp 220-223°C; IR (KBr): $v = 3050, 2980, 1730, 1490, 1240, 1100, 990, 790, 680; {}^{1}H NMR (CDCl_3, 400 MHz): <math>\delta = 2.54$ (m, 1H, C(14b)H), 4.40 (m, 1H, C(6b)H), 4.49 (m, 4H, Me & C(14)H), 6.89-8.10 (m, 16H, Ar-H); {}^{13}C NMR (CDCl_3, 100 MHz): $\delta = 29.33, 29.74, 29.92, 64.36, 66.45, 108.54, 113.80, 115.68, 117.24, 119.56, 121.90, 123.48, 123.62, 124.48, 129.24, 129.61, 130.67, 135.36, 139.38, 147.42, 151.46, 154.17, 156.12, 164.51; MS: calcd. for C₃₁H₂₂ClN₃O₃ [M + H] 520.1; found 520.37; C₃₁H₂₂ClN₃O₃ (520.1 g/mol): calcd. C 71.61, H 4.26, N 8.08; found C 71.48, H 4.36, N 8.10.$

(4aR,10bS)-9-[(E)-(4-chlorophenyl)-phenyldiazenyl]-1,4a,5,10b-tetrahydro-2H,4H-pyrano[3,4-

c]chromen-2-one (9e): Yellow crystals (0.77 g, 73%), mp 212-214°C; IR (KBr): $v = 3050, 2975, 1760, 1450, 1270, 1080, 790, 630, 550; ¹H NMR (CDCl₃, 400 MHz): <math>\delta = 2.66$ (m, 2H, C(6)H), 3.12 (dd, J = 7.2 Hz, 1H, C(1)H), 3.55 (q, 1H, C(10b)H), 4.13 (m, 2H, C(4)H), 4.54 (m, 2H, C(5)H), 7.01 (d, J = 8.4 Hz, 1H, Ar-H), 7.48-7.86 (m, 6H, Ar-H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 29.93, 31.55, 35.71, 65.24, 67.87, 118.31, 123.29, 123.93, 124.10, 129.34;$ MS: calcd. for C₂₅H₁₇ClN₂O₄ [M + H] 445.2; found 445.4; C₂₅H₁₇ClN₂O₄ (444.2 g/mol): calcd. C 67.50, H 3.85, N 6.30; found C 67.29, H 3.88, N 6.37.

5-[(E)-(4-chlorophenyl)phenyldiazenyl]-1,6b,14,14a-tetrahydro-7H,14H-cromeno[3',4':

5,6]pyrano[3,4-*c***]-chromen-7-one (9f):** Yellow crystals (0.91 g, 78%), mp 210-212°C; IR (KBr): v = 3050, 2975, 1760, 1450, 1270, 1080,790, 630, 550; ¹H NMR (CDCl₃, 400 MHz): $\delta = 2.55$ (m, 1H, C(6)H), 4.30 (t, 1H, C(14a)H), 4.52 (m, 4H, Me & C(14)H), 6.90-8.20 (m, 11H, Ar-H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 29.20$, 29.74, 66.37, 103.20, 115.11, 116.65, 117.58, 120.37, 121.65, 122.88, 123.00, 124.14 127.42, 128.48, 128.86, 130.41, 132.44, 147.64, 152.55, 154.61, 160.43, 164.45; MS: calcd. for C₂₅H₁₇ClN₂O₄ [M + H] 445.1; found 445.37; C₂₅H₁₇ClN₂O₄ (444.1 g/mol): calcd. C 67.50, H 3.85, N 6.30; found C 67.29, H 3.70, N 6.50.

(6aR,12bS)-14-methyl-11-[(E)-phenyldiazenyl]-6a,7,12b,14-tetrahydro-6H,13H-

chromeno[4',3':4,5]pyrano[3,2-*c*]**quinolin-13-one(9g):** Yellow crystals (0.75 g, 77%), mp 220-222°C; IR (KBr): $v = 3350, 2980, 1620, 1490, 1365, 1270, 1080, 770, 570; {}^{1}H NMR (CDCl_3, 400 MHz): <math>\delta = 2.55$ (m, 1H, C(14b)H), 3.86 (s, 3H, N-CH_3), 4.29 (m, 1H, C(6b)H), 4.60 (m, 4H, Me & C(14)H), 6.91-8.20 (m, 11H, Ar-H); {}^{13}C NMR (CDCl_3, 100 MHz): $\delta = 29.40, 30.00, 30.10, 65.40, 66.05, 108.75, 114.09, 115.34, 118.46, 118.14, 121.90, 123.12, 123.80, 124.10, 129.20, 129.01, 130.80, 136.00, 139.29, 147.60, 151.34, 154.93, 156.56, 164.35; MS: calcd. for C₂₆H₂₁N₃O₃ [M + H] 424.2; found 424.50; C₂₅H₁₈N₂O₄ (423.2 g/mol): calcd. C 73.74, H 5.00, N 9.92; found C 73.48, H 4.96, N 9.70.$

(6aR,12bS)-14-phenyl-11-[(E)-phenyldiazenyl]-6a,7,12b,14-tetrahydro-6H,13H-

chromeno[4',3':4,5]pyrano[3,2-c]quinolin-13-one (9h): Yellow crystals (0.69 g, 72%), mp 230-231°C; IR (KBr): v = 3025, 2930, 1650, 1430, 1240, 1090, 830, 750; ¹H NMR (CDCl₃, 400 MHz): $\delta = 2.80$ (m, 1H, C(14b)H), 4.31 (m, 1H, C(6b)H), 4.33 (m, 4H, Me & C(14)H), 6.32-8.47 (m, 17H, Ar-H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 30.11$, 30.70, 30.92, 66.36, 66.45, 109.70, 113.04, 116.74, 117.59, 119.27, 121.28, 123.83, 123.99, 124.34, 129.67, 130.01, 132.04, 135.94, 139.42, 147.41, 151.12, 154.94, 156.62, 164.38; MS: calcd. for C₃₁H₂₃N₃O₃ [M + H] 486.2; found 486.23; C₃₁H₂₃N₃O₃ (485.2 g/mol): calcd. C 76,69, H 4.77, N 8.65; found C 76.58, H 4.65, N 8.78.

(5a*R*,11b*S*)-1-methyl-3-phenyl-3,5a,6,11b-tetrahydro-5*H*-chromeno [4',3':4,5]pyrano[2,3-*c*]pyrazol-10amine (10): Isolated yield (0.52 g, 45%) as white powder, mp 230-234°C; ¹H NMR (CDCl₃, 400 MHz): δ = 2.39 (s, 3H, Me), 2.60 (s, 1H, C(5a)H), 4.04 (m, 2H, C(6)H & C(11b)H), 4.22 (s, 2H, C(5)H), 4.58 (dd, *J* = 10.8 Hz, 1H, C(6)H), 4.72 (s, 2H, NH₂), 6.36 (d, *J* = 8.4 Hz, 1H, ArH), 6.46-7.69 (m, 7H ArH); ¹³C NMR (CDCl₃, 100 MHz): δ = 14.35, 29.57, 31.03, 65.55, 68.79, 100.24, 114.67, 115.46, 117.19, 120.16, 124.71, 125.80, 129.53, 138.79, 142.72, 143.60, 147.05, 149.33; MS: calcd. for $C_{20}H_{19}N_3O_2$ [M + H] 334.3; found 334.43; $C_{20}H_{19}N_3O_2$ (333.3 g/mol): calcd. C 72.05, H 5.74, N 12.60; found C 72.15, H 5.65, N 12.78.

Compound 7a mass

Compound 7a IR

Compound 7a UV

Compound 7b Compound 7b ¹H NMR

Compound 7b – DEPT 135

Compound 7b mass

Compound 7b IR

Compound 7b UV

Compound 7d UV

Compound 7e

Compound 7e¹H NMR

Compound 7e - ¹³C NMR

Compound 7f¹H NMR

Compound 7f IR

Compound 7g¹H NMR

Compound 7g – DEPT 135

Compound 7g IR

Compound 7g UV

Compound 7i¹H NMR

Compound 7i - ¹³C NMR

Compound 7i IR

Compound 7j¹H NMR

Compound 7j UV

Compound 7k IR

Compound 10¹H NMR

Compound 10 - ¹³C NMR

Compound 10 – DEPT 135

Compound 9b ¹H NMR

Compound 9b - ¹³C NMR

Compound 9b – DEPT 135

Compound 9c¹H NMR

Compound 9c - ¹³C NMR

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2012

Compound 9c – DEPT 135

Compound 7a ¹H-¹H COSY

